Recombination Parameters of the Diffusion Region and Depletion Region for Crystalline Silicon Solar Cells under Different Injection Levels
Abstract
:1. Introduction
2. Experiments and Methods
3. Results and Discussion
3.1. Theoretical Analysis of the Recombination Parameters of the Diffusion Region and Depletion Region for Silicon Solar Cells
3.2. Investigation into the Recombination Parameters of the Diffusion Region and Depletion Region for a PERC Silicon Solar Cell and an Al-BSF Silicon Solar Cell under Different Injection Levels
3.3. Effect of J01/J02 on Electrical Parameters of PERC Silicon Solar Cellsand Al-BSF Silicon Solar Cellsunder Different Injection Levels
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Daliento, S.; Mele, L.; Bobeico, E.; Lancellotti, L.; Morvillo, P. Analytical modelling and minority current measurements for the determination of the emitter surface recombination velocity in silicon solar cells. Sol. Energy Mater. Sol. Cells 2007, 91, 707–713. [Google Scholar] [CrossRef]
- Ahrenkiel, R.K. Recombination processes and lifetime measurements in silicon photovoltaics. Sol. Energy Mater. Sol. Cells 2003, 76, 243–256. [Google Scholar] [CrossRef]
- Melskens, J.; VandeLoo, B.; Macco, B.; Black, L.E.; Smit, S.; Kessels, W. Passivating contacts for crystalline silicon solar cells: From concepts and materials to prospects. IEEE J. Photovolt. 2018, 8, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.; Wang, E.C.; Chen, N.; Ho, J.W.; Li, M.; Buatis, J.K.; Nagarajan, B.; Xu, L.; Choy, W.L.; Shanmugam, V.; et al. Towards 22% efficient screen-printed bifacial n -type silicon solar cells. Sol. Energy Mater. Sol. Cells 2018, 187, 91–96. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, H.; Altermatt, P. Analysis of recombination losses in screen-printed aluminum-alloyed back surface fields of silicon solar cells by numerical device simulation. Sol. Energy Mater Sol. Cells 2014, 120, 356–362. [Google Scholar] [CrossRef]
- Min, B.; Muller, M.; Wagner, H.; Fischer, G.; Brendel, R.; Altermatt, P.P.; Neuhaus, H. A Roadmap toward 24% efficient PERC solar cells in industrial mass production. IEEE J. Photovolt. 2017, 7, 1541–1549. [Google Scholar] [CrossRef]
- Mckel, H.; Varner, K. On the determination of the emitter saturation current density from lifetime measurements of silicon devices. Prog. Photovolt. Res. Appl. 2013, 21, 850–866. [Google Scholar] [CrossRef]
- Schmidta, J.; Peibst, R.; Brendel, R. Surface passivation of crystalline silicon solar cells: Present and future. Sol. Energy Mater. Sol. Cells 2018, 187, 39–54. [Google Scholar] [CrossRef]
- Huang, H.; Lv, J.; Bao, Y.; Xuan, R.; Sun, S.; Sneck, S.; Li, S.; Modanese, C.; Savin, H.; Wang, A. 20.8% industrial PERC solar cell: ALD Al2O3 rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24%. Sol. Energy Mater. Sol. Cells 2017, 161, 14–30. [Google Scholar] [CrossRef]
- Sah, C.T.; Noyce, R.N.; Shockley, W. Carrier generation and recombination in p-n junctions and p-n junction characteristics. Proc. IRE 1957, 45, 1228–1243. [Google Scholar] [CrossRef]
- Kane, D.E.; Swanson, R.M. Measurement of the Emitter Saturation Current by A Contactless Photoconductivity Decay Method. In Proceedings of the 18th IEEE Photovoltaic Specialists Conference, Las Vegas, NV, USA, 21–25 October 1985; pp. 578–583. [Google Scholar]
- Ma, F.J.; Samudra, G.G.; Peters, M.; Aberle, A.G.; Werner, F.; Schmidt, J.; Hoex, B. Advanced modeling of the effective minority carrier lifetime of passivated crystalline silicon wafers. J. Appl. Phys. 2012, 112, 054508. [Google Scholar] [CrossRef]
- Cuevas, A.; Wan, Y.M.; Yan, D.; Samundsett, C.; Allen, T.; Zhang, X.; Cui, J.; Bullock, J. Carrier population control and surface passivation in solar cells. Sol. Energy Mater. Sol. Cells 2018, 184, 38–47. [Google Scholar] [CrossRef]
- Dumbrell, R.; Juhl, M.K.; Trupke, T.; Hameiri, Z. Extracting metal contact recombination parameters from effective lifetime data. IEEE J. Photovolt. 2018, 8, 1413–1420. [Google Scholar] [CrossRef]
- Kimmerle, A.; Greulich, J.; Wolf, A. Carrier-diffusion corrected J0-analysis of charge carrier lifetime measurements for increased consistency. Sol. Energy Mater. Sol. Cells 2015, 142, 116–122. [Google Scholar] [CrossRef]
- Saint-Cast, P.; Werner, S.; Greulich, J.; Jager, U.; Lohmüller, E.; Höffler, H.; Preu, R. Analysis of the losses of industrial-type PERC solar cells. Phys. Status Solidi A 2017, 214, 1600708. [Google Scholar] [CrossRef]
- Brendel, R.; Hampe, C.; Merkle, A.; Schimanke, S.; Dorn, S.; Hannebauer, H.; Dullweber, T. Emitter saturation currents of 22 fA/cm2 applied to industrial PERC cells approaching 22% conversion efficiency. Prog. Photovolt. Res. Appl. 2017, 25, 509–514. [Google Scholar] [CrossRef]
- Sinton, R.A.; Swanson, R.M. Recombination in highly injected silicon. IEEE Trans. Electron. Dev. 1987, 34, 1380–1389. [Google Scholar] [CrossRef]
- Liopis, F.; Tobías, I. The role of rear surface in thin silicon solar cells. Sol. Energy Mater. Sol. Cells 2005, 87, 481–492. [Google Scholar] [CrossRef]
- Adachi, D.; Hernandez, L.; Yamamoto, K. Impact of carrier recombination on fill factor for large area hetero junction crystalline silicon solar cell with 25.1% efficiency. Appl. Phys. Lett. 2015, 107, 233506. [Google Scholar] [CrossRef]
- Kerr, M.J.; Cuevas, A. General parametrization of Auger Recombination in crystalline silicon. J. Appl. Phys. 2002, 91, 2473–2480. [Google Scholar] [CrossRef]
- Meng, F.Y.; Liu, J.N.; Shen, L.L.; Shi, J.H.; Han, A.J.; Zhang, L.P.; Liu, Y.C.; Yu, J.; Zhang, J.K.; Zhou, R.; et al. High-quality industrial n-type silicon wafers with an efficiency of over 23% for Si heterojunction solar cells. Front. Energy 2017, 11, 78–84. [Google Scholar] [CrossRef]
- Cuevas, A. The Recombination Parameter J0. Energy Procedia 2014, 55, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Ghani, F.; Rosengarten, G.; Duke, M. The characterisation of crystalline silicon photovoltaic devices using the manufacturer supplied data. Sol. Energy 2016, 132, 15–24. [Google Scholar] [CrossRef]
- Et-Torabi, K.; Nassar-Eddine, I.; Obbadi, A.; Errami, Y.; Rmaily, R.; Sahnoun, S.; ElFajri, A.; Agunaou, M. Parameters estimation of the single and double diode photovoltaic models using a Gauss-Seidel algorithm and analytical method: A comparative study. Energy Convers. Manag. 2017, 148, 1041–1054. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, A. An efficient parameters extraction technique of photovoltaic models for performance assessment. Sol. Energy 2017, 158, 192–206. [Google Scholar] [CrossRef]
- Babu, B.C.; Gurjar, S. A novel simplified two-diode model of photovoltaic (PV) module. IEEE J. Photovolt. 2014, 4, 1156–1161. [Google Scholar] [CrossRef]
- Lineykin, S.; Averbukh, M.; Kuperman, A. An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel. Renew. Sustain. Energ. Rev. 2014, 30, 282–289. [Google Scholar] [CrossRef]
- Vandana, J.; Triar, U.S. An improved generalized method for evaluation of parameters, modeling, and simulation of photovoltaic modules. Int. J. Photoenergy 2017, 2017, 2532109. [Google Scholar] [CrossRef]
- Kimmerle, A.; Rudiger, M.; Wolf, A.; Hermle, M.; Biro, D. Validation of analytical modelling of locally contacted solar cells by numerical simulations. Energy Procedia 2012, 27, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Boutana, N.; Mellit, A.; Lughi, V.; Pavan, A.M. Assessment of implicit and explicit models for different photovoltaic modules technologies. Energy 2017, 122, 128–143. [Google Scholar] [CrossRef]
- Hasan, M.A.; Parida, S.K. An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint. Renew. Sustain. Energ. Rev. 2016, 60, 75–83. [Google Scholar] [CrossRef]
- Mehta, H.K.; Warke, H.; Kukadiya, K.; Panchal, A.K. Accurate expressions for single-diode-model solar cell parameterization. IEEE J. Photovolt. 2019, 9, 803–810. [Google Scholar] [CrossRef]
- Liu, J.J.; Yao, Y.; Xiao, S.Q.; Gu, X.F. Review of status developments of high-efficiency crystalline silicon solar cells. J. Appl. Phys. 2018, 51, 123001. [Google Scholar] [CrossRef]
- Blakers, A. Development of the PERC Solar Cell. IEEE J. Photovolt. 2019, 9, 629–635. [Google Scholar] [CrossRef]
- Wasmer, S.; Horst, A.; Saint-Cast, P.; Greulich, J. Modeling-free efficiency gain analysis of passivated emitter and rear silicon solar cells. IEEE J. Photovolt. 2018, 8, 689–696. [Google Scholar] [CrossRef]
- Ruediger, M.; Hermle, M. Numerical analysis of locally contacted rear surface passivated silicon solar cells. Jpn. J. Appl. Phys. 2012, 51, 600–610. [Google Scholar] [CrossRef]
- Humada, A.M.; Hojabri, M.; Mekhilef, S.; Hamada, H.M. Solar cell parameters extraction based on single and double-diode models: A review. Renew. Sustain. Energ. Rev. 2016, 56, 494–509. [Google Scholar] [CrossRef] [Green Version]
- Ishaque, K.; Salam, Z.; Taheri, H. Simple, fast and accurate two-diode model for photovoltaic modules. Sol. Energy Mater. Sol. Cells 2011, 95, 586–594. [Google Scholar] [CrossRef]
- Alhajri, M.F.; El-Naggar, K.M.; Alrashidi, M.R.; Al-Othman, A.K. Optimal extraction of solar cell parameters using pattern search. Renew. Energy 2012, 44, 238–245. [Google Scholar] [CrossRef]
- Chan, D.S.H.; Phang, J.C.H. Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics. IEEE Trans. Electron. Dev. 1987, 34, 286–293. [Google Scholar] [CrossRef]
- Kruse, C.N.; Bothe, K.; Brendel, R. Comparison of free energy loss analysis and synergistic efficiency gain analysis for PERC solar cells. IEEE J. Photovolt. 2018, 8, 683–688. [Google Scholar] [CrossRef]
- Green, M.A. The passivated emitter and rear cell (PERC): From conception to mass production. Sol. Energy Mater. Sol. Cells 2015, 143, 190–197. [Google Scholar] [CrossRef]
- Duttagupt, S.; Ma, F.J.; Lin, S.F.; Mueller, T.; Aberle, A.G.; Hoex, B. Progress in surface passivation of heavily doped n-type and p-type silicon by plasma-deposited AlOx/SiNx dielectric stacks. IEEE J. Photovolt. 2013, 3, 1163–1169. [Google Scholar] [CrossRef]
- Cuevas, A.; Yan, D. Misconceptions and misnomers in solar cells. IEEE J. Photovolt. 2013, 3, 916–923. [Google Scholar] [CrossRef]
- Romer, U.; Peibst, R.; Ohrdes, T.; Lim, B.; Krügener, J.; Bugiel, E.; Wietler, T.; Brendel, R. Recombination behavior and contact resistance of n+ and p+ poly-crystalline Si/mono-crystalline Si junctions. Sol. Energy Mater. Sol. Cells 2014, 131, 85–91. [Google Scholar] [CrossRef]
- Bordihn, S.; Van Delft, J.A.; Mandoc, M.M.; Muller, J.W.; Kessels, W.M.M. Surface passivation and simulated performance of solar cells with Al2O3/SiNx rear dielectric stacks. IEEE J. Photovolt. 2013, 3, 970–975. [Google Scholar] [CrossRef]
- Hieslmair, H.; Appel, J.; Kasthuri, J.; Guo, J.; Johnson, B.; Binns, J. Impact of the injection-level-dependent lifetime on Voc, FF, ideality m, J02, and the dim light response in a commercial PERC cell. Prog. Photovolt. Res. Appl. 2016, 24, 1448–1457. [Google Scholar] [CrossRef]
- Wang, H.; Yang, H.; Yu, H.C.; Chen, G.D. Influence of gettering and passivation on uniformity of the electrical parameters in monolithic multicrystalline silicon solar cell. Solid State Elecron. 2003, 47, 1363–1367. [Google Scholar] [CrossRef]
- Wang, H.; Yang, H.; Yu, H.C.; Xi, J.; Hu, H.; Chen, G.D. Weak light effect in multicrystalline silicon solar cells. Microelectron. J. 2002, 33, 671–674. [Google Scholar] [CrossRef]
- Wolf, A.; Biro, D.; Nekarda, J.; Stumpp, S.; Kimmerle, A.; Mack, S.; Preu, R. Comprehensive analytical model for locally contacted rear surface passivated solar cells. J. Appl. Phys. 2010, 108, 124510. [Google Scholar] [CrossRef]
- Dadu, M.; Kapoor, A.; Tripathi, K.N. Effect of variation of I01/I02 on short-circuit current and fill factor of a real solar cell having resistive and current leakage losses. Sol. Energy Mater. Sol. Cells 2001, 69, 353–359. [Google Scholar] [CrossRef]
Parameter | η (%) | Voc (V) | Jsc (mA/cm2) | Vm (V) | Jm (mA/cm2) | Pm (W) | FF (%) | Rs (mΩ) | Rsh (Ω) |
---|---|---|---|---|---|---|---|---|---|
Al-BSF solar cell | 20.30 | 0.6426 | 39.35 | 0.5454 | 37.22 | 4.960 | 80.28 | 2.01 | 334.25 |
PERC solar cell | 22.45 | 0.6842 | 40.66 | 0.5843 | 38.43 | 5.486 | 80.71 | 2.40 | 509.76 |
Injection Level (W/m2) | 200 | 400 | 600 | 800 | 1000 | 1200 |
---|---|---|---|---|---|---|
RMSE (%) | 0.73 | 0.62 | 0.48 | 0.36 | 0.39 | 0.42 |
J01 (×10−12 A/cm2) | 1.9440 | 1.8401 | 1.7220 | 1.6223 | 1.5442 | 1.4404 |
J02 (×10−8 A/cm2) | 0.2034 | 0.3257 | 0.4519 | 0.6599 | 1.5564 | 2.7720 |
Injection Level (W/m2) | 200 | 400 | 600 | 800 | 1000 | 1200 |
---|---|---|---|---|---|---|
RMSE (%) | 0.68 | 0.59 | 0.45 | 0.36 | 0.38 | 0.41 |
J01 (×10−12 A/cm2) | 0.2698 | 0.2501 | 0.2311 | 0.2135 | 0.1887 | 0.1805 |
J02 (×10−8 A/cm2) | 0.0612 | 0.0790 | 0.0997 | 0.1664 | 0.4962 | 0.9863 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Q.; Yang, H.; Cheng, X.; Wang, H. Recombination Parameters of the Diffusion Region and Depletion Region for Crystalline Silicon Solar Cells under Different Injection Levels. Appl. Sci. 2020, 10, 4887. https://doi.org/10.3390/app10144887
Bai Q, Yang H, Cheng X, Wang H. Recombination Parameters of the Diffusion Region and Depletion Region for Crystalline Silicon Solar Cells under Different Injection Levels. Applied Sciences. 2020; 10(14):4887. https://doi.org/10.3390/app10144887
Chicago/Turabian StyleBai, Qiaoqiao, Hong Yang, Xiaoli Cheng, and He Wang. 2020. "Recombination Parameters of the Diffusion Region and Depletion Region for Crystalline Silicon Solar Cells under Different Injection Levels" Applied Sciences 10, no. 14: 4887. https://doi.org/10.3390/app10144887
APA StyleBai, Q., Yang, H., Cheng, X., & Wang, H. (2020). Recombination Parameters of the Diffusion Region and Depletion Region for Crystalline Silicon Solar Cells under Different Injection Levels. Applied Sciences, 10(14), 4887. https://doi.org/10.3390/app10144887