Estimation of Cyclic Demand in Metallic Yielding Dampers Installed on Frame Structures
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Design of Prototype Structures
2.2. Numerical Models and Analysis
3. Results
3.1. Estimation of Average sη/sμ of Dampers under Design Earthquake Hazard Level
3.2. Behaviour of sη/sμ of Dampers and fη/fμ of Frames under the Maximum Considered Earthquake
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Appendix A
Code | Event | Station | Epic (km) | Local Geology | PGA (m/s2) | PGV (cm/s) | Id | TNH (s) | TG (s) |
---|---|---|---|---|---|---|---|---|---|
000228 | Montenegro | Bar-Skupstina Opstine | 33 | Stiff Soil | 4.985 | 15.33 | 1.98 | 0.516 | 0.51 |
000535 | Erzincan | Erzincan-Meteorologij | 13 | Stiff Soil | 3.814 | 101.4 | 2.54 | 1.874 | 1.04 |
001896 | Timfristos | Karpenisi-Prefecture | 8 | Rock | 2.846 | 7.47 | 2.56 | 0.143 | 0.12 |
000042 | Ionian | Lefkada-OTE | 15 | Soft Soil | 5.146 | 57.17 | 2.88 | 0.663 | 0.53 |
001895 | Timfristos | Karpenisi-Prefecture | 9 | Rock | 3.089 | 10.6 | 2.97 | 0.079 | 0.07 |
000420 | Kalamata (aft) | Kalamata-OTE | 3 | Stiff Soil | 2.355 | 22.03 | 3.39 | 0.43 | 0.4 |
000419 | Kalamata (aft) | Kalamata-Prefecture | 1 | Stiff Soil | 3.275 | 25.97 | 3.48 | 0.476 | 0.42 |
000122 | Friuli (aft) | Buia | 9 | Soft Soil | 2.261 | 21.56 | 3.5 | 0.598 | 0.73 |
000126 | Friuli (aft) | Breginj-Fabrika IGLI | 21 | Stiff Soil | 4.647 | 27.43 | 3.58 | 0.3 | 0.22 |
000158 | Ardal | Naghan 1 | 7 | Rock | 8.907 | 56.85 | 4.01 | 0.214 | 0.12 |
001714 | Ano Liosia | Athens-Sepolia | 14 | Stiff Soil | 2.384 | 17.91 | 4.3 | 0.297 | 0.16 |
000146 | Friuli (aft) | Forgaria-Cornio | 14 | Stiff Soil | 3.395 | 22.81 | 4.34 | 0.353 | 0.24 |
000147 | Friuli (aft) | San Rocco | 14 | Stiff Soil | 1.384 | 11.93 | 4.55 | 0.461 | 0.26 |
000414 | Kalamata | Kalamata-OTE Build | 11 | Stiff Soil | 2.354 | 31.66 | 4.63 | 0.476 | 0.41 |
000558 | Pyrgos | Pyrgos-AgriBank | 10 | Soft Soil | 1.424 | 9.29 | 4.8 | 0.25 | 0.21 |
001313 | Ano Liosia | Athens 3 | 16 | Stiff Soil | 2.601 | 16.07 | 5.05 | 0.323 | 0.25 |
005653 | NE Banja Luka | Banja Luka- Institut | 7 | Vsoft Soil | 4.34 | 12.47 | 5.09 | 0.078 | 0.07 |
001226 | Izmit | Duzce-Meteoroloji | 100 | Soft Soil | 3.038 | 41.43 | 5.1 | 0.776 | 0.78 |
001715 | Ano Liosia | Athens-Sepolia | 14 | Stiff Soil | 3.2 | 21.84 | 5.31 | 0.24 | 0.18 |
000413 | Kalamata | Kalamata-Prefecture | 10 | Stiff Soil | 2.108 | 32.89 | 5.38 | 0.782 | 0.49 |
006093 | Kozani (aft) | Karpero- Town Hall | 16 | Stiff Soil | 2.601 | 14.67 | 5.86 | 0.385 | 0.4 |
Code | Event | Station | Epic (km) | Local Geology | PGA (m/s2) | PGV (cm/s) | Id | TNH (s) | TG (s) |
---|---|---|---|---|---|---|---|---|---|
000948 | Sicilia-Orientale | Catania-Piana | 24 | Soft Soil | 2.483 | 9.86 | 5.95 | 0.22 | 0.2 |
001257 | Izmit | Yarimca-Petkim | 20 | Soft Soil | 2.903 | 52.68 | 6.21 | 0.979 | 0.84 |
000123 | Friuli (aft) | Forgaria-Cornio | 15 | Stiff Soil | 1.286 | 8.98 | 6.23 | 0.485 | 0.25 |
000159 | Friuli (aft) | Forgaria-Cornio | 7 | Stiff Soil | 2.365 | 10.85 | 6.57 | 0.347 | 0.36 |
000055 | Friuli | Tolmezzo-Diga | 23 | Rock | 3.499 | 20.99 | 6.79 | 0.324 | 0.32 |
000139 | Friuli (aft) | Breginj-Fabri IGLI | 25 | Stiff Soil | 1.558 | 10.00 | 7.37 | 0.423 | 0.14 |
000230 | Montenegro (aft) | Budva-PTT | 8 | Stiff Soil | 1.172 | 18.98 | 7.57 | 0.683 | 0.71 |
000333 | Alkion | Korinthos-OTE | 20 | Soft Soil | 2.257 | 22.45 | 7.88 | 0.631 | 0.5 |
000134 | Friuli (aft) | Forgaria-Cornio | 14 | Stiff Soil | 2.586 | 9.05 | 7.92 | 0.241 | 0.21 |
000199 | Montenegro | Bar-Skupstina | 16 | Stiff Soil | 3.68 | 42.5 | 7.93 | 1.051 | 0.96 |
000229 | Montenegro (aft) | Petrovac-Rivijera | 17 | Stiff Soil | 1.708 | 11.25 | 8.85 | 0.176 | 0.13 |
000067 | Friuli (aft) | Forgaria-Cornio | 4 | Stiff Soil | 1.836 | 11.46 | 8.94 | 0.392 | 0.39 |
000074 | Gazli | Karakyr Point | 11 | Vsoft Soil | 6.038 | 51.21 | 9.61 | 0.371 | 0.24 |
000187 | Tabas | Tabas | 57 | Stiff Soil | 9.084 | 84.36 | 9.75 | 0.429 | 0.33 |
00197 | Montenegro | Ulcinj-H Olimpic | 24 | Stiff Soil | 2.88 | 38.56 | 10.41 | 0.896 | 0.79 |
001249 | Izmit | Ambarli-Termik | 113 | Vsoft Soil | 2.58 | 22.11 | 10.5 | 0.767 | 0.82 |
000290 | Campano Lucano | Sturno | 32 | Rock | 2.121 | 33.52 | 11.45 | 0.867 | 0.49 |
001703 | Duzce | Duzce-Meteoroloji | 8 | Soft Soil | 3.699 | 35.8 | 12.15 | 0.466 | 0.45 |
000200 | Montenegro | Hercegnovi Novi | 65 | Rock | 2.197 | 13.75 | 15.22 | 0.454 | 0.37 |
000196 | Montenegro | Petrovac-H Oliva | 25 | Stiff Soil | 4.453 | 39.16 | 16.21 | 0.57 | 0.46 |
000182 | Tabas | Dayhook | 12 | Rock | 3.316 | 18.4 | 16.47 | 0.196 | 0.24 |
002015 | Kefallinia | Argostoli-OTE | 9 | Stiff Soil | 1.788 | 4.96 | 21.62 | 0.158 | 0.16 |
References
- Pnevmatikos, N.G.; Thomos, G.C. Stochastic structural control under earthquake excitations. Struct. Control Health Monit. 2014, 21, 620–633. [Google Scholar] [CrossRef]
- Nikos, G. New strategy for controlling structures collapse against earthquakes. Nat. Sci. 2012, 4, 667–676. [Google Scholar] [CrossRef]
- Symans, M.D.; Charney, F.A.; Whittaker, A.S.; Constantinou, M.C.; Kircher, C.A.; Johnson, M.W.; McNamara, R.J. Energy dissipation systems for seismic applications: Current practice and recent developments. J. Struct. Eng. 2008, 134, 3–21. [Google Scholar] [CrossRef]
- Malhotra, P.K. Response of buildings to near-field pulse-like ground motions. Earthq. Eng. Struct. Dyn. 1999, 28, 1309–1326. [Google Scholar] [CrossRef]
- Jangid, R.S.; Kelly, J.M. Base isolation for near-fault motions. Earthq. Eng. Struct. Dyn. 2001, 30, 691–707. [Google Scholar] [CrossRef]
- Jangid, R.S. Optimum lead–rubber isolation bearings for near-fault motions. Eng. Struct. 2007, 29, 2503–2513. [Google Scholar] [CrossRef]
- Providakis, C.P. Effect of LRB isolators and supplemental viscous dampers on seismic isolated buildings under near-fault excitations. Eng. Struct. 2008, 30, 1187–1198. [Google Scholar] [CrossRef]
- Mazza, F.; Vulcano, A. Effects of near-fault ground motions on the nonlinear dynamic response of base-isolated rc framed buildings. Earthq. Eng. Struct. Dyn. 2012, 41, 211–232. [Google Scholar] [CrossRef]
- Mollaioli, F.; Lucchini, A.; Cheng, Y.; Monti, G. Intensity measures for the seismic response prediction of base-isolated buildings. Bull. Earthq. Eng. 2013, 11, 1841–1866. [Google Scholar] [CrossRef]
- Bhandari, M.; Bharti, S.D.; Shrimali, M.K.; Datta, T.K. The numerical study of base-isolated buildings under near-field and far-field earthquakes. J. Earthq. Eng. 2018, 22, 989–1007. [Google Scholar] [CrossRef]
- Tirca, L.D.; Foti, D.; Diaferio, M. Response of middle-rise steel frames with and without passive dampers to near-field ground motions. Eng. Struct. 2003, 25, 169–179. [Google Scholar] [CrossRef]
- Foti, D. Response of frames seismically protected with passive systems in near-field areas. Int. J. Struct. Eng. 2014, 5, 326–345. [Google Scholar] [CrossRef]
- Dicleli, M.; Mehta, A. Effect of near-fault ground motion and damper characteristics on the seismic performance of chevron braced steel frames. Earthq. Eng. Struct. Dyn. 2007, 36, 927–948. [Google Scholar] [CrossRef]
- Filiatrault, A.; Tremblay, R.; Wanitkorkul, A. Performance evaluation of passive damping systems for the seismic retrofit of steel moment-resisting frames subjected to near-field ground motions. Earthq. Spectra 2001, 17, 427–456. [Google Scholar] [CrossRef]
- Xu, Z.; Agrawal, A.K.; He, W.L.; Tan, P. Performance of passive energy dissipation systems during near-field ground motion type pulses. Eng. Struct. 2007, 29, 224–236. [Google Scholar] [CrossRef]
- Donaire-Ávila, J.; Mollaioli, F.; Lucchini, A.; Benavent-Climent, A. Intensity measures for the seismic response prediction of mid-rise buildings with hysteretic dampers. Eng. Struct. 2015, 102, 278–295. [Google Scholar] [CrossRef]
- Benavent-Climent, A. An energy-based method for seismic retrofit of existing frames using hysteretic dampers. Soil Dyn. Earthq. Eng. 2011, 31, 1385–1396. [Google Scholar] [CrossRef]
- Zahrah, T.F.; Hall, W.J. Earthquake energy absorption in SDOF structures. J. Struct. Eng. 1984, 110, 1757–1772. [Google Scholar] [CrossRef]
- Akiyama, H. Earthquake-Resistant Limit-State Design for Buildings; University of Tokyo Press: Tokyo, Japan, 1985. [Google Scholar]
- Akiyama, H. Earthquake resistant design based on the energy concept. In Proceedings of the 9th WCEE, Tokyo-Kyoto, Japan, 2–9 August 1988; pp. 905–910. [Google Scholar]
- Akiyama, H. Collapse modes of structures under strong motions of earthquake. Ann. Geophys. 2002, 45, 791–798. [Google Scholar]
- Malhotra, P.K. Cyclic-demand spectrum. Earthq. Engng. Struct. Dyn. 2002, 31, 1441–1457. [Google Scholar] [CrossRef]
- Kunnath, S.K.; Chai, Y.H. Cumulative damage-based inelastic cyclic demand spectrum. Earthq. Eng. Struct. Dyn. 2004, 33, 499–520. [Google Scholar] [CrossRef]
- Manfredi, G. Evaluation of seismic energy demand. Earthq. Eng. Struct. Dyn. 2001, 30, 485–499. [Google Scholar] [CrossRef]
- Manfredi, G.; Polese, M.; Cosenza, E. Cumulative demand of the earthquake ground motions in the near source. Earthq. Engng. Struct. Dyn. 2003, 32, 1853–1865. [Google Scholar] [CrossRef]
- Park, Y.J.; Reinhorn, A.M.; Kunnath, S.K. Inelastic Damage Analysis of Reinforced Concrete Frame–Shear-Wall Structures (IDARC); Technical Report NCEER-87-0008; National Center for Earthquake Engineering Research: Buffalo, NY, USA, 1987. [Google Scholar]
- Kunnath, S.K.; Reinhorn, A.M.; Abel, J.F. A computational tool for evaluation of seismic performance of reinforced concrete buildings. Comput. Struct. 1991, 41, 157–173. [Google Scholar] [CrossRef]
- Benavent-Climent, A.; Morillas, L.; Vico, J.M. A study on using wide-flange section web under out-of-plane flexure for passive energy dissipation. Earthq. Eng. Struct. Dyn. 2011, 40, 473–490. [Google Scholar] [CrossRef]
- Ambraseys, N.; Smit, P.; Douglas, J.; Margaris, B.; Sigbjörnsson, R.; Olafsson, S.; Suhadolc, P.; Costa, G. Internet site for European strong-motion data. Boll. Geofis. Teor. Appl. 2004, 45, 113–129. [Google Scholar]
- Benavent-Climent, A. An energy-based damage model for seismic response of steel structures. Earthq. Eng. Struct. Dyn. 2007, 36, 1049–1064. [Google Scholar] [CrossRef]
Storeys | Far-Field Seismicity | Near-Fault Seismicity |
---|---|---|
3 | 3FF-3FFCD | 3NF-3NFCD |
6 | 6FF-6FFCD | 6NF-6NFCD |
9 | 9FF-9FFCD | 9NF-9NFCD |
MODEL | 9FF, 9FFCD, 9NF, 9NFCD | 6FF, 6FFCD, 6NF, 6NFCD | 3FF, 3FFCD, 3NF, 3NFCD | |||
---|---|---|---|---|---|---|
Storey | fk (kN/cm) | fδy (cm) | fk (kN/cm) | fδy(cm) | fk (kN/cm) | fδy (cm) |
9 | 53.25 | 2.86 | ||||
8 | 48.52 | 3.05 | ||||
7 | 49.90 | 2.95 | ||||
6 | 63.19 | 2.91 | 56.82 | 2.94 | ||
5 | 65.15 | 2.87 | 52.70 | 2.88 | ||
4 | 79.19 | 2.86 | 66.51 | 2.83 | ||
3 | 78.71 | 2.83 | 65.95 | 2.85 | 56.43 | 3.15 |
2 | 86.16 | 2.96 | 75.13 | 2.89 | 53.48 | 2.73 |
1 | 124.41 | 2.58 | 96.43 | 2.68 | 58.42 | 3.42 |
MODEL | 9FF,9FFCD | 9NF,9NFCD | 6FF,6FFCD | 6NF,6NFCD | 3FF,3FFCD | 3NF,3NFCD | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
sk | sδy | sk | sδy | sk | sδy | sk | sδy | sk | sδy | sk | sδy | |
9 | 764 | 0.22 | 869 | 0.23 | ||||||||
8 | 696 | 0.38 | 792 | 0.38 | ||||||||
7 | 716 | 0.44 | 81 | 0.44 | ||||||||
6 | 906 | 0.38 | 1032 | 0.39 | 611 | 0.26 | 745 | 0.27 | ||||
5 | 934 | 0.40 | 1064 | 0.40 | 566 | 0.44 | 691 | 0.44 | ||||
4 | 1136 | 0.35 | 1293 | 0.35 | 715 | 0.42 | 872 | 0.42 | ||||
3 | 1129 | 0.37 | 11,284 | 0.38 | 709 | 0.47 | 865 | 0.48 | 777 | 0.23 | 1193 | 0.13 |
2 | 1236 | 0.37 | 1407 | 0.37 | 808 | 0.46 | 985 | 0.46 | 737 | 0.37 | 1131 | 0.22 |
1 | 1784 | 0.28 | 1784 | 0.29 | 1036 | 0.40 | 1268 | 0.41 | 805 | 0.40 | 1235 | 0.24 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morillas, L.; Escolano-Margarit, D. Estimation of Cyclic Demand in Metallic Yielding Dampers Installed on Frame Structures. Appl. Sci. 2020, 10, 4364. https://doi.org/10.3390/app10124364
Morillas L, Escolano-Margarit D. Estimation of Cyclic Demand in Metallic Yielding Dampers Installed on Frame Structures. Applied Sciences. 2020; 10(12):4364. https://doi.org/10.3390/app10124364
Chicago/Turabian StyleMorillas, Leandro, and David Escolano-Margarit. 2020. "Estimation of Cyclic Demand in Metallic Yielding Dampers Installed on Frame Structures" Applied Sciences 10, no. 12: 4364. https://doi.org/10.3390/app10124364
APA StyleMorillas, L., & Escolano-Margarit, D. (2020). Estimation of Cyclic Demand in Metallic Yielding Dampers Installed on Frame Structures. Applied Sciences, 10(12), 4364. https://doi.org/10.3390/app10124364