Multidisciplinary Approach for Evaluating the Geochemical Degradation of Building Stone Related to Pollution Sources in the Historical Center of Naples (Italy)
Abstract
:1. Introduction
2. Sampling
3. Analytical Methods
4. Results
4.1. Optical Microscopy (OM) and Mineralogical Analysis (XRD) of the Stone Materials and the Black Crusts
4.2. Micromorphological and Elemental Analysis of the Black Crusts by SEM-EDS
4.3. Trace Elements Analysis by LA-ICP-MS
5. Discussion
6. Final Remarks
- determine that the concentration of specific elements (such as As, Sb, Pb, Zn, Cu, Sn, etc.) was noticeably higher in the samples coming from the complex of San Domenico Maggiore, evidencing the fingerprint of air pollution due to vehicular emissions.
- show that the As amount detected in Naples city center was lower than in other Italian and European cities studied in previous research, highlighting the importance of the impact of the local pollution sources on the cultural heritage.
- consider the evolution of the conservation state of the rock substrate. Some elements such as Zn, Cu, Ni, etc. were more abundant in the substrate, evidencing the presence of a network of microcracks favoring the migration of chemical elements from the crusts to the substrate. This mobility can also lead to the formation of new crusts, contributing to the acceleration of weathering damage.
Author Contributions
Conflicts of Interest
References
- Amoroso, G.G.; Fassina, V. Stone Decay and Conservation: Atmospheric Pollution, Cleaning, Consolidation and Protection; Elsevier: Amsterdam, The Netherlands, 1983; p. 453. [Google Scholar]
- Brimblecombe, P. History of Air Pollution. In Urban Air Pollution—European Aspects; Fenger, J., Hertel, O., Palmgren, F., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 7–20. [Google Scholar]
- Brimblecombe, P. Air pollution and architecture: Past, present and future. J. Archit. Conserv. 2000, 6, 30–46. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Sebastian, E. Role of particulate matter from vehicle exhaust on porous building stones (limestone) sulfation. Sci. Total Environ. 1996, 187, 79–91. [Google Scholar] [CrossRef]
- Antill, S.J.; Viles, H.A. Aspects of Stone Weathering, Decay and Conservation. In Proceedings of the Stone Weathering and Atmospheric Pollution Network Conference, Robert Gordon University, Aberdeen, Scotland, 15–17 May 1997; Jones, M.S., Wakefield, R.D., Eds.; World Scientific Publishing Co. Pte Ltd.: Singapore, 1999; pp. 1–214. [Google Scholar]
- Barone, G.; La Russa, M.F.; Lo Giudice, A.; Mazzoleni, P.; Pezzino, A. The cathedral of S. Giorgio in Ragusa Ibla (Italy): Characterization of construction materials and their chromatic alteration. Environ. Geol. 2008, 55, 499–504. [Google Scholar] [CrossRef]
- Belfiore, C.M.; La Russa, M.F.; Pezzino, A.; Campani, E.; Casoli, A. The baroque monuments of Modica (eastern Sicily): Assessment of causes of chromatic alteration of stone building materials. Appl. Phys. A 2010, 100, 835–844. [Google Scholar] [CrossRef]
- Gulotta, D.; Bertoldi, M.; Bortolotto, S.; Fermo, P.; Piazzalunga, A.; Toniolo, L. The angera stone: A challenging conservation issue in the polluted environment of Milan (Italy). Environ. Earth Sci. 2013, 69, 1085–1094. [Google Scholar] [CrossRef]
- Morra, V.; Calcaterra, D.; Cappelletti, P.; Colella, A.; Fedele, L.; de Gennaro, R.; Langella, A.; Mercurio, M.; de Gennaro, M. Urban geology: Relationships between geological setting and architectural heritage of the Neapolitan area. J. Virtual Explor 2010, 26, 1–36. [Google Scholar] [CrossRef]
- Del Monte, M.; Sabbioni, C.; Vittori, O. Airborne carbon particles and marble deterioration. Atmos. Environ. 1981, 15, 645–652. [Google Scholar] [CrossRef]
- Carta, L.; Calcaterra, D.; Cappelletti, P.; Langella, A.; de Gennaro, M. The stone materials in the historical architecture of the ancient center of Sassari: Distribution and state of conservation. J. Cult. Herit. 2005, 6, 277–286. [Google Scholar] [CrossRef]
- Bonazza, A.; Sabbioni, C.; Ghedini, N. Quantitative data on carbon fractions in interpretation of black crusts and soiling on European built heritage. Atmos. Environ. 2005, 39, 2607–2618. [Google Scholar] [CrossRef]
- Comite, V.; Barca, D.; Belfiore, C.M.; Bonazza, A.; Crisci, G.M.; La Russa, M.F.; Pezzino, A.; Sabbioni, C. Potentialities of spectrometric analysis for the evaluation of pollution impact in deteriorating stone heritage materials, In Rendiconti Online Della Società Geologica Italiana; Critelli, S., Muto, F., Perri, F., Petti, F.M., Sonnino, M., Zuccari, A., Eds.; 86 Congresso Nazionale della Società Geologica Italiana: Arcavacata, Italy, 2012; Volume 21, pp. 652–653. [Google Scholar]
- Prikryl, R.; Svabodová, J.; Zák, K.; Hradil, D. Anthropogenic origin of salt crusts on sandstone sculptures of Prague’s Charles Bridge (Czech Republic). Evidence of mineralogy and stable isotope geochemistry. Eur. J. Miner. 2004, 16, 609–618. [Google Scholar] [CrossRef]
- Torfs, K.; Van Grieken, R.E.; Buzek, F. Use of stable isotope measurements to evaluate the origin of sulfur in gypsum layers on limestone buildings. Environ. Sci. Pollut. Res. 1997, 31, 2650–2655. [Google Scholar]
- Vallet, J.M.; Gosselin, C.; Bromblet, P.; Rolland, P.; Vergés-Belmin, V.; Kloppmann, W. Origin of salts in stone monuments degradation using sulphur and oxygen isotopes: First results of the Bourges Cathedral (France). J. Geochem. Explor. 2006, 88, 358–362. [Google Scholar] [CrossRef]
- N. Schleicher, C. Recio, Source identification of sulphate forming salts on sandstones from monuments in Salamanca, Spain—A stable isotope approach. Environ. Sci. Pollut. Res. 2010, 17, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Kloppmann, W.; Bromblet, P.; Vallet, J.M.; Vergès-Belmin, V.; Rolland, O.; Guerrot, C. Building materials as intrinsic sources of sulphate: A hidden face of salt weathering of historical monuments investigated through multi-isotope tracing (B, O, S). Sci. Total. Environ. 2011, 409, 1658–1669. [Google Scholar] [CrossRef] [PubMed]
- de’ Gennaro, M.; Colella, C.; Pansini, M. Hydrothermal conversion of trachytic glass into zeolite. II Reactions with high-salinity waters. Neues Jahrb. Far Miner. Monatshefte 1993, 3, 97–110. [Google Scholar]
- Hulett, G.; Allen, L. The solubility of gypsum. J. Am. Chem. Soc. 1902, 24, 667–679. [Google Scholar] [CrossRef] [Green Version]
- Maravelaki-Kalaitzaki, P.; Biscontin, G. Origin, characteristics and morphology of weathering crusts on Istria stone in Venice. Atmos. Environ. 1999, 33, 1699–1709. [Google Scholar] [CrossRef]
- Kramar, S.; Mirtič, B.; Knöller, K.; Rogan-Šmuc, N. Weathering of the black limestone of historical monuments (Ljubljana, Slovenia): Oxygen and sulfur isotope composition of sulfate salts. Appl Geochem 2011, 26, 1632–1638. [Google Scholar] [CrossRef]
- La Russa, M.F.; Belfiore, C.M.; Comite, V.; Barca, D.; Bonazza, A.; Ruffolo, S.A.; Pezzino, A. Geochemical study of black crusts as a diagnostic tool in cultural heritage. Appl. Phys. A Mater. 2013, 113, 1151–1162. [Google Scholar] [CrossRef]
- Ausset, P.; Del Monte, M.; Lefévre, R.A. Embryonic sulphated black crusts on carbonate rocks in atmospheric simulation chamber and in the field: role of carbonaceous fly-ash. Atmos. Environ. 1999, 33, 1525–1534. [Google Scholar] [CrossRef]
- McAlister, J.J.; Smitha, B.J.; Tőrők, A. Transition metals and water-soluble ions in deposits on a building and their potential catalysis of stone decay. Atmos Environ. 2008, 42, 7657–7668. [Google Scholar] [CrossRef]
- Ruffolo, S.A.; Comite, V.; La Russa, M.F.; Belfiore, C.M.; Barca, D.; Bonazza, A.; Crisci, G.M.; Pezzino, A.; Sabbioni, C. Analysis of black crusts from the Seville Cathedral: A challenge to deepen understanding the relationship among microstructure, microchemical features and pollution sources. Sci. Total Environ. 2015, 502, 157–166. [Google Scholar] [CrossRef] [PubMed]
- La Russa, M.F.; Fermo, P.; Comite, V.; Belfiore, C.M.; Barca, D.; Cerioni, A.; De Santis, M.; Barbagallo, L.F.; Ricca, M.; Ruffolo, S.A. The Oceanus statue of the Fontana di Trevi (Rome): The analysis of black crust as a tool to investigate the urban air pollution and its impact on the stone degradation. Sci. Total Environ. 2017, 593–594, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Fermo, P.; Gonzalez Turrion, R.; Rosa, M.; Omegna, A. A new approach to assess the chemical composition of powder deposits damaging the stone surfaces of historical monuments. Environ. Sci. Pollut. Res. 2015, 22, 6262–6270. [Google Scholar] [CrossRef] [PubMed]
- Belfiore, C.M.; Barca, D.; Bonazza, A.; Comite, V.; la Russa, M.F.; Pezzino, A.; Sabbioni, C. Application of spectrometric analysis to the identification of pollution sources causing cultural heritage damage. Environ Sci. Pollut. Res. 2013, 20, 8848–8859. [Google Scholar] [CrossRef] [PubMed]
- La Russa, M.F.; Comite, V.; Aly, N.; Barca, D.; Fermo, P.; Rovella, N.; Antonelli, F.; Tesser, E.; Aquino, M.; Ruffolo, S.A. Black crusts on Venetian built heritage, investigation on the impact of pollution sources on their composition. Eur. Phys. J. Plus 2018, 133, 370. [Google Scholar] [CrossRef]
- Comite, V.; Fermo, P. The effects of air pollution on cultural heritage: The case study of Santa Maria delle Grazie al Naviglio Grande (Milan). Eur. Phys. J. Plus 2018, 133, 556. [Google Scholar] [CrossRef]
- Comite, V.; Pozo-Antonio, J.S.; Cardell, C.; Rivas, T.; Randazzo, L.; La Russa, M.F.; Fermo, P. Metals distributions within black crusts sampled on the facade of an historical monument: The case study of the Cathedral of Monza. In Proceedings of the IMEKO TC4 International Conference on Metrology for Archaeology and Cultural Heritage, Milan, Italy, 4–6 December 2019; pp. 73–78. [Google Scholar]
- Comite, V.; Pozo-Antonio, J.S.; Cardell, C.; Rivas, T.; Randazzo, L.; La Russa, M.F.; Fermo, P. Environmental impact assessment on the Monza Mathedral (Italy): A multi-analytical approach. Int. J. Conserv. Sci. 2020, 11, 291–304. [Google Scholar]
- Ozga, I.; Ghedini, N.; Giosuè, C.; Sabbioni, C.; Tittarelli, F.; Bonazza, A. Assessment of air pollutant sources in the deposit on monuments by multivariate analysis. Sci. Total. Environ. 2014, 490, 776–784. [Google Scholar] [CrossRef]
- Smith, B.J.; Török, A.; McAlister, J.J.; Megarry, Y. Observations on the factors influencing stability of building stones following contour scaling: A case study of oolitic limestones from Budapest, Hungary. Build. Environ. 2003, 38, 1173–1183. [Google Scholar] [CrossRef]
- Conte, A.; Filippa, M. Patrimoni e Siti UNESCO: Memoria; e Armonia; Gancemi, Ed.; (Series: Arti visive, architettura e urbanistica); Gangemi Editore SpA International Publishing: Roman, Italy, 2015; p. 1021. [Google Scholar]
- Di Benedetto, C.; Gautiero, A.; Guarino, V.; Allocca, V.; De Vita, P.; Morra, V.; Cappelletti, P.; Calcaterra, D. Knowledge-based model for geomaterials in the Ancient Centre of Naples (Italy): Towards an integrated approach to cultural heritage. Digital Appl. Archaeol. Cult. Herit. 2020, e00146. [Google Scholar] [CrossRef]
- Foglia, O.; Maietta, I. La Fabbrica di San Domenico Maggiore a Napoli; e Restauro, S., Ed.; Arte’m: Napoli, Italy, 2016. [Google Scholar]
- Smylitopoulos, C. Agents of Space: Eighteenth-Century Art Architecture and Visual Culture; Smylitopoulos, C., Cambridge, S., Eds.; Cambridge Scholars Publishing: Newcastle, UK, 2016; p. 238. [Google Scholar]
- Fratta, A. Il Patrimonio architettonico dell’Ateneo Fridericiano (II volume); Editor Arte Tipografica: Napoli, Italy, 2004. [Google Scholar]
- Gratuze, B. Obsidian characterization by laser ablation ICP-MS and its application to prehistoric trade in the Mediterranean and the near east: Sources and distribution of obsidian within the Aegean and Anatolia. J. Archaeol. Sci. 1999, 26, 869–881. [Google Scholar] [CrossRef] [Green Version]
- Vander Putten, E.; Dehairs, F.; André, L.; Baeyens, W. Quantitative in situ microanalysis of minor and trace elements in biogenic calcite using infrared laser ablation—Inductively coupled plasma mass spectrometry: A critical evaluation. Anal. Chim. Acta 1999, 378, 261–272. [Google Scholar] [CrossRef]
- Wyndham, T.; McCulloch, M.; Fallon, S.; Alibert, C. High-resolution coral records of rare earth elements in coastal seawater: Biogeochemical cycling and a new environmental proxy. Geochim. Cosmochim. Acta. 2004, 68, 2067–2080. [Google Scholar] [CrossRef]
- Pearce, N.J.G.; Perkins, W.T.; Westgate, J.A.; Gorton, M.P.; Jackson, S.E.; Neal, C.R.; Chenery, S.P. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. Newsl. 1997, 21, 115–144. [Google Scholar] [CrossRef]
- Fryer, B.J.; Jackson, S.E.; Longerich, H.P. The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma-mass spectrometer (LAM-ICP-MS) in the earth sciences. Can. Miner. 1995, 33, 303–312. [Google Scholar]
- Barca, D.; Belfiore, C.M.; Crisci, G.M.; La Russa, M.F.; Pezzino, A.; Ruffolo, S.A. Application of laser ablation ICP-MS and traditional techniques to the study of black crusts on building stones: A new methodological approach. Environ. Sci. Pollut. Res. 2010, 17, 1433–1447. [Google Scholar] [CrossRef]
- Gao, S.; Liu, X.M.; Yuan, H.L. Determination of forty two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostand. Newsl. 2002, 26, 181–196. [Google Scholar] [CrossRef]
- Lazzarini, L. Archaeometric aspects of white and coloured marbles used in antiquity: The state of the art. Per. Miner. 2004, 73, 113–125. [Google Scholar]
- Cariati, F.; Rampazzi, L.; Toniolo, L.; Pozzi, A. Calcium Oxalate Films on Stone Surfaces: Experimental Assessment of the Chemical Formation. Stud. Conserv. 2000, 45, 180–188. [Google Scholar] [CrossRef]
- Del Monte, M.; Sabbioni, C.; Zappia, G. The origin of calcium oxalates on historical buildings, monuments and natural outcrops. Sci. Total. Environ. 1987, 67, 17–39. [Google Scholar] [CrossRef]
- Watchman, A.L. Age and composition of oxalate-rich crusts in the Northern Territory, Australia. Stud. Conserv. 1991, 36, 24–32. [Google Scholar] [CrossRef]
- Whitney, D.L.; Bernard, W. Evans. Abbreviations for names of rock-forming minerals. Am. Miner. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Fratta, A. Il complesso di San Marcellino. Storia e restauro; Fridericiana Editrice Universitaria: Napoli, Italy, 2000; p. 232. [Google Scholar]
- Ashurst, J. Conservation of Building and Decorative Stone; Edotor Dimes, F.G., Ashurst, J., Eds.; Elsevier Ltd.: Oxford, UK, 1998; 466p. [Google Scholar]
- Sanjurjo Sánchez, J.; Vidal Romaní, J.R.; Alves, C. Deposition of particles on gypsum-rich coatings of historic buildings in urban and rural environments. Constr. Build. Mater. 2011, 25, 813–822. [Google Scholar] [CrossRef]
- Canepari, S.; Perrino, C.; Olivieri, F.; Astolfi, M.L. Characterisation of the traffic sources of PM through size-segregated sampling, sequential leaching and ICP analysis. Atmos. Environ. 2008, 42, 8161–8175. [Google Scholar] [CrossRef]
- Bukowiecki, N.; Lienemann, P.; Hill, M.; Furger, M.; Richard, A.; Amato, F.; Prévôt, A.S.H.; Baltensperger, U.; Buchmann, B.; Gehrig, R. PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland. Atmos. Environ. 2010, 44, 2330–2340. [Google Scholar] [CrossRef]
- Brito, J.; Rizzo, L.V.; Herckes, P.; Vasconcellos, P.C.; Caumo, S.E.S.; Fornaro, A.; Ynoue, R.Y.; Artaxo, P.; Andrade, M.F. Physical-chemical characterisation of the particulate matter inside two road tunnels in the São Paulo metropolitan area. Atmos Chem. Phys. 2013, 13, 12199–12213. [Google Scholar] [CrossRef] [Green Version]
- Dongarrà, G.; Manno, E.; Varrica, D. Possible markers of traffic-related emissions. Environ. Monit. Assess. 2009, 154, 117–125. [Google Scholar] [CrossRef]
- Aatmeeyata; Sharma, M. Polycyclic aromatic hydrocarbons, elemental and organic carbon emissions from tire–wear. Sci. Total. Environ. 2010, 408, 4563–4568. [Google Scholar] [CrossRef]
- Cui, M.; Chen, Y.; Feng, Y.; Li, C.; Zheng, J.; Tian, C.; Yan, C.; Zheng, M. Measurement of PM and its chemical composition in real–world emissions from non–road and on–Road diesel vehicles. Atmos. Chem. Phys. 2017, 17, 6779–6795. [Google Scholar] [CrossRef] [Green Version]
- Schauer, J.; Lough, G.; Shafer, M.; Christensen, W.; Arndt, M.; Deminter, J.; Park, J. Characterization of metals emitted from motor vehicles. Res. Rep. 2006, 133, 76. [Google Scholar]
- Iijima, A.; Sato, K.; Yano, K.; Tago, H.; Kato, M.; Kimura, H.; Furuta, N. Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. Atmos. Environ. 2007, 41, 4908–4919. [Google Scholar] [CrossRef]
- Goddard, S.L.; Williams, K.R.; Robins, C.; Butterfield, D.M.; Brown, R.J.C. Concentration trends of metals in ambient air in the UK: a review. Environ. Monit. Assess. 2019, 191, 683. [Google Scholar] [CrossRef] [PubMed]
- Harmens, H.; Norris, D.A. Spatial and Temporal Trends in Heavy Metal Accumulation in Mosses in Europe (1990–2005); Programme Coordination Centre for the ICP Vegetation, Centre for Ecology Hydrology; Natural Environment Research Council: Bangor, UK, 2008. [Google Scholar]
- Harmens, H.; Norris, D.A.; Koerber, G.R.; Buse, A.; Steinnes, E.; Rühling, Å. Temporal trends in the concentration of arsenic, chromium, copper, iron, nickel, vanadium and zinc in mosses across Europe between 1990 and 2000. Atmos. Environ. 2007, 41, 6673–6687. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, O.; Sánchez de la Campa, A.M.; Amato, F.; Moreno, T.; Silva, L.F.; de la Rosa, J.D. Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Sci. Total. Environ. 2019, 652, 434–446. [Google Scholar] [CrossRef]
- Imperato, M.; Adamo, P.; Naimo, D.; Arienzo, M.; Stanzione, D.; Violante, P. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ. Pollut. 2003, 124, 247–256. [Google Scholar] [CrossRef]
- Di Vaio, P.; Magli, E.; Barbato, F.; Caliendo, G.; Cocozziello, B.; Corvino, A.; De Marco, A.; Fiorino, F.; Frecentese, F.; Onorati, G.; et al. Chemical Composition of PM10 at Urban Sites in Naples (Italy). Atmosphere 2016, 7, 163. [Google Scholar] [CrossRef] [Green Version]
- Rapporto Ambientale del Piano Regionale di Gestione dei Rifiuti Urbani—CUP 894, Assessorato all’ecologia tutela dell’ambiente, programmazione e gestione dei rifiuti, tutela delle ACQUE Area Generale di Coordinamento 21 Programmazione e Gestione Rifiuti. 2011. Available online: http://www.regione.campania.it/assets/documents/piano-regionale-di-gestione-dei-rifiuti.pdf (accessed on 19 March 2020).
- Takaoka, M.; Yamamoto, Y.; Tanaka, T.; Takeda, N.; Oshita, K.; Uruga, T. Directspeciation of lead, zinc and antimony in fly ash from waste treatmentfacilities by XAFS spectrometry. Phys. Scr. 2005, 115, 943–945. [Google Scholar] [CrossRef]
- Sánchez-Rodasa, D.; Alsioufia, L.; Sánchez de la Campa, A.M.; González-Castanedo, Y. Antimony speciation as geochemical tracer for anthropogenic emissions of atmospheric particulate matter. J. Hazard. Mater. 2017, 324, 213–220. [Google Scholar] [CrossRef]
- Barca, D.; Comite, V.; Belfiore, C.M.; Bonazza, A.; La Russa, M.F.; Ruffolo, S.A.; Crisci, G.M.; Pezzino, A.; Sabbioni, C. Impact of air pollution in deterioration of carbonate building materials in Italian urban environments. Appl. Geochem. 2014, 48, 122–131. [Google Scholar] [CrossRef]
- Agarwal, A.; Mangal, A.; Satsangi, A.; Lakhani, A.; Maharaj Kumari, K. Characterization, sources and health risk analysis of PM2.5 bound metals during foggy and non-foggy days in sub-urban atmosphere of Agra. Atmos. Res. 2017, 197, 121–131. [Google Scholar] [CrossRef]
- Liu, Y.; Xing, J.; Wang, S.; Fu, X.; Zheng, H. Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China. Environ. Pollut. 2018, 239, 544–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Complex of San Domenico Maggiore (SD Series) | |||
---|---|---|---|
Sample ID | Sampling Location | Sampling Heights | Exposition to Washout |
SD1 | Facade of the San Domenico church, main portal. Sampling on one of the left pillars (looking towards the portal), in a slightly curved area and on a vertical and external surface. | 2.00 m | WELL |
SD2 | Facade of the San Domenico church, main portal. Sampling on one of the right pillars (looking towards the portal), on a vertical and internal surface. | 2.30 m | WELL |
SD3 | Facade of the San Domenico church, main portal. Sampling on one of the right pillars (looking towards the portal), on an external corner. | 1.60 m | PART |
SD4 | Facade of the San Domenico church, main portal. Sampling on one of the right pillar bases (looking towards the portal), on a horizontal surface. | 0.40 m | NOT |
Cloister of San Marcellino e Festo (SM-P, SM-A, SM-S Series) | |||
Sample ID | Sampling Location | Sampling Heights | |
SM-P1 | Monumental cloister, well. Sampling on a vertical surface, under the top edge. | 1.00 m | NOT |
SM-A1 | Monumental cloister, structure with arches and pillars. Sampling on a vertical surface, right column (looking towards the structure). | 1.20 m | PART |
SM-A2 | Monumental cloister, structure with arches and pillars. Sampling on a convex surface, right side (looking towards the artefact), on a decorative element. | 1.60 m | PART |
SM-A3 | Monumental cloister, structure with arches and pillars. Sampling on a vertical surface, on the base of the right column. | 0.20 m | WELL |
SM-S1 | Monumental cloister, female bust sculpture. Sampling on the veil, top of the head, on the back-side. | 1.50 m | PART |
SM-S2 | Monumental cloister, female bust sculpture. Sampling on the veil, on the head, on the front-side. | 1.50 m | WELL |
SM-S3 | Monumental cloister, female bust sculpture. Sampling on a vertical portion of the bust, back-side. | 1.50 m | PART |
Complex of San Domenico Maggiore (SD series) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sample ID | Grain Size μm | Texture | Fabric | Mineralogical Phases in the Substrate | Mineralogical phases in the black crust | ||||
Cal | Gp | Qz | Whw | Wed | |||||
SD2 | 450–100 | Ho | Mosaic | Cal | +++ | ++ | − | + | − |
SD3 | 450–100 | Ho | Mosaic | Cal | +++ | ++ | + | ++ | − |
Cloister of San Marcellino e Festo (SM-P, SM-A, SM-S series) | |||||||||
Sample ID | Grain Size μm | Texture | Fabric | Mineralogical phases in the substrate | Mineralogical phases in the black crust | ||||
Cal | Gp | Qz | Whw | Wed | |||||
SM-P1 | 550–100 | Ho | Mosaic | Cal | ++++ | +++ | − | ++ | + |
SM-S1 | 690–100 | He | Mosaic | Cal | ++++ | +++ | − | ++ | + |
SM-A1 | 470–100 | He | Mosaic | Cal | ++++ | ++ | + | + | + |
Complex of San Domenico Maggiore | Cloister of San Marcellino e Festo | |
---|---|---|
Major Elements | Sample SD2 Average Analysis No. 8 | Sample SM-P1 Average Analysis No. 8 |
Na2O | <0.1 | 1.99 |
MgO | <0.1 | 1.19 |
Al2O3 | 6.70 | 8.82 |
SiO2 | 7.82 | 13.60 |
P2O5 | 0.99 | <0.1 |
SO3 | 40.90 | 38.60 |
K2O | 3.49 | 2.50 |
CaO | 35.50 | 28.40 |
TiO2 | <0.1 | 0.57 |
Fe2O3 | 5.59 | 4.36 |
BC-SD2 | BC-SD3 | US-SD | BC-SMS1 | US-SMS1 | BC-SMA1 | US-SMA1 | BC-SMP1 | US-SMP1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Element | Amount (ppm) | Std Dev | Amount (ppm) | Std Dev | Amount (ppm) | Std Dev | Amount (ppm) | Std Dev | Amount (ppm) | Std Dev | Amount (ppm) | Std Dev | Amount (ppm) | Std Dev | Amount (ppm) | Std Dev | Amount (ppm) | Std Dev |
As | 48.46 | 2.10 | 36.52 | 2.17 | 51.63 | 12.23 | 5.59 | 0.60 | 1.72 | 0.51 | 7.89 | 1.36 | 2.33 | - | 9.09 | 1.46 | 2.70 | 0.73 |
Ba | 938 | 91.18 | 1106 | 73.74 | 1104 | 232 | 139 | 32.44 | 6.93 | 1.68 | 288 | 26.09 | 9.15 | 0.30 | 190 | 67.82 | 16.27 | 7.71 |
Cd | 1.19 | 0.07 | 0.86 | 0.07 | 0.54 | 0.10 | 0.59 | 0.07 | 0.77 | 0.16 | 0.58 | 0.17 | 0.44 | - | 1.44 | 0.15 | 0.63 | 0.22 |
Cr | 22.75 | 1.14 | 17.80 | 0.69 | 26.94 | 6.24 | 12.00 | 1.97 | 5.22 | 0.71 | 20.89 | 0.91 | 15.31 | - | 8.71 | 1.17 | 2.89 | 0.61 |
Cu | 224 | 24.61 | 60.08 | 4.02 | 18.18 | 3.69 | 93.54 | 21.10 | 4.44 | 2.69 | 26.17 | 6.23 | 1.23 | 0.28 | 45.06 | 8.40 | 52.32 | 5.97 |
Ni | 10.31 | 0.61 | 8.02 | 0.77 | 7.68 | 1.45 | 11.54 | 2.73 | 1.06 | 0.29 | 3.56 | 0.65 | 0.68 | 0.20 | 6.06 | 1.18 | 10.44 | 0.90 |
Pb | 3525 | 262 | 3134 | 292 | 82.09 | 23.49 | 85.55 | 7.87 | 17.37 | 8.04 | 109 | 6.67 | 37.02 | 5.20 | 122 | 11.69 | 147 | 6.36 |
Sb | 25.59 | 1.75 | 12.71 | 1.21 | 6.73 | 1.15 | 5.84 | 1.07 | 0.19 | 0.01 | 1.65 | 0.41 | 0.11 | 0.04 | 2.01 | 0.94 | 0.48 | 0.24 |
Ti | 1377 | 75.12 | 1023 | 63.80 | 1842 | 281 | 417 | 62.09 | 12.38 | 2.96 | 110 | 35.41 | 20.96 | 12.52 | 492 | 134 | 53.15 | 26.08 |
V | 37.29 | 2.13 | 31.75 | 4.16 | 37.11 | 4.95 | 16.67 | 1.68 | 0.96 | 0.16 | 10.65 | 0.96 | 0.78 | 0.27 | 18.23 | 3.81 | 5.66 | 3.18 |
Zn | 1580 | 197 | 589 | 52.97 | 32.00 | 2.07 | 321 | 26.73 | 19.25 | 7.05 | 169 | 53.64 | 26.62 | 1.74 | 481 | 62.21 | 904 | 24.13 |
Complex of San Domenico Maggiore | Cloister of San Marcellino e Festo | ||||
---|---|---|---|---|---|
Chemical Elements | Sample SD2 | Sample SD3 | Sample SM-S1 | Sample SM-A1 | Sample SM-P1 |
As | 0.9 | 0.7 | 3.3 | 4.6 | 5.2 |
Ba | 0.8 | 1 | 20.1 | 41.6 | 38.4 |
Cd | 2.2 | 1.6 | 0.8 | 0.8 | 5.5 |
Co | 2 | 0.9 | 12.4 | 3.9 | 11.4 |
Cr | 0.8 | 0.7 | 2.3 | 4 | 1.2 |
Cu | 12.3 | 3.3 | 21.1 | 5.9 | 9.5 |
Ni | 1.3 | 1 | 10.8 | 3.4 | 6.4 |
Pb | 42.9 | 38.2 | 4.9 | 6.3 | 5.6 |
Sb | 3.8 | 1.9 | 30.7 | 8.7 | 10.6 |
Ti | 0.7 | 0.6 | 33.6 | 8.9 | 22.5 |
V | 1 | 0.9 | 17.4 | 11.1 | 9.6 |
Zn | 49.4 | 18.4 | 16.6 | 8.8 | 16.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comite, V.; Ricca, M.; Ruffolo, S.A.; Graziano, S.F.; Rovella, N.; Rispoli, C.; Gallo, C.; Randazzo, L.; Barca, D.; Cappelletti, P.; et al. Multidisciplinary Approach for Evaluating the Geochemical Degradation of Building Stone Related to Pollution Sources in the Historical Center of Naples (Italy). Appl. Sci. 2020, 10, 4241. https://doi.org/10.3390/app10124241
Comite V, Ricca M, Ruffolo SA, Graziano SF, Rovella N, Rispoli C, Gallo C, Randazzo L, Barca D, Cappelletti P, et al. Multidisciplinary Approach for Evaluating the Geochemical Degradation of Building Stone Related to Pollution Sources in the Historical Center of Naples (Italy). Applied Sciences. 2020; 10(12):4241. https://doi.org/10.3390/app10124241
Chicago/Turabian StyleComite, Valeria, Michela Ricca, Silvestro Antonio Ruffolo, Sossio Fabio Graziano, Natalia Rovella, Concetta Rispoli, Chiara Gallo, Luciana Randazzo, Donatella Barca, Piergiulio Cappelletti, and et al. 2020. "Multidisciplinary Approach for Evaluating the Geochemical Degradation of Building Stone Related to Pollution Sources in the Historical Center of Naples (Italy)" Applied Sciences 10, no. 12: 4241. https://doi.org/10.3390/app10124241
APA StyleComite, V., Ricca, M., Ruffolo, S. A., Graziano, S. F., Rovella, N., Rispoli, C., Gallo, C., Randazzo, L., Barca, D., Cappelletti, P., & La Russa, M. F. (2020). Multidisciplinary Approach for Evaluating the Geochemical Degradation of Building Stone Related to Pollution Sources in the Historical Center of Naples (Italy). Applied Sciences, 10(12), 4241. https://doi.org/10.3390/app10124241