Biochar Affects Heavy Metal Uptake in Plants through Interactions in the Rhizosphere
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polluted Soils and Experiment
2.2. Plant Translocation Factor Calculation
2.3. Statistics
3. Results
3.1. Plant Growth and Metal Uptake
3.2. Effects on Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tiller, K.G. Heavy metals in soils and their environmental significance. Adv. Soil Sci. 1989, 9, 113–142. [Google Scholar]
- Andersson, A.; Nilsson, K. Influence of lime and soil pH on Cd availability to plants. Ambio 1974, 3, 198–200. [Google Scholar]
- Bolan, N.S.; Duraisamy, V.P. Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: A review involving specific case studies. Soil Res. 2003, 41, 533. [Google Scholar] [CrossRef]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 2011, 159, 3269–3282. [Google Scholar] [CrossRef]
- Park, J.H.; Choppala, G.K.; Bolan, N.S.; Chung, J.W.; Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 2011, 348, 439–451. [Google Scholar] [CrossRef]
- Sui, F.; Zuo, J.; Chen, D.; Li, L.; Pan, G.; Crowley, D.E. Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: A 3-year field study. Environ. Sci. Pollut. Res. 2018, 25, 3368–3377. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota: A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [Green Version]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. Effects of biochar and greenwaste compost amandments on mobility, bioavilibility and toxicity of inorganic and organic contaminants in multi-element polluted soil. Environ. Pollut. 2010, 158, 2282–2287. [Google Scholar] [CrossRef]
- Sizmur, T.; Quilliam, R.; Puga, A.P.; Moreno-Jiménez, E.; Beesley, L.; Gomez-Eyles, J.L. Application of biochar for soil remediation. In SSSA Special Publications; Guo, M., He, Z., Uchimiya, S.M., Eds.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 2015; pp. 295–324. ISBN 978-0-89118-967-1. [Google Scholar]
- Bian, R.; Joseph, S.; Cui, L.; Pan, G.; Li, L.; Liu, X.; Zhang, A.; Rutlidge, H.; Wong, S.; Chia, C.; et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J. Hazard. Mater. 2014, 272, 121–128. [Google Scholar] [CrossRef]
- Dang, V.M.; Joseph, S.; Van, H.T.; Mai, T.L.A.; Duong, T.M.H.; Weldon, S.; Munroe, P.; Mitchell, D.; Taherymoosavi, S. Immobilization of heavy metals in contaminated soil after mining activity by using biochar and other industrial by-products: The significant role of minerals on the biochar surfaces. Environ. Technol. 2019, 40, 3200–3215. [Google Scholar] [CrossRef] [PubMed]
- Uchimiya, M.; Klasson, K.T.; Wartelle, L.H.; Lima, I.M. Influence of soil properties on heavy metal sequestration by biochar amendment: Copper sorption isotherms and the release of cations. Chemosphere 2011, 82, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Lamb, D.; Naidu, R.; Bolan, N.S.; Yan, Y.; Ok, Y.S.; Rahman, M.M.; Choppala, G. Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Sci. Total Environ. 2018, 610–611, 1457–1466. [Google Scholar] [CrossRef]
- Feng, M.-H.; Shan, X.-Q.; Zhang, S.-Z.; Wen, B. Comparison of a rhizosphere-based method with other one-step extraction methods for assessing the bioavailability of soil metals to wheat. Chemosphere 2005, 59, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurti, G.; Huang, P.; Van Rees, K.; Kozak, L.; Rostad, H. A new soil test method for the determination of plant-available cadmium in soils. Commun. Soil Sci. Plant Anal. 1995, 26, 2857–2867. [Google Scholar] [CrossRef]
- Prendergast-Miller, M.T.; Duvall, M.; Sohi, S.P. Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability: Biochar-root interactions. Eur. J. Soil Sci. 2014, 65, 173–185. [Google Scholar] [CrossRef]
- Jones, D.L.; Rousk, J.; Edwards-Jones, G.; DeLuca, T.H.; Murphy, D.V. Biochar-mediated changes in soil quality and plant growth in a three-year field trial. Soil Biol. Biochem. 2012, 45, 113–124. [Google Scholar] [CrossRef]
- Zhou, Z.; Gao, T.; Van Zwieten, L.; Zhu, Q.; Yan, T.; Xue, J.; Wu, Y. Soil Microbial community structure shifts induced by biochar and biochar-based fertilizer amendment to karst calcareous soil. Soil Sci. Soc. Am. J. 2019, 83, 398–408. [Google Scholar] [CrossRef]
- Gahoonia, T.S.; Nielsen, N.E. The effects of root-induced pH changes on the depletion of inorganic and organic phosphorus in the rhizosphere. Plant Soil 1992, 143, 185–191. [Google Scholar] [CrossRef]
- Leyval, C.; Joner, E.J. Bioavailability of heavy metals in the mycorrhizosphere. In Trace Elements Rhizosphere; CRC Press: Boca Raton, FL, USA, 2001; pp. 165–185. ISBN 0-8493-1535-2. [Google Scholar]
- Sterckeman, T.; Duquène, L.; Perriguey, J.; Morel, J.-L. Quantifying the effect of rhizosphere processes on the availability of soil cadmium and zinc. Plant Soil 2005, 276, 335–345. [Google Scholar] [CrossRef]
- Wang, Z.; Shan, X.; Zhang, S. Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils. Chemosphere 2002, 46, 1163–1171. [Google Scholar] [CrossRef]
- Kabala, C.; Bojko, O.; Medyńska, A.; Szczepaniak, A. Spatial variability and temporal changes in the heavy metal content of soils with a deep furrow-and-ridge microrelief formed by an afforestation plowing. Environ. Monit. Assess. 2013, 185, 5141–5150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyszka, R.; Pietranik, A.; Kierczak, J.; Ettler, V.; Mihaljevič, M.; Medyńska-Juraszek, A. Lead isotopes and heavy minerals analyzed as tools to understand the distribution of lead and other potentially toxic elements in soils contaminated by Cu smelting (Legnica, Poland). Environ. Sci. Pollut Res. 2016, 23, 24350–24363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medyńska-Juraszek, A.; Kabała, C. Heavy metal pollution of forest soils affected by the copper industry. J. Elem. 2012, 17, 441–445. [Google Scholar] [CrossRef]
- O’Toole, A.; Moni, C.; Weldon, S.; Schols, A.; Carnol, M.; Bosman, B.; Rasse, D. Miscanthus biochar had limited effects on soil physical properties, microbial biomass, and grain yield in a four-year field experiment in Norway. Agriculture 2018, 8, 171. [Google Scholar] [CrossRef] [Green Version]
- Gryschko, R.; Kuhnle, R.; Terytze, K.; Breuer, J.; Stahr, K. soil extraction of readily soluble heavy metals and as with 1 M NH4NO3-Solution—Evaluation of DIN 19730 (6 pp). J. Soils Sediments 2005, 5, 101–106. [Google Scholar] [CrossRef]
- Cui, L.; Li, L.; Zhang, A.; Pan, G.; Chang, A. Biochar amendment greatly reduces rice cd uptake in a contaminated paddy soil: A two-year field experiment. BioResources 2011, 6, 2605–2618. [Google Scholar]
- Ehsan, M.; Barakat, M.A.; Husein, D.Z.; Ismail, S.M. Immobilization of Ni and Cd in Soil by biochar derived from unfertilized dates. Water Air Soil Pollut. 2014, 225, 2123. [Google Scholar] [CrossRef]
- Karer, J.; Wawra, A.; Zehetner, F.; Dunst, G.; Wagner, M.; Pavel, P.-B.; Puschenreiter, M.; Friesl-Hanl, W.; Soja, G. Effects of biochars and compost mixtures and inorganic additives on immobilisation of heavy metals in contaminated soils. Water Air Soil Pollut. 2015, 226, 342. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 2019, 1002–1022. [Google Scholar] [CrossRef]
- Soudek, P.; Rodriguez Valseca, I.M.; Petrová, Š.; Song, J.; Vaněk, T. Characteristics of different types of biochar and effects on the toxicity of heavy metals to germinating sorghum seeds. J. Geochem. Explor. 2017, 182, 157–165. [Google Scholar] [CrossRef]
- Siipola, V.; Pflugmacher, S.; Romar, H.; Wendling, L.; Koukkari, P. Low-cost biochar adsorbents for water purification including microplastics removal. Appl. Sci. 2020, 10, 788. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Yu, I.K.M.; Tsang, D.C.W.; Cao, X.; Lin, D.; Wang, L.; Graham, N.J.D.; Alessi, D.S.; Komárek, M.; Ok, Y.S.; et al. Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater. Environ. Int. 2019, 124, 521–532. [Google Scholar] [CrossRef]
- Houben, D.; Evrard, L.; Sonnet, P. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenergy 2013, 57, 196–204. [Google Scholar] [CrossRef]
- Amirahmadi, E.; Mohammad Hojjati, S.; Kammann, C.; Ghorbani, M.; Biparva, P. The potential effectiveness of biochar application to reduce soil Cd bioavailability and encourage oak seedling growth. Appl. Sci. 2020, 10, 3410. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhang, X.C. Effect of biochar on pH of alkaline soils in the loess plateau: Results from incubation experiments. Int. J. Agric. Biol. 2012, 14, 6. [Google Scholar]
- Glaser, B.; Lehr, V.-I. Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Sci. Rep. 2019, 9, 9338. [Google Scholar] [CrossRef] [Green Version]
- Cornelissen, G.; Jubaedah; Nurida, N.L.; Hale, S.E.; Martinsen, V.; Silvani, L.; Mulder, J. Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol. Sci. Total Environ. 2018, 634, 561–568. [Google Scholar] [CrossRef]
- Medyńska-Juraszek, A.; Ćwieląg-Piasecka, I. Effect of biochar application on heavy metal mobility in soils impacted by copper smelting processes. Pol. J. Environ. Stud. 2020, 29, 1749–1757. [Google Scholar] [CrossRef]
- Hinsinger, P.; Plassard, C.; Jaillard, B. Rhizosphere: A new frontier for soil biogeochemistry. J. Geochem. Explor. 2006, 88, 210–213. [Google Scholar] [CrossRef]
- Calba, H.; Cazevieille, P.; Thée, C.; Poss, R.; Jaillard, B. The dynamics of protons, aluminium, and calcium in the rhizosphere of maize cultivated in tropical acid soils: Experimental study and modelling. Plant Soil 2004, 260, 33–46. [Google Scholar] [CrossRef]
- Bravin, M.N.; Tentscher, P.; Rose, J.; Hinsinger, P. Rhizosphere pH gradient controls copper availability in a strongly acidic soil. Environ. Sci. Technol. 2009, 43, 5686–5691. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.L.; Hodge, A.; Kuzyakov, Y. Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 2004, 163, 459–480. [Google Scholar] [CrossRef]
- Tamas, M.J.; Martinoia, E. Molecular biology of metal homeostasis and detoxification. In Topics in Current Genetics; Springer: Berlin/Heidelberg, Germany, 2006; Volume 14, ISBN 978-3-540-22175-3. [Google Scholar]
- Hinsinger, P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Pant Soil 2001, 237, 173–195. [Google Scholar]
- Abedi, T.; Mojiri, A. Cadmium uptake by wheat (Triticum aestivum L.): An overview. Plants 2020, 9, 500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.; Liu, X.; Bian, R.; Cheng, K.; Zhang, X.; Zheng, J.; Joseph, S.; Crowley, D.; Pan, G.; Li, L. Effects of biochar on availability and plant uptake of heavy metals—A meta-analysis. J. Environ. Manag. 2018, 222, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Kuchenbuch, R.; Jungk, A. A method for determining concentration profiles at the soil-root interface by thin slicing rhizospheric soil. Plant Soil 1982, 68, 391–394. [Google Scholar] [CrossRef]
- Soriano-Disla, J.M.; Speir, T.W.; Gómez, I.; Clucas, L.M.; McLaren, R.G.; Navarro-Pedreño, J. Evaluation of different extraction methods for the assessment of heavy metal bioavailability in various soils. Water Air Soil Pollut. 2010, 213, 471–483. [Google Scholar] [CrossRef]
- Meng, J.; Tao, M.; Wang, L.; Liu, X.; Xu, J. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Sci. Total Environ. 2018, 633, 300–307. [Google Scholar] [CrossRef]
- Reichman, S.M. Metal complexation by phytosiderophores in the rhizosphere. In Biogeochemistry of Trace Elements in the Rhizosphere; Huang, P.M., Gobran, G.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 129–156. [Google Scholar] [CrossRef]
- Shenker, M.; Fan, T.W.-M.; Crowley, D.E. Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants. J. Environ. Qual. 2001, 30, 2091–2098. [Google Scholar] [CrossRef]
- Gupta, C.K.; Singh, B. Uninhibited biosynthesis and release of phytosiderophores in the presence of heavy metal (HM) favors HM remediation. Environ. Sci. Pollut. Res 2017, 24, 9407–9416. [Google Scholar] [CrossRef] [PubMed]
Biochar | Unpolluted Soil | Weakly Polluted Soil | Highly Polluted Soil | |
---|---|---|---|---|
pH | 9.16 | 6.16 | 7.53 | 7.35 |
Total C (%) | 79.3 | 0.91 | 1.05 | 1.11 |
Total H (%) | 0.47 | - | - | - |
Total N (%) | 1.05 | 0.09 | 0.11 | 0.12 |
Total P (g/kg) | 2.43 | - | - | - |
Cd (mg/kg) | 0.05 | 0.15 | 1.25 | 1.91 |
Cu (mg/kg) | 15.0 | 3.20 | 200 | 451 |
Pb (mg/kg) | 0.62 | 11.1 | 118 | 211 |
Zn (mg/kg) | 67.1 | 26.7 | 67.2 | 134 |
Soil | Treatment | Shoots | Root | ||||
---|---|---|---|---|---|---|---|
(g/pot) | SEM | (g/pot) | SEM | ||||
Unpolluted soil | Control | 1.63 | a | 0.05 | 0.56 | a | 0.03 |
Biochar | 1.76 | a | 0.12 | 0.52 | a | 0.08 | |
Weakly polluted soil | Control | 1.39 | ab | 0.08 | 0.39 | b | 0.03 |
Biochar | 1.34 | b | 0.13 | 0.29 | c | 0.04 | |
Highly polluted soil | Control | 0.09 | d | 0.01 | 0.02 | d | 0.01 |
Biochar | 1.16 | c | 0.12 | 0.25 | c | 0.02 |
Metal | Plant Part | Unpolluted Soil | Weakly Polluted | Highly Polluted | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Biochar | Control | Biochar | Control | Biochar | ||||||||||||||
SEM | SEM | SEM | SEM | SEM | SEM | ||||||||||||||
Cd | Root | 3.18 * | a | 0.35 | 3.16 | a | 0.37 | 3.51 | a | 0.34 | 4.15 | a | 0.60 | 19.3 | n = 1 ** | 4.87 | b | 0.71 | |
Shoot | 1.27 | b | 0.18 | 1.15 | b | 0.12 | 1.07 | b | 0.13 | 1.10 | b | 0.12 | 7.17 | a | 1.14 | 1.30 | c | 0.09 | |
Cu | Root | 27.3 | a | 3.00 | 23.1 | a | 3.19 | 132 | b | 3.29 | 190 | a | 21.7 | 155 | n = 1 | 443 | a | 57.9 | |
Shoot | 7.50 | b | 0.35 | 5.67 | b | 0.54 | 14.3 | c | 0.82 | 12.0 | c | 0.71 | 38.3 | a | 4.08 | 13.2 | b | 0.82 | |
Pb | Root | 23.7 | a | 4.05 | 19.4 | a | 4.06 | 32.5 | a | 13.4 | 24.4 | ab | 4.70 | 206 | n = 1 | 35.4 | b | 2.22 | |
Shoot | 17.0 | ab | 2.12 | 9.17 | b | 1.47 | 8.17 | b | 1.63 | 6.00 | b | 2.55 | 73.3 | a | 10.8 | 6.67 | c | 1.08 | |
Zn | Root | 41.9 | ab | 0.10 | 64.3 | a | 20.1 | 39.0 | a | 3.71 | 37.9 | a | 7.24 | 93.3 | n = 1 | 77.3 | a | 11.6 | |
Shoot | 28.5 | b | 2.45 | 28.5 | b | 0.61 | 37.3 | a | 1.95 | 34.0 | a | 2.83 | 105 | a | 26.7 | 49.3 | b | 2.35 |
Soil | Treatment | TF | |||
---|---|---|---|---|---|
Cd | Cu | Pb | Zn | ||
Unpolluted soil | Control | 0.41a * | 0.28a | 0.74a | 0.68a |
Biochar | 0.37a | 0.25a | 0.52a | 0.54a | |
Weakly polluted soil | Control | 0.31a | 0.11a | 0.33a | 0.97a |
Biochar | 0.27a | 0.06b | 0.25a | 0.97a | |
Highly polluted soil | Control | 0.31a | 0.29a | 0.44b | 1.88b |
Biochar | 0.28a | 0.03b | 0.19b | 0.54b |
Soil | Sampling | Control | Biochar | ||||
---|---|---|---|---|---|---|---|
SEM | SEM | ||||||
Unpolluted soil | Bulk soil | 6.16 | ab | 0.11 | 6.36 | a | 0.14 |
Rhizosphere soil | 5.99 | b | 0.03 | 6.06 | b | 0.05 | |
Weakly polluted soil | Bulk soil | 7.88 | a | 0.03 | 7.93 | a | 0.12 |
Rhizosphere soil | 7.56 | ab | 0.04 | 7.68 | b | 0.20 | |
Highly polluted soil | Bulk soil | 7.52 | a | 0.03 | 7.63 | a | 0.03 |
Rhizosphere soil | 7.35 | b | 0.08 | 7.53 | a | 0.04 |
Unpolluted Soil | Weakly Polluted | Highly Polluted | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Element | Extractant | Sampling | Control | Biochar | Control | Biochar | Control | Biochar | ||||||
Cd | CH3COOH | Rhizosphere | 0.09 a | 0.16 | 0.04 b | 0 | 0.67 b | 0.16 | 0.40 b | 0 | 1.20 a | 0 | 1.20 a | 0 |
Bulk soil | 0.09 a | 0.16 | 0.093 a | 0.16 | 1.07 a | 0.16 | 1.07 a | 0.16 | 1.60 b | 0 | 1.60 b | 0 | ||
NH4NO3 | Rhizosphere | 0.025 a | 0 | 0.025 a | 0 | 0.50 a | 0 | 0.25 b | 0 | 0.33 a | 0.10 | 0.42 a | 0.10 | |
Bulk soil | 0.025 a | 0 | 0.033 a | 0.10 | 0.42 ab | 0.10 | 0.33 ab | 0.10 | 0.33 a | 0.10 | 0.58 a | 0.10 | ||
Cu | CH3COOH | Rhizosphere | 2.93 a | 0.33 | 2.67 ab | 0.43 | 29.60 a | 1.30 | 28.50 a | 0.16 | 158.3 a | 9.50 | 135.60 b | 0.90 |
Bulk soil | 2.13 b | 0.16 | 2.27 ab | 0.16 | 27.10 a | 1.07 | 26.90 a | 1.93 | 134.8 b | 1.30 | 127.70 b | 10.2 | ||
NH4NO3 | Rhizosphere | 1.67 a | 0.10 | 0.75 b | 0.31 | 3.33 a | 0.20 | 1.42 bc | 0.62 | 18.50 a | 0.64 | 5.33 b | 3.01 | |
Bulk soil | 0.50 b | 0.18 | 0.67 b | 0.27 | 2.50 ab | 0.64 | 1.17 c | 0.10 | 10.08 b | 1.64 | 6.50 b | 0.94 | ||
Pb | CH3COOH | Rhizosphere | ND * | ND | 2.53 a | 1.84 | ND | 11.60 a | 1.02 | 12.10 a | 3.42 | |||
Bulk soil | ND | ND | 3.33 a | 2.57 | ND | 5.33 b | 0.91 | 6.40 b | 0.75 | |||||
NH4NO3 | Rhizosphere | 0.92 ab | 0.10 | 1.83 a | 0.51 | 2.08 a | 0.51 | 0.83 a | 0.10 | 1.83 a | 0.37 | 0.58 b | 0.20 | |
Bulk soil | 0.25 b | 0 | 1.50 a | 0.64 | 2.33 a | 0.82 | 1.67 a | 0.91 | 1.75 a | 0.47 | 0.58 b | 0.10 | ||
Zn | CH3COOH | Rhizosphere | 4.00 b | 0 | 5.20 a | 0 | 20.90 a | 0.16 | 18.70 ab | 0.82 | 84.50 a | 5.52 | 84.80 a | 3.21 |
Bulk soil | 4.13 b | 0.43 | 5.20 a | 0.49 | 19.70 ab | 1.66 | 18.00 b | 0.75 | 86.00 a | 2.21 | 80.40 a | 6.73 | ||
NH4NO3 | Rhizosphere | 1.58 a | 0.82 | 1.92 a | 0.27 | 2.08 a | 0.91 | 1.08 ab | 0.10 | 2.83 a | 0.10 | 2.33 b | 0.10 | |
Bulk soil | 2.08 a | 0.27 | 1.42 a | 0.41 | 0.75 b | 0.35 | 0.67 b | 0.10 | 1.75 c | 0.10 | 1.42 d | 0.10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medyńska-Juraszek, A.; Rivier, P.-A.; Rasse, D.; Joner, E.J. Biochar Affects Heavy Metal Uptake in Plants through Interactions in the Rhizosphere. Appl. Sci. 2020, 10, 5105. https://doi.org/10.3390/app10155105
Medyńska-Juraszek A, Rivier P-A, Rasse D, Joner EJ. Biochar Affects Heavy Metal Uptake in Plants through Interactions in the Rhizosphere. Applied Sciences. 2020; 10(15):5105. https://doi.org/10.3390/app10155105
Chicago/Turabian StyleMedyńska-Juraszek, Agnieszka, Pierre-Adrien Rivier, Daniel Rasse, and Erik J. Joner. 2020. "Biochar Affects Heavy Metal Uptake in Plants through Interactions in the Rhizosphere" Applied Sciences 10, no. 15: 5105. https://doi.org/10.3390/app10155105
APA StyleMedyńska-Juraszek, A., Rivier, P.-A., Rasse, D., & Joner, E. J. (2020). Biochar Affects Heavy Metal Uptake in Plants through Interactions in the Rhizosphere. Applied Sciences, 10(15), 5105. https://doi.org/10.3390/app10155105