A New Method to Lightweight Magnesium Using Syntactic Composite Core
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Preparation
2.2.1. Blending, Compaction, and Hot Extrusion
2.2.2. Disintegrated Melt Deposition (DMD)
2.3. Characterizations
3. Results and Discussion
3.1. Density Measurements and Porosity
3.2. XRD Analysis
3.3. Grain Size Analysis
3.4. Scanning Electron Microscopy (SEM) Analysis
3.5. Energy-Dispersive X-ray Spectroscopy (EDX)
3.6. Hardness
3.7. Compressive Behavior
3.8. Fractography Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gupta, M.; Parande, G.; Manakari, V. An insight into high performance magnesium alloy/nano-metastable-syntactic composites. In Proceedings of the 17th Australian International Aerospace Congress (AIAC 2017), Melbourne, VIC, Australia, 26–28 February 2017; Engineers Australia, Royal Aeronautical Society: Canberra, Australia, 2017; p. 270. [Google Scholar]
- Hazeli, K.; Sadeghi, A.; Pekguleryuz, M.; Kontsos, A. Damping and dynamic recovery in magnesium alloys containing strontium. Mater. Sci. Eng. A 2014, 589, 275–279. [Google Scholar] [CrossRef]
- Kujur, M.S.; Manakari, V.; Parande, G.; Tun, K.S.; Mallick, A.; Gupta, M. Enhancement of thermal, mechanical, ignition and damping response of magnesium using nano-ceria particles. Ceram. Int. 2018, 44, 15035–15043. [Google Scholar] [CrossRef]
- Jensen, L.; Hansman, R.J.; Venuti, J.; Reynolds, T. Commercial airline altitude optimization strategies for reduced cruise fuel consumption. In Proceedings of the 14th AIAA Aviation Technology, Integration, and Operations Conference, Atlanta, GA, USA, 16–20 June 2014; p. 3006. [Google Scholar]
- Manakari, V.; Parande, G.; Gupta, M. Selective laser melting of magnesium and magnesium alloy powders: A review. Metals 2017, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Shulin, X.; Gupta, M. Using lanthanum to enhance the overall ignition, hardness, tensile and compressive strengths of mg-0.5 zr alloy. J. Rare Earths 2017, 35, 723. [Google Scholar]
- Matli, P.R.; Krishnan, A.V.; Manakari, V.; Parande, G.; Chua, B.; Wong, S.; Lim, C.; Gupta, M. A new method to lightweight and improve strength to weight ratio of magnesium by creating a controlled defect. J. Mater. Res. Technol. 2020, 9, 3664–3675. [Google Scholar] [CrossRef]
- Parande, G.; Manakari, V.; Meenashisundaram, G.K.; Gupta, M. Enhancing the tensile and ignition response of monolithic magnesium by reinforcing with silica nanoparticulates. J. Mater. Res. 2017, 32, 2169–2178. [Google Scholar] [CrossRef]
- Clyne, T.; Withers, P. An Introduction to Metal Matrix Composites; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Paramsothy, M.; Gupta, M.; Srikanth, N. Processing, microstructure, and properties of a mg/al bimetal macrocomposite. J. Compos. Mater. 2008, 42, 2567–2584. [Google Scholar] [CrossRef]
- Reddy, M.P.; Manakari, V.; Parande, G.; Ubaid, F.; Shakoor, R.; Mohamed, A.; Gupta, M. Enhancing compressive, tensile, thermal and damping response of pure al using bn nanoparticles. J. Alloys Compd. 2018, 762, 398–408. [Google Scholar] [CrossRef]
- Parande, G.; Manakari, V.; Kopparthy, S.D.S.; Gupta, M. A study on the effect of low-cost eggshell reinforcement on the immersion, damping and mechanical properties of magnesium–zinc alloy. Compos. Part B Eng. 2020, 182, 107650. [Google Scholar] [CrossRef]
- Ferkel, H.; Mordike, B. Magnesium strengthened by sic nanoparticles. Mater. Sci. Eng. A 2001, 298, 193–199. [Google Scholar] [CrossRef]
- Hassan, S.; Tan, M.; Gupta, M. Development of nano-zro2 reinforced magnesium nanocomposites with significantly improved ductility. Mater. Sci. Technol. 2007, 23, 1309–1312. [Google Scholar] [CrossRef]
- Michels, W. Magnesium alloys and their applications. Mater. Technol. 1998, 13, 121–122. [Google Scholar] [CrossRef]
- Mordike, B.; Ebert, T. Magnesium: Properties—Applications—Potential. Mater. Sci. Eng. A 2001, 302, 37–45. [Google Scholar] [CrossRef]
- Marker, T. Evaluating the Flammability of Various Magnesium Alloys during Laboratory- and Full-Scale Aircraft Fire Test; DOT/FAA/AR-11/3; US Department of Transportation, Federal Aviation Administration: Atlantic City, NJ, USA, 2013.
- Papis, K.J.; Loeffler, J.F.; Uggowitzer, P.J. Light metal compound casting. Sci. China Ser. E Technol. Sci. 2009, 52, 46–51. [Google Scholar] [CrossRef]
- Yung, K.; Zhu, B.; Yue, T.; Xie, C. Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites. Compos. Sci. Technol. 2009, 69, 260–264. [Google Scholar] [CrossRef]
- Manakari, V.; Parande, G.; Doddamani, M.; Gupta, M. Enhancing the ignition, hardness and compressive response of magnesium by reinforcing with hollow glass microballoons. Materials 2017, 10, 997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manakari, V.; Parande, G.; Gupta, M. Effects of hollow fly-ash particles on the properties of magnesium matrix syntactic foams: A review. Mater. Perform. Charact. 2016, 5, 116–131. [Google Scholar] [CrossRef]
- Doddamani, M. Wear behavior of glass microballoon based closed cell foam. Mater. Res. Express 2019, 6, 115314. [Google Scholar] [CrossRef]
- Manakari, V.; Parande, G.; Doddamani, M.; Gupta, M. Evaluation of wear resistance of magnesium/glass microballoon syntactic foams for engineering/biomedical applications. Ceram. Int. 2019, 45, 9302–9305. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Y.-Q.; Li, L.; Hu, H.-D.; Zhu, Z.-A. Microstructure and properties of al/cu bimetal in liquid−Solid compound casting process. Trans. Nonferrous Metal. Soc. 2016, 26, 1555–1563. [Google Scholar] [CrossRef]
- Liu, J.; Hu, J.; Nie, X.; Li, H.; Du, Q.; Zhang, J.; Zhuang, L. The interface bonding mechanism and related mechanical properties of mg/al compound materials fabricated by insert molding. Mater. Sci. Eng. A 2015, 635, 70–76. [Google Scholar] [CrossRef]
- Brandes, E.A.; Brook, G. Smithells Metals Reference Book; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Parande, G.; Manakari, V.; Wakeel, S.; Kujur, M.S.; Gupta, M. Enhancing mechanical response of monolithic magnesium using nano-niti (nitinol) particles. Metals 2018, 8, 1014. [Google Scholar] [CrossRef] [Green Version]
- Kujur, M.S.; Mallick, A.; Manakari, V.; Parande, G.; Tun, K.S.; Gupta, M. Significantly enhancing the ignition/compression/damping response of monolithic magnesium by addition of Sm2O3 nanoparticles. Metals 2017, 7, 357. [Google Scholar] [CrossRef] [Green Version]
- Reddy, M.P.; Ubaid, F.; Shakoor, R.; Parande, G.; Manakari, V.; Mohamed, A.; Gupta, M. Effect of reinforcement concentration on the properties of hot extruded Al-Al2o3 composites synthesized through microwave sintering process. Mater. Sci. Eng. A 2017, 696, 60–69. [Google Scholar] [CrossRef]
- Parande, G.; Manakari, V.; Kopparthy, S.D.S.; Gupta, M. Utilizing low-cost eggshell particles to enhance the mechanical response of mg–2.5 zn magnesium alloy matrix. Adv. Eng. Mater. 2018, 20, 1700919. [Google Scholar] [CrossRef]
- Mayencourt, C.; Schaller, R. Development of a high-damping composite: Mg2Si/Mg. Phys. Status Solidi A 1997, 163, 357–368. [Google Scholar] [CrossRef]
- Krishna, B.V.; Venugopal, P.; Rao, K.P. Solid state joining of dissimilar sintered p/m preform tubes by simultaneous cold extrusion. Mater. Sci. Eng. A 2004, 386, 301–317. [Google Scholar] [CrossRef]
- Paramsothy, M.; Srikanth, N.; Gupta, M. Solidification processed mg/al bimetal macrocomposite: Microstructure and mechanical properties. J. Alloys Compd. 2008, 461, 200–208. [Google Scholar] [CrossRef]
Materials | Theoretical Density (g/cc) | Experimental Density (g/cc) | Porosity (%) |
---|---|---|---|
as-cast pure Mg | 1.738 | 1.712 ± 0.009 | 1.50 |
Mg-20GMB | 1.537 | 1.492 ± 0.016 | 2.93 |
as-cast Mg/Mg-20GMB | 1.680 | 1.651 ± 0.013 | 1.73 |
Materials | Shell Region (µm) | Interface Region (µm) | Core Region (µm) |
---|---|---|---|
Mg/Mg-20GMB | 35.44 ± 3.19 | 34.11 ± 2.30 | 33.65 ± 2.45 |
Materials | Microhardness (Hv) | ||
---|---|---|---|
Shell Region | Core Region | Interface Region | |
as-cast pure Mg | 44 ± 5 | --- | --- |
as-cast Mg/Mg-20GMB | 53 ± 3 | 80 ± 4 | 74 ± 6 |
Materials | YS (MPa) | UCS (MPa) | Ductility (%) | Energy Absorption (MJ/m3) |
---|---|---|---|---|
as-cast pure Mg | 88 ± 3 | 215 ± 5 | 14.8 ± 0.3 | 36 ± 2.3 |
as-cast Mg/Mg-20GMB | 151 ± 4 (↑71.6%) | 165 ± 3 (↓23.25%) | 42.4 ± 0.3 (↑186.48%) | 51 ± 1.6 (↑41.66%) |
AZ91E # | 130 | 400 | -- | -- |
RZ5(ZE41) # | 130–150 | 330–365 | -- | -- |
ZRE1(EZ33) # | 85–120 | 275–340 | -- | -- |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matli, P.R.; Sheng, J.G.Y.; Parande, G.; Manakari, V.; Chua, B.W.; Wong, S.C.K.; Gupta, M. A New Method to Lightweight Magnesium Using Syntactic Composite Core. Appl. Sci. 2020, 10, 4773. https://doi.org/10.3390/app10144773
Matli PR, Sheng JGY, Parande G, Manakari V, Chua BW, Wong SCK, Gupta M. A New Method to Lightweight Magnesium Using Syntactic Composite Core. Applied Sciences. 2020; 10(14):4773. https://doi.org/10.3390/app10144773
Chicago/Turabian StyleMatli, Penchal Reddy, Joshua Goh Yong Sheng, Gururaj Parande, Vyasaraj Manakari, Beng Wah Chua, Stephen Chee Khuen Wong, and Manoj Gupta. 2020. "A New Method to Lightweight Magnesium Using Syntactic Composite Core" Applied Sciences 10, no. 14: 4773. https://doi.org/10.3390/app10144773
APA StyleMatli, P. R., Sheng, J. G. Y., Parande, G., Manakari, V., Chua, B. W., Wong, S. C. K., & Gupta, M. (2020). A New Method to Lightweight Magnesium Using Syntactic Composite Core. Applied Sciences, 10(14), 4773. https://doi.org/10.3390/app10144773