Weather Simulation of Extreme Precipitation Events Inducing Slope Instability Processes over Mountain Landscapes
Abstract
:Featured Application
Abstract
1. Introduction
2. Study Area
3. Background of the Event
3.1. The Geological Background and Geomorphological Setting of the Slope
- -
- Antigorio and Teggiolo Units: they occupy a crucial tectonic position, on the boundary between the Helvetic and Penninic realms [32]. The Antigorio Unit is constituted by monzogranitic to granodioritic orthogneiss representing the basement of the series [29,31]. It is overlain by the Teggiolo Unit, comprised of several sedimentary cycles, separated by erosive surfaces and large stratigraphic gaps, whose age ranges from Triassic to Eocene [30]. The limit between the two units is locally erosive.
- -
- Valais Unit: they are composed by calcschists deriving from the sediment of the Valais basin, and they are of Cretaceous-Paleogene age [31].
- -
3.2. Meteorological Background
4. Methods
4.1. The Characterisation of the Croso Stream Slope
- (i)
- Elaboration of the thematic maps on sediment connectivity: Sediment Connectivity is the degree of linkage (lateral, longitudinal, and vertical) that controls sediment fluxes throughout landscape [40]. Sediment Connectivity Index (IC), was calculated according to Cavalli et al. [40] (https://github.com/HydrogeomorphologyTool), since it is a topographic based approach addressed to assess the lateral connectivity, specifically, for small mountain catchments. The IC calculation (1) considers the: (i) upslope component (Dup), i.e., the potential for downward routing of the sediment produced upslope; (ii) downslope component (Ddn), that takes into account the flow path length that a particle has to travel to arrive at the nearest target or sink. The two components consider the surface roughness (w), the average slope gradient (s) and the upslope contributing area (a). The sediment connectivity is calculated considering the Log10 of the ratio between the upslope and downslope components for the sediment flux with a target that could be the outlet of the basin or, more specifically, as done in this case, the channel network. Using channel network as a target is more indicated if the aim is the comparison with specific geomorphic features along a slope [41]. As suggested by the Authors, we used a high-resolution Digital Terrain Model-DTM (5 m resolution, source Geoportale Regione Piemonte; http://www.geoportale.piemonte.it/cms/).
- (ii)
- Analysis of the Web-GIS and the related database of the Italian Landslide Inventory (Progetto IFFI, ISPRA–Istituto Superiore per la Protezione e la Ricerca Ambientale; http://www.progettoiffi.isprambiente.it/cartografia-on-line/). This database has been migrated in 2020 to the new IdroGEO platform (https://idrogeo.isprambiente.it/app/; CC BY SA 4.0). The IFFI project is aimed at realising the inventory of the landslides affecting the Italian territory according to photointerpretation, historical archives, past projects analyses, and field survey. The Web-GIS and the related database of the IFFI Project [42,43] include the landslide that can be mapped at a 1:25000 scale, i.e., those characterised by a volume of at least 10000 m3. The spatial resolution is of 5 m, and the metric precision is of 12.5 m. The IFFI database has already been used within specific analyses on the susceptibility of slopes to landslides [44], where more variables were taken into account. In addition to basic information (level I forms), “IFFI second level forms”, including, bedrock condition, damages, monitoring and risk scenarios have been retrieved for the Croso stream basin. The information was also derived from the Arpa Piemonte-SIFraP (Sistema Informativo Frane in Piemonte http://webgis.arpa.piemonte.it/Web22/webgis/sifrap.zip). Data were finally integrated with historical archive analyses [28] and were put in relation with the IC map (i).
- (iii)
- Calculation of the morphometric and kinetic parameters. This kind of parameters are useful to provide an idea about the magnitude of the event. The calculation of the volume of the debris accumulated on the alluvial fan after the 12 August 2019 event was derived from a rough approximation. Three sections were considered: (i) the last overwhelmed check-dam, (ii) the closure section at the overwhelmed bridge on the stream; (iii) an intermediate section. The sections were compared before and after the debris flow event and the final value was obtained using the average value between the surfaces comprised among the sections and the distance between these sections. Moreover, the debris flow velocity was roughly calculated in this framework, according to the time lag between the last passage of car drivers before the debris flow event occurred, and the debris flow overwhelming the bridge (i.e., 10 min). The length of the stream was hence divided by this time interval. These data were finally integrated with the data from the Radarsat, ERS and ENVISAT derived from the IFFI database (“IFFI second level” forms) and reported as indicated in the SIFraP database.
4.2. Weather Station Network and Simulation Set-Up
5. Results and Discussion
5.1. The Characterisation of the Croso Stream Slope
5.2. The Simulated Precipitation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beniston, M.; Stoffel, M. Assessing the impacts of climatic change on mountain water resources. Sci. Total Environ. 2014, 493, 1129–1137. [Google Scholar] [CrossRef]
- Bollati, I.; Pellegrini, M.; Reynard, E.; Pelfini, M. Water driven processes and landforms evolution rates in mountain geomorphosites: Examples from Swiss Alps. Catena 2017, 158, 321–339. [Google Scholar] [CrossRef]
- Soldati, M.; Borgatti, L.; Cavallin, A.; De Amicis, M.; Frigerio, S.; Giardino, M.; Mortara, G.; Pellegrini, G.B.; Ravazzi, C.; Surian, N.; et al. Geomorphological evolution of slopes and climate changes in Northern Italy during the Late Quaternary: Spatial and temporal distribution of landslides and landscape sensitivity implications. Geogr. Fis. Din. Quat. 2006, 29, 165–183. [Google Scholar]
- Keiler, M.; Knight, J.; Harrison, S. Climate change and geomorphological hazards in the Eastern European Alps. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 2461–2479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.T.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhü, K.; Koffi, B.; et al. Future extreme events in European climate—An exploration of regional climate model projections. Clim. Chang. 2007, 81, 71–95. [Google Scholar]
- Crozier, M.J.; Glade, T. The frequency and magnitude of landslide activity Crozier, M.J.; Mausbacher, R. (Eds.), Magnitude and Frequency in Geomorphology. Z. Geomorphol. Suppl. 1999, 115, 141–155. [Google Scholar]
- Borgatti, L.; Soldati, M. Hillslope processes and climate change. In Treatise on Geomorphology: Mountain and Hillslope Geomorphology; Stoffel, M., Marston, R.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Pelfini, M.; Santilli, M. Frequency of debris flows and their relation with precipitation: A case study in the Central Alps, Italy. Geomorphology 2008, 101, 721–730. [Google Scholar] [CrossRef]
- Lehner, M.; Rotach, W.M. Current Challenges in Understanding and Predicting Transport and Exchange in the Atmosphere over Mountainous Terrain. Atmosphere 2018, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Esteve, B.; Udina, M.; Soler, M.; Pepin, N.; Mirò, J. Land use and topography influence in a complex terrain area: A high resolution mesoscale modelling study over the Eastern Pyrenees using the WRF model. Atmos. Res. 2018, 202, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Crosta, G.B.; Frattini, P. Rainfall-induced landslides and debris flows. Hydrol. Process. Int. J. 2008, 22, 473–477. [Google Scholar] [CrossRef]
- Chow, F.K.; Schär, C.; Ban, N.; Lundquist, K.A.; Schlemmer, L.; Shi, X. Crossing Multiple Gray Zones in the Transition from Mesoscale to Microscale Simulation over Complex Terrain. Atmosphere 2019, 10, 274. [Google Scholar] [CrossRef] [Green Version]
- Schmidli, J.; Böing, S.; Fuhrer, O. Accuracy of simulated diurnal valley winds in the Suiss Alps: Influence of grid resolution, topography filtering and land surface datasets. Atmosphere 2018, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Goger, B.; Rotach, M.W.; Gohm, A.; Fuhrer, O.; Stiperski, I.; Holtslag, A.A.M. The Impact of Three-Dimensional Effects on the Simulation of Turbulence Kinetic Energy in a Major Alpine Valley. Bound.-Layer Meteorol. 2018, 168, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Buzzi, A.; Davolio, S.; Malguzzi, P.; Drofa, O.; Mastrangelo, D. Heavy rainfall episodes over Liguria of autumn 2011: Numerical forecasting experiments. Nat. Hazards Earth Syst. Sci. 2014, 14, 1325–1340. [Google Scholar] [CrossRef] [Green Version]
- Balanzino, A.; Trini Castelli, S. Numerical experiments with RAMS model in highly complex terrain. Environ. Fluid. Mech. 2018, 18, 357–381. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; NCAR/TN-556+STR; NCAR: Boulder, CO, USA, 2019. [Google Scholar]
- Bolla, S.; Branca, M.; Cassardo, C.; Ferrarese, S.; Notarpietro, R. Testing of WRF parametrizations with X-band radar data in a convective rainfall event. Ital. J. Agrometeorol. 2017, 2, 13–24. [Google Scholar]
- Roşu, I.-A.; Ferrarese, S.; Radinschi, I.; Ciocan, V.; Cazacu, M.-M. Evaluation of different WRF parametrizations over the region of Iaşi with remote sensing techniques. Atmosphere 2019, 10, 559. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Lakhtakia, M.N.; Yarnal, B.; White, R.A.; Miller, D.A.; Frakes, B.M.; Barron, E.J.; Duffy, C.; Schwartz, F.W. Simulating the river-basin response to atmospheric forcing by linking a mesoscale meteorological model and hydrologic model system. J. Hydrol. 1999, 218, 72–92. [Google Scholar] [CrossRef]
- Jasper, K.; Gurtz, J.; Lang, H. Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model. J. Hydrol. 2002, 267, 40–52. [Google Scholar] [CrossRef]
- Bollati, I.; Lenz, B.C.; Golzio, A.; Masseroli, A. Tree rings as ecological indicator of geomorphic activity in geoheritage studies. Ecol. Indic. 2018, 93, 899–916. [Google Scholar] [CrossRef] [Green Version]
- Golzio, A. High-Mountain Environment under Climate Change, the Interactions between Climate, Meteorology and Geomorphological Factors. Ph.D. Thesis, Università degli Studi di Milano, Milano, Italy, 2020. [Google Scholar] [CrossRef]
- Bertolotto, P.L.; Mercalli, L.; Cat Berro, D.; Mosello, R.; Rogora, M. La serie climatica ultracentenaria di Domodossola Collegio Rosmini, 1871-2013. Nimbus 2014, XXII, 4–45. [Google Scholar]
- Cat Berro, D.; Mercalli, L.; Bertolotto, P.L.; Mosello, R.; Rogora, M.; Orrù, A. Il clima dell’Ossola Superiore. Nimbus 2014, XXII, 46–129. [Google Scholar]
- Hantke, R. The formation of the valleys between Domodossola and Locarno: Ossola Valley, Vigezzo Valley (Novara province) and Centovalli (Canton Ticino). Boll. Soc. Ticin. Sci. Nat. 1988, 76, 123–139. [Google Scholar]
- Luciani, M. Piano Di Emergenza Di Protezione Civile Del Comune di Varzo—VB; Comune di Varzo, Varzo, 2006. [Google Scholar]
- Steck, A.; Della Torre, F.; Keller, F.; Pfeifer, H.R.; Hunziker, J.; Masson, H. Tectonics of the Lepontine Alps: Ductile thrusting and folding in the deepest tectonic levels of the Central Alps. Swiss J. Geosci. 2013, 106, 427–450. [Google Scholar] [CrossRef] [Green Version]
- Maxelon, M.; Mancktelow, N.S. Three-dimensional geometry and tectonostratigraphy of the Pennine zone, Central Alps, Switzerland and Northern Italy. Earth-Sci. Rev. 2005, 71, 171–227. [Google Scholar] [CrossRef]
- Stampfli, G.M.; Borel, G.D.; Marchant, R.; Mosar, J. Western Alps geological constraints on western Tethyan reconstructions. J. Virtual Explor. 2002, 8, 77. [Google Scholar] [CrossRef] [Green Version]
- Matasci, B.; Epard, J.L.; Masson, H. The Teggiolo zone: A key to the Helvetic–Penninic connection (stratigraphy and tectonics in the Val Bavona, Ticino, Central Alps). Swiss J. Geosci. 2011, 104, 257. [Google Scholar] [CrossRef] [Green Version]
- Spring, L.; Reymond, B.; Masson, H.; Steck, A. La nappe du Lebendum entre Alte Kaserne et le Val Cairasca (massif du Simplon): Nouvelles observations et interprétations. Eclogae Geol. Helv. 1992, 85, 85–104. [Google Scholar]
- Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M. The Last Glacial Maximum. Science 2009, 325, 710–714. [Google Scholar] [CrossRef] [Green Version]
- Braakhekke, J.; Ivy-Ochs, S.; Monegato, G.; Gianotti, F.; Martin, S.; Casale, S.; Christl, M. Timing and flow pattern of the Orta Glacier (European Alps) during the Last Glacial Maximum. Boreas 2020. [Google Scholar] [CrossRef]
- Rigamonti, I.; Uggeri, A. L’evoluzione dell’Alpe Veglia nel quadro delle Alpe Centrali. Geol. Insubrica 2016, 1, 69–83. [Google Scholar]
- Sacco, F. Il Glacialismo nelle Valli Sesia, Strona, Anza e Nell’ossola; Ministero dei Lavori Pubblici—Servizio Idrografico—Ufficio Idrografico del Po: Roma, Italy, 1930; 106p. [Google Scholar]
- Bollati, I.M.; Crosa Lenz, B.; Caironi, V. A multidisciplinary approach for physical landscape analysis: Scientific value and risk of degradation of outstanding landforms in the glacial plateau of the Loana Valley (Central-Western Italian Alps). Ital. J. Geosci. 2020, 139, 1–18. [Google Scholar] [CrossRef]
- Gandini, D.; Muraro, M.; Paesano, G.; Pelosini, R. Eventi Alluvionali in Piemonte, Chap 1: Analisi Meteorologica ed Idrologica; ARPA Piemonte: Torino, Italy, 2003. [Google Scholar]
- Cavalli, M.; Trevisani, S.; Comiti, F.; Marchi, L. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 2013, 188, 31–41. [Google Scholar] [CrossRef]
- Bollati, I.M.; Cavalli, M. Geomorphic systems, sediment connectivity and geomorphodiversity: Relations within a small mountain catchment in the Lepontine Alps. Geomorphometry 2021 2020, in press.
- Trigila, A.; Iadanza, C.; Spizzichino, D. Quality assessment of the Italian Landslide Inventory using GIS processing. Landslides 2010, 7, 455–470. [Google Scholar] [CrossRef]
- ISPRA. Dissesto Idrogeologico in Italia: Pericolosità e Indicatori Di Rischio; Technical Report ISPRA 287/2018; ISPRA: Roma, Italy, 2018. [Google Scholar]
- Blahut, J.; Van Westen, C.J.; Sterlacchini, S. Analysis of landslide inventories for accurate prediction of debris-flow source areas. Geomorphology 2010, 119, 36–51. [Google Scholar] [CrossRef]
- Golzio, A.; Bollati, I.M.; Ferrarese, S. An Assessment of Coordinate Rotation Methods in Sonic Anemometer Measurements of Turbulent Fluxes over Complex Mountainous Terrain. Atmosphere 2019, 10, 324. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Climate Change Service (C3S) 2017 ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 8 January 2020).
- NASA-JPL. NASA Shuttle Radar Topography Mission Global 3 arc-second [data set]. NASA EOSDIS Land Processes DAAC. Tech. Rep. 2013. [Google Scholar] [CrossRef]
- Büttner, G.; Soukup, T.; Kosztra, B. CLC2012 Addendum to CLC2006 Technical Guidelines; Technical Report; European Environmental Agency: Wien, Austria, 2013. [Google Scholar]
- Hong, S.-Y.; Lim, J.-O.J. The WRF single–moment 6–class microphysics scheme (WSM6). J. Korean Meteor. Soc. 2006, 42, 129–151. [Google Scholar]
- Dudhia, J. Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two–dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated–k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, P.A.; Dudhia, J. Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteorol. Climatol. 2012, 51, 300–316. [Google Scholar] [CrossRef] [Green Version]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12–16 January 2004; pp. 11–15. [Google Scholar]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef] [Green Version]
- Colombo, A.; Ramasco, M. Analisi del dissesto da frana in Piemonte. Rapporto sulle frane in Italia. ISPRA 2007, 78, 81–120. [Google Scholar]
- Cruden, D.M.; Varnes, D.J. Landslides: Investigation and mitigation. Chapter 3-Landslide types and processes. Transp. Transp. Res. Board Spec. Rep. 1996, 247, 36–75. [Google Scholar]
- Tropeano, D.; Turconi, L. Alluvione del 14-15 ottobre 2000 nell’Italia del nord-ovest: Cronaca di sintesi e commenti. Nimbu 2001, 21–22, 53–85. [Google Scholar]
- Luino, F.; De Graff, J.V.; Roccati, A.; Biddoccu, M.; Cirio, C.G.; Faccini, F.; Turconi, L. Eighty Years of Data Collected for the Determination of Rainfall Threshold Triggering Shallow Landslides and Mud-Debris Flows in the Alps. Water 2019, 12, 133. [Google Scholar] [CrossRef] [Green Version]
- Giordan, D.; Manconi, A.; Allasia, P.; Bertolo, D. Brief Communication: On the rapid and efficient monitoring results dissemination in landslide emergency scenarios: The Mont de La Saxe case study. Nat. Hazards Earth Syst. Sci. 2015, 15, 2009–2017. [Google Scholar] [CrossRef] [Green Version]
Station Name | ID | Latitude N (°) | Longitude E (°) | Altitude (m) | Distance (km) | Instruments |
---|---|---|---|---|---|---|
San Domenico (Varzo) | A | 46.250 | 8.193 | 1308 | 0.7 | R,T |
Alpe Veglia | B | 46.275 | 8.146 | 1736 | 4.0 | R,T,S,W,G,P |
Alpe Devero | C | 46.316 | 8.260 | 1634 | 9.2 | R,T,S,H |
Domodossola | D | 46.103 | 8.302 | 252 | 19.0 | R,T,W,P,G |
Formazza | E | 46.433 | 8.358 | 2453 | 24.0 | R,T,S,W |
ID (Figure 5b) | IFFI Idfrana | IFFI Sub-Id | Landslide Classification | Activity Degree | Lithology (Arpa Piemonte 1:250,000) | Land Use | IFFI Method | Area (m2) |
---|---|---|---|---|---|---|---|---|
1 | 10300266- | 00 | D-Rf/T | A7R/S | Lp | Ng | P | 41562 |
2 | 10300267- | 00 | D-Rf/T | A/R/S | Lp | Ng | P | 8880 |
3 | 10300271- | 00 | Rf/T | Q | Lp | Ng | P | 52058 |
4 | 10300274- | 00 | Rf/T | Q | Lp | Ng | P | 48159 |
5 | 10300275- | 00 | Rf/T | Q | Lp | Ng-Bt | P | 47248 |
6 | 10300484- | 01 | DSGD | n.d. | Lp-m-ms, Vc, Ao | Ng-Bt-Cf | P | 1892974 |
7 | 02 | C | Q | Lp | Ng | P | 200507 | |
8 | 03 | E/Df | Q | Vs | Ng-Cf | P | 116899 | |
9 | 04 | E/Df | Q | Ao | Cf | P | 5534 | |
10 | 05 | E/Df | Q | Lm-ms, Vc | Ng | P | 20161 | |
11 | 06 | E/Df | Q | Lm-ms, Vc | Ng | P | 21952 | |
12 | 07 | E/Df | Q | Lm-ms | Ng | P | 1528 | |
13 | 08 | E/Df | Q | Lm-ms | Ng | P | 5945 | |
14 | 09 | C | Q | Lm-ms | Ng | P | 3779 | |
15 | 10 | D-Rf/T | A/R/S | Vc | Ng-Cf | P | 5860 | |
16 | 11 | D-Rf/T | A/R/S | Vc | Ng-Cf | P | 11262 | |
17 | 10300497- | 07 | D-Rf/T | A/R/S | Ao | Cf | P | 58294 |
18 | 10310431- | 00 | D-Rf/T | A/R/S | Lp | Br-Ng | Ha | 739041 |
19 | 10350258- | 00 | E/Df | n.d. | Vs | Cf | Ha | 9018 |
Date | Typology | Causes | Affected Stream or Slope Portion | Effects |
---|---|---|---|---|
19–20 August 1958 | Rapid debris flow | Intense meteorological event | Fontana stream | |
16 June 1979 | Rapid debris flow | Intense meteorological event | Croso stream Fontana stream | Erosion along the thalweg (up to 10 m) and the lateral scarps between 1440 and 1600 m a.s.l.; damages to a check dam at 1600 m a.s.l. Incision and morainic deposits flow at 1500 m a.s.l.; damages to the aqueduct of San Domenico and to the check dam at 1600 m a.s.l. |
1 January 1993 | Slide | Intense meteorological event | Fontana stream | A landslide at 1400 m a.s.l. involving a surface of 1100 m2 partially obstructed the Fontana streambed nearby the recharge basin of the municipality aqueduct and the electric line. |
20 August 1996 | Rock fall | Slope behind San Domenico village | ||
26 May 1997 | Flood | Croso stream and Fontana stream | Erosion along the thalweg and damages to the check dams | |
7 July 1997 | DSGD with diffuse mass wasting episodes | The entire slope | The slope portion interested by active DSGD is of 3.0 × 106 m3 |
Rio Croso Morphometric Data | Alluvial Fan Measure at the 12 August 2019 Event | |||||||
Crown altitude Qc (m) | 1925 | Area (m2) | 1800 | Length (m) | 6445 | |||
Toe altitude Qt (m) | 1366 | Section | Area (m2) | Distance (m) | Volume (m3) | |||
Horizontal lenght HL (m) | 1890 | Bridge | 162 | 1009 | 29321 | |||
Altitude difference H (m) | 620 | Lower | 376 | 39 | 8438 | |||
Slope S (°) | 18.2 | Check dam | 60 | 83 | 10249 | |||
Total area A (m2) | 116899 | Upper | 187 | 72 | 6710 | |||
Width Wi (m) | 40 | Total volume (m2) | 37759 | |||||
Interferometric Data | ||||||||
DATASET | Moving velocity along the Line of Sight (LOS) (mm/year) | n° PS/DS | n° PS | n° moving PS/DS | ratio [%] | |||
Min | Max | Mean | ||||||
RADARSAT_asce_nord | −0.69 | 0.31 | −0.23 | 4 | 1 | 0 | 0 | |
ERS_summ_desce | −1.1 | −1.1 | −1.1 | 0 | 1 | 0 | 0 | |
pst_ENVISAT_desce | 0.52 | 0.52 | 0.52 | 0 | 1 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golzio, A.; Bollati, I.M.; Luciani, M.; Pelfini, M.; Ferrarese, S. Weather Simulation of Extreme Precipitation Events Inducing Slope Instability Processes over Mountain Landscapes. Appl. Sci. 2020, 10, 4243. https://doi.org/10.3390/app10124243
Golzio A, Bollati IM, Luciani M, Pelfini M, Ferrarese S. Weather Simulation of Extreme Precipitation Events Inducing Slope Instability Processes over Mountain Landscapes. Applied Sciences. 2020; 10(12):4243. https://doi.org/10.3390/app10124243
Chicago/Turabian StyleGolzio, Alessio, Irene Maria Bollati, Marco Luciani, Manuela Pelfini, and Silvia Ferrarese. 2020. "Weather Simulation of Extreme Precipitation Events Inducing Slope Instability Processes over Mountain Landscapes" Applied Sciences 10, no. 12: 4243. https://doi.org/10.3390/app10124243
APA StyleGolzio, A., Bollati, I. M., Luciani, M., Pelfini, M., & Ferrarese, S. (2020). Weather Simulation of Extreme Precipitation Events Inducing Slope Instability Processes over Mountain Landscapes. Applied Sciences, 10(12), 4243. https://doi.org/10.3390/app10124243