Evaluation of the Microstructure and the Electrochemical Properties of Ce0.8(1−x)Gd0.2(1−x)CuxO[1.9(1−x)+x] Electrolytes for IT-SOFCs
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of Calcined Powders
3.2. Sintering Behavior
3.3. Electrochemical Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Marco, V.; Iannaci, A.; Rashid, S.; Sglavo, V.M. Effect of anode thickness and Cu content on consolidation and performance of planar copper-based anode-supported SOFC. Int. J. Hydrogen Energy 2017, 42, 12543–12550. [Google Scholar] [CrossRef]
- Zurlo, F.; Iannaci, A.; Sglavo, V.M.; Di Bartolomeo, E. Copper-based electrodes for IT-SOFC. J. Eur. Ceram. Soc. 2019, 39, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Accardo, G.; Spiridigliozzi, L.; Dell’Agli, G.; Yoon, S.P.; Frattini, D. Morphology and structural stability of bismuth-gadolinium co-doped ceria electrolyte nanopowders. Inorganics 2019, 7, 118. [Google Scholar] [CrossRef] [Green Version]
- Accardo, G.; Kim, G.S.; Ham, H.C.; Yoon, S.P. Optimized lithium-doped ceramic electrolytes and their use in fabrication of an electrolyte-supported solid oxide fuel cell. Int. J. Hydrogen Energy 2019, 44, 12138–12150. [Google Scholar] [CrossRef]
- Tian, C.; Shao, L.; Ji, D.; Yang, J.; Xie, J.; Yin, Q.; Le, H. Synthesis and characterization of tungsten and barium co-doped La2Mo2O9 by sol-gel process for solid oxide fuel cells. J. Rare Earths 2019, 37, 984–988. [Google Scholar] [CrossRef]
- Spiridigliozzi, L.; Ferone, C.; Cioffi, R.; Accardo, G.; Frattini, D.; Dell’Agli, G. Entropy-stabilized oxides owning fluorite structure obtained by hydrothermal treatment. Materials 2020, 13, 558. [Google Scholar] [CrossRef] [Green Version]
- Biesuz, M.; Spiridigliozzi, L.; Frasnelli, M.; Dell’Agli, G.; Sglavo, V.M. Rapid densification of Samarium-doped Ceria ceramic with nanometric grain size at 900–1100 °C. Mater. Lett. 2017, 190, 17–19. [Google Scholar] [CrossRef]
- Sındıraç, C.; Ahsen, A.; Ozturk, O.; Akkurt, S.; Birss, V.I.; Buyukaksoy, A. Fabrication of LSCF and LSCF-GDC nanocomposite thin films using polymeric precursors. Ionics 2020, 26, 913–925. [Google Scholar] [CrossRef]
- Accardo, G.; Frattini, D.; Ham, H.C.; Yoon, S.P. Direct addition of lithium and cobalt precursors to Ce0.8Gd0.2O1.95 electrolytes to improve microstructural and electrochemical properties in IT-SOFC at lower sintering temperature. Ceram. Int. 2019, 45, 9348–9358. [Google Scholar] [CrossRef]
- Mori, M.; Suda, E.; Pacaud, B.; Murai, K.; Moriga, T. Effect of components on the sintering characteristics of Ce0.9Gd0.1O1.95 electrolyte in intermediate-temperature solid oxide fuel cells during fabrication. J. Power Sources 2006, 157, 688–694. [Google Scholar] [CrossRef]
- Spiridigliozzi, L.; Pinter, L.; Biesuz, M.; Dell’Agli, G.; Accardo, G.; Sglavo, V.M. Gd/Sm-Pr co-doped ceria: A first report of the precipitation method effect on flash sintering. Materials 2019, 12, 1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grilo, J.P.F.; Macedo, D.A.; Nascimento, R.M.; Marques, F.M.B. Electronic conductivity in Gd-doped ceria with salt additions. Electrochim. Acta 2019, 318, 977–988. [Google Scholar] [CrossRef]
- Zagaynov, I.; Fedorov, S. Gd0.05Bi0.15M0.05Ce0.75O2 solid solutions for IT-SOFC electrolyte application. Lett. Mater. 2019, 9, 424–427. [Google Scholar] [CrossRef] [Green Version]
- Lima, C.G.M.; Santos, T.H.; Grilo, J.P.F.; Dutra, R.P.S.; Nascimento, R.M.; Rajesh, S.; Fonseca, F.C.; Macedo, D.A. Synthesis and properties of CuO-doped Ce0.9Gd0.1O2-δ electrolytes for SOFCs. Ceram. Int. 2015, 41, 4161–4168. [Google Scholar] [CrossRef]
- Dong, Y.; Hampshire, S.; Lin, B.; Ling, Y.; Zhang, X. High sintering activity Cu–Gd co-doped CeO2 electrolyte for solid oxide fuel cells. J. Power Sources 2010, 195, 6510–6515. [Google Scholar] [CrossRef]
- Toor, S.Y.; Croiset, E. Reducing sintering temperature while maintaining high conductivity for SOFC electrolyte: Copper as sintering aid for Samarium Doped Ceria. Ceram. Int. 2020, 46, 1148–1157. [Google Scholar] [CrossRef]
- Santos, T.H.; Grilo, J.P.F.; Loureiro, F.J.A.; Fagg, D.P.; Fonseca, F.C.; Macedo, D.A. Structure, densification and electrical properties of Gd3+ and Cu2+ co-doped ceria solid electrolytes for SOFC applications: Effects of Gd2O3 content. Ceram. Int. 2018, 44, 2745–2751. [Google Scholar] [CrossRef]
- Fagg, D.P.; Kharton, V.V.; Frade, J.R. P-type electronic transport in Ce0.8Gd0.2O2-δ: The effect of transition metal oxide sintering aids. J. Electroceramics 2002, 9, 199–207. [Google Scholar] [CrossRef]
- Nicollet, C.; Waxin, J.; Dupeyron, T.; Flura, A.; Heintz, J.-M.; Ouweltjes, J.P.; Piccardo, P.; Rougier, A.; Grenier, J.-C.; Bassat, J.-M. Gadolinium doped ceria interlayers for Solid Oxide Fuel Cells cathodes: Enhanced reactivity with sintering aids (Li, Cu, Zn), and improved densification by infiltration. J. Power Sources 2017, 372, 157–165. [Google Scholar] [CrossRef]
- Kang, Y.J.; Choi, G.M. The effect of alumina and Cu addition on the electrical properties and the SOFC performance of Gd-doped CeO2 electrolyte. Solid State Ion. 2009, 180, 886–890. [Google Scholar] [CrossRef]
- Dong, Y.; Hampshire, S.; Zhou, J.; Meng, G. Synthesis and sintering of Gd-doped CeO2 electrolytes with and without 1 at.% CuO dopping for solid oxide fuel cell applications. Int. J. Hydrogen Energy 2011, 36, 5054–5066. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, H.; Xu, W.; Ling, J.; Wang, B.; Wang, K.; Xiong, C.; Zhou, Y. Electrical performance of fine-grained Y-TZP/TiC composites obtained through a hydrothermal-assisted sol-gel process. Ceram. Int. 2020, 46, 2033–2040. [Google Scholar] [CrossRef]
- Frattini, D.; Accardo, G.; Kwon, Y. Perovskite ceramic membrane separator with improved biofouling resistance for yeast-based microbial fuel cells. J. Memb. Sci. 2020, 599, 117843. [Google Scholar] [CrossRef]
- Accardo, G.; Frattini, D.; Yoon, S.P. Enhanced proton conductivity of Gd–Co bi-doped barium cerate perovskites based on structural and microstructural investigations. J. Alloys Compd. 2020, 834, 155114. [Google Scholar] [CrossRef]
- Accardo, G.; Frattini, D.; Ham, H.C.; Han, J.H.; Yoon, S.P. Improved microstructure and sintering temperature of bismuth nano-doped GDC powders synthesized by direct sol-gel combustion. Ceram. Int. 2018, 44, 3800–3809. [Google Scholar] [CrossRef]
- Kim, D.-J. Lattice Parameters, Ionic Conductivities, and Solubility Limits in Fluorite-Structure MO2 Oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] Solid Solutions. J. Am. Ceram. Soc. 1989, 72, 1415–1421. [Google Scholar] [CrossRef]
- Dobrosz-Gómez, I.; Gómez-García, M.Á.; Bojarska, J.; Kozanecki, M.; Rynkowski, J.M. Combustion synthesis and properties of nanocrystalline zirconium oxide. Comptes Rendus Chim. 2015, 18, 1094–1105. [Google Scholar] [CrossRef]
- Alexander, B.; Balluffi, R. The mechanism of sintering of copper. Acta Met. 1957, 5, 666–677. [Google Scholar] [CrossRef]
- Zhang, X.; Decès-Petit, C.; Yick, S.; Robertson, M.; Kesler, O.; Maric, R.; Ghosh, D. A study on sintering aids for Sm0.2Ce0.8O1.9 electrolyte. J. Power Sources 2006, 162, 480–485. [Google Scholar] [CrossRef]
- Kleinlogel, C.; Gauckler, L.J. Sintering and properties of nanosized ceria solid solutions. Solid State Ion. 2000, 135, 567–573. [Google Scholar] [CrossRef]
- Nicholas, J.D.; Jonghe, L.C. De Prediction and evaluation of sintering aids for Cerium Gadolinium Oxide. Solid State Ion. 2007, 178, 1187–1194. [Google Scholar] [CrossRef]
- Zhang, T.; Hing, P.; Huang, H.; Kilner, J. Densification, microstructure and grain growth in the CeO2–Fe2O3 system (0⩽Fe/Ce⩽20%). J. Eur. Ceram. Soc. 2001, 21, 2221–2228. [Google Scholar] [CrossRef]
- Souza, E.C.C.; Chueh, W.C.; Jung, W.; Muccillo, E.N.S.; Haile, S.M. Ionic and Electronic Conductivity of Nanostructured, Samaria-Doped Ceria. J. Electrochem. Soc. 2012, 159, 127–135. [Google Scholar] [CrossRef]
- Accardo, G.; Dell’ Agli, G.; Frattini, D.; Spiridigliozzi, L.; Nam, S.W.; Yoon, S.P. Electrical Behaviour and Microstructural Characterization of Magnesia Co-doped ScSZ Nanopowders Synthesized by Urea Co-precipitation. Chem. Eng. Trans. 2017, 57, 1345–1350. [Google Scholar] [CrossRef]
- Kuo, Y.-L.; Su, Y.-M.; Chou, H.-L. A facile synthesis of high quality nanostructured CeO2 and Gd2O3 -doped CeO2 solid electrolytes for improved electrochemical performance. Phys. Chem. Chem. Phys. 2015, 17, 14193–14200. [Google Scholar] [CrossRef]
- Medisetti, S.; Ahn, J.; Patil, S.; Goel, A.; Bangaru, Y.; Sabhahit, G.V.; Babu, G.U.B.; Lee, J.H.; Dasari, H.P. Synthesis of GDC electrolyte material for IT-SOFCs using glucose & fructose and its characterization. Nano Struct. Nano Objects 2017, 11, 7–12. [Google Scholar] [CrossRef]
- Esposito, V.; Zunic, M.; Traversa, E. Improved total conductivity of nanometric samaria-doped ceria powders sintered with molten LiNO3 additive. Solid State Ion. 2009, 180, 1069–1075. [Google Scholar] [CrossRef]
- Anwar, M.; Muhammed Ali, S.A.; Baharuddin, N.A.; Raduwan, N.F.; Muchtar, A.; Somalu, M.R. Structural, optical and electrical properties of Ce0.8Sm0.2-xErxO2-δ (x = 0–0.2) Co-doped ceria electrolytes. Ceram. Int. 2018, 44, 13639–13648. [Google Scholar] [CrossRef]
- Mehranjani, A.S.; Cumming, D.J.; Sinclair, D.C.; Rothman, R.H. Low-temperature co-sintering for fabrication of zirconia/ceria bi-layer electrolyte via tape casting using a Fe2O3 sintering aid. J. Eur. Ceram. Soc. 2017, 37, 3981–3993. [Google Scholar] [CrossRef]
- Nikonov, A.V.; Spirin, A.V.; Khrustov, V.R.; Paranin, S.N.; Pavzderin, N.B.; Kuterbekov, K.A.; Nurakhmetov, T.N.; Atazhan, Y.K. Synthesis and properties of solid electrolyte Ce0.9Gd0.1O2–δ with Co, Cu, Mn, Zn doping. Inorg. Mater. 2016, 52, 708–715. [Google Scholar] [CrossRef]
- Stanciu, C.A.; Pintilie, I.; Surdu, A.; Truşcă, R.; Vasile, B.S.; Eftimie, M.; Ianculescu, A.C. Influence of Sintering Strategy on the Characteristics of Sol-Gel Ba1−xCexTi1−x/4O3 Ceramics. Nanomaterials 2019, 9, 1675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clayden, N.J.; Accardo, G.; Mazzei, P.; Piccolo, A.; Pernice, P.; Vergara, A.; Ferone, C.; Aronne, A. Phosphorus stably bonded to a silica gel matrix through niobium bridges. J. Mater. Chem. A 2015, 3, 15986–15995. [Google Scholar] [CrossRef]
- Adamczyk, B.J.; Hekner, B.; Sopicka-Lizer, M. The Influence of High Energy Ball Milling on the Morphology of Metal-Ceramic Composite Powders. Solid State Phenom. 2016, 246, 59–62. [Google Scholar] [CrossRef]
- Andini, S.; Montagnaro, F.; Santoro, L.; Accardo, G.; Cioffi, R.; Colangelo, F. Mechanochemical Processing of Blast Furnace Slag for its Reuse as Adsorbent. Chem. Eng. Trans. 2013, 32, 2299–2304. [Google Scholar]
Samples | Dopant (mol%) | Composition |
---|---|---|
GDC | - | Ce0.8Gd 0.2O1.9 |
0.5Cu | 0.5 | Cu0.005Ce0.796Gd0.199O1.8955 |
1Cu | 1 | Cu0.01Ce0.792Gd0.198O1.891 |
2Cu | 2 | Cu0.02Ce0.784Gd0.196O1.882 |
Samples | Lattice Parameter (Å) | Theoretical Density (g/cm−1) | Crystallite Size (Å) |
---|---|---|---|
GDC | 5.42906 ± 4.81·10−4 | 7.220 | 208.81 |
0.5Cu | 5.42805 ± 5.09·10−4 | 7.204 | 191.76 |
1Cu | 5.42804 ± 6.10·10−4 | 7.184 | 157.09 |
2Cu | 5.42613 ± 5.19·10−4 | 7.153 | 190.67 |
Sintering Temperature | |||
---|---|---|---|
Samples | 1000 °C | 1100 °C | 1200 °C |
GDC | 48.7 | 56.8 | 82.4 |
0.5Cu | 90.2 | 98.7 | 99.5 |
1Cu | 98.3 | 98.2 | 98.3 |
2Cu | 99.4 | 99.7 | 99.8 |
GDC | 0.5Cu | 1Cu | 2Cu | |
---|---|---|---|---|
Ea(T ≤ 450 °C) (eV) | 0.85 ± 0.031 | 0.99 ± 0.051 | 0.98 ± 0.029 | 0.88 ± 0.140 |
Ea(T ≥ 450 °C) (eV) | 0.85 ± 0.048 | 0.78 ± 0.066 | 0.78 ± 0.041 | 0.78 ± 0.166 |
σ(450 °C) (S·cm−1) | 4.23·10−4 | 1.78·10−3 | 2.05·10−3 | 2.23·10−3 |
σ (500 °C) (S·cm−1) | 9.21·10−3 | 4.66·10−3 | 4.98·10−3 | 5.34·10−3 |
σ (550 °C) (S·cm−1) | 1.92·10−3 | 9.18·10−3 | 9.31·10−3 | 1.04·10−2 |
σ (600 °C) (S·cm−1) | 2.29·10−3 | 1.61·10−2 | 1.73·10−2 | 1.87·10−2 |
σ (650 °C) (S·cm−1) | 5.03·10−3 | 2.59·10−2 | 2.89·10−2 | 3.05·10−2 |
σ (700 °C) (S·cm−1) | 7.68·10−3 | 3.95·10−2 | 4.36·10−2 | 4.73·10−2 |
σ (750 °C) (S·cm−1) | 1.16·10−2 | 5.5710−2 | 6.47·10−2 | 6.90·10−2 |
σ (800 °C) (S·cm−1) | 1.58·10−2 | 7.55·10−2 | 8.68·10−2 | 9.19·10−2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Accardo, G.; Bae, J.K.; Yoon, S.P. Evaluation of the Microstructure and the Electrochemical Properties of Ce0.8(1−x)Gd0.2(1−x)CuxO[1.9(1−x)+x] Electrolytes for IT-SOFCs. Appl. Sci. 2020, 10, 4573. https://doi.org/10.3390/app10134573
Accardo G, Bae JK, Yoon SP. Evaluation of the Microstructure and the Electrochemical Properties of Ce0.8(1−x)Gd0.2(1−x)CuxO[1.9(1−x)+x] Electrolytes for IT-SOFCs. Applied Sciences. 2020; 10(13):4573. https://doi.org/10.3390/app10134573
Chicago/Turabian StyleAccardo, Grazia, Jae Kwan Bae, and Sung Pil Yoon. 2020. "Evaluation of the Microstructure and the Electrochemical Properties of Ce0.8(1−x)Gd0.2(1−x)CuxO[1.9(1−x)+x] Electrolytes for IT-SOFCs" Applied Sciences 10, no. 13: 4573. https://doi.org/10.3390/app10134573
APA StyleAccardo, G., Bae, J. K., & Yoon, S. P. (2020). Evaluation of the Microstructure and the Electrochemical Properties of Ce0.8(1−x)Gd0.2(1−x)CuxO[1.9(1−x)+x] Electrolytes for IT-SOFCs. Applied Sciences, 10(13), 4573. https://doi.org/10.3390/app10134573