Biomechanical Evaluation of Initial Stability of a Root Analogue Implant Design with Drilling Protocol: A 3D Finite Element Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Three-Dimensional Model Design
2.2. Material Properties, Loading Conditions, and Constraints
2.3. Boundary Conditions and Loading
2.4. Contact Conditions
2.5. Analysis
3. Results
3.1. Stress Distribution on Surrounding Bones
3.2. Micro-Displacement of RAIs
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lindh, T.; Gunne, J.; Tillberg, A.; Molin, M. A meta-analysis of implants in partial edentulism. Clin. Oral Implant. Res. 1998, 9, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Moraschini, V.; Poubel, L.D.C.; Ferreira, V.F.; Barboza, E.D.S. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: A systematic review. Int. J. Oral Maxillofac. Surg. 2015, 44, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Manicone, P.; Passarelli, P.; Bigagnoli, S.; Pastorino, R.; Manni, A.; Pasquantonio, G.; D’Addona, A.J.E.R.M.P.S. Clinical and radiographic assessment of implant-supported rehabilitation of partial and complete edentulism: A 2 to 8 years clinical follow-up. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 4045–4052. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, Z.; Chen, X.; Zhang, X. Influence of custom-made implant designs on the biomechanical performance for the case of immediate post-extraction placement in the maxillary esthetic zone: A finite element analysis. Comput. Methods Biomech. Biomed. Eng. 2017, 20, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Strub, J.R.; Jurdzik, B.A.; Tuna, T. Prognosis of immediately loaded implants and their restorations: A systematic literature review. J. Oral Rehabil. 2012, 39, 704–717. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, J.-G.; Han, D.; Kim, H.-J. Morphometric analysis of the anterior region of the maxillary bone for immediate implant placement using micro-CT. Clin. Anat. 2011, 24, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Figliuzzi, M.; Mangano, C.; Mangano, C. A novel root analogue dental implant using CT scan and CAD/CAM: Selective laser melting technology. Int. J. Oral Maxillofac. Surg. 2012, 41, 858–862. [Google Scholar] [CrossRef] [PubMed]
- Pirker, W.; Kocher, A. Immediate, non-submerged, root-analogue zirconia implant in single tooth replacement. Int. J. Oral Maxillofac. Surg. 2008, 37, 293–295. [Google Scholar] [CrossRef]
- Pirker, W.; Kocher, A. Immediate, non-submerged, root-analogue zirconia implants placed into single-rooted extraction sockets: 2-year follow-up of a clinical study. Int. J. Oral Maxillofac. Surg. 2009, 38, 1127–1132. [Google Scholar] [CrossRef]
- Pirker, W.; Wiedemann, D.; Lidauer, A.; Kocher, A. Immediate, single stage, truly anatomic zirconia implant in lower molar replacement: A case report with 2.5 years follow-up. Int. J. Oral Maxillofac. Surg. 2011, 40, 212–216. [Google Scholar] [CrossRef]
- Mangano, C.; De Franco, M.; Caprioglio, A.; Macchi, A.; Piattelli, A.; Mangano, C. Immediate, non-submerged, root-analogue direct laser metal sintering (DLMS) implants: A 1-year prospective study on 15 patients. Lasers Med. Sci. 2013, 29, 1321–1328. [Google Scholar] [CrossRef]
- Lundgren, D.; Rylander, H.; Anderssong, M.; Johansson, C.; Albrektsson, T. Healing-in of root analogue titanium implants placed in extraction sockets. An Experimental Study in the Beagle Dog. Clin. Oral Implant. Res. 1992, 3, 136–144. [Google Scholar]
- Kohal, R.; Klaus, G.; Strub, J.J.D.Z.Z. Clinical investigation of a new dental immediate implant system-the Relmplant-system. Deutsche Zahnarztliche Zeitschrift 2002, 57, 495–497. [Google Scholar]
- Mangano, C.; Cirotti, B.; Sammons, R.L.; Mangano, C. Custom-made, root-analogue direct laser metal forming implant: A case report. Lasers Med. Sci. 2012, 27, 1241–1245. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Sun, X.; Huang, J.-K.; Hou, G.; Rechowicz, K.; McKenzie, F.D. Designing Natural-Tooth-Shaped Dental Implants based on Soft-Kill Option Optimization. Comput. Des. Appl. 2013, 10, 59–72. [Google Scholar] [CrossRef]
- Steigenga, J.; Al-Shammari, K.; Misch, C.; Nociti, F.H.; Wang, H.-L. Effects of Implant Thread Geometry on Percentage of Osseointegration and Resistance to Reverse Torque in the Tibia of Rabbits. J. Periodontol. 2004, 75, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Moin, D.A.; Hassan, B.; Parsa, A.; Mercelis, P.; Wismeijer, D. Accuracy of preemptively constructed, C one B eam CT-, and CAD/CAM technology-based, individual R oot A nalogue I mplant technique: An in vitro pilot investigation. Clin. Oral Implant. Res. 2014, 25, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Moin, D.A.; Hassan, B.; Mercelis, P.; Wismeijer, D. Designing a novel dental root analogue implant using cone beam computed tomography and CAD/CAM technology. Clin. Oral Implant. Res. 2011, 24, 25–27. [Google Scholar] [CrossRef]
- Moin, D.A.; Hassan, B.; Wismeijer, D. A Patient Specific Biomechanical Analysis of Custom Root Analogue Implant Designs on Alveolar Bone Stress: A Finite Element Study. Int. J. Dent. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Evans, Z.P.; Renne, W.; Bacro, T.R.; Mennito, A.; Ludlow, M.E.; Lecholop, M.K. Anatomic Customization of Root-Analog Dental Implants With Cone-Beam CT and CAD/CAM Fabrication: A Cadaver-Based Pilot Evaluation. J. Oral Implant. 2018, 44, 15–26. [Google Scholar] [CrossRef]
- Van Staden, R.C.; Guan, H.; Loo, Y.C. Application of the finite element method in dental implant research. Comput. Methods Biomech. Biomed. Eng. 2006, 9, 257–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gattinger, J.; Bullemer, C.N.; Harrysson, O. Patient specific root-analogue dental implants—additive manufacturing and finite element analysis. Curr. Dir. Biomed. Eng. 2016, 2, 101–104. [Google Scholar] [CrossRef]
- Picanco, P.R.; Valarelli, F.P.; Cancado, R.H.; Freitas, K.; Picanço, G.V. Comparison of the changes of alveolar bone thickness in maxillary incisor area in extraction and non-extraction cases: Computerized tomography evaluation. Dent. Press J. Orthod. 2013, 18, 91–98. [Google Scholar] [CrossRef] [PubMed]
- García-Braz, S.H.; Prados-Privado, M.; Zanatta, L.C.S.; Calvo-Guirado, J.L.; Prados-Frutos, J.C.; Gehrke, S.A. A Finite Element Analysis to Compare Stress Distribution on Extra-Short Implants with Two Different Internal Connections. J. Clin. Med. 2019, 8, 1103. [Google Scholar] [CrossRef] [Green Version]
- Yamanishi, Y.; Yamaguchi, S.; Imazato, S.; Nakano, T.; Yatani, H. Influences of implant neck design and implant–abutment joint type on peri-implant bone stress and abutment micromovement: Three-dimensional finite element analysis. Dent. Mater. 2012, 28, 1126–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, J.; Bishop, N.E.; Götzen, N.; Sprecher, C.; Honl, M.; Morlock, M. Artificial composite bone as a model of human trabecular bone: The implant–bone interface. J. Biomech. 2007, 40, 1158–1164. [Google Scholar] [CrossRef]
- Huang, H.-L.; Hsu, J.-T.; Fuh, L.-J.; Tu, M.-G.; Ko, C.-C.; Shen, Y.-W. Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: A non-linear finite element study. J. Dent. 2008, 36, 409–417. [Google Scholar] [CrossRef]
- Żmudzki, J.; Panek, K.; Chladek, G.; Adamiak, M.; Lipinski, P. Finite Element Analysis of Adolescent Mandible Fracture Occurring during Accidents. Arch. Metall. Mater. 2018, 2020. [Google Scholar] [CrossRef]
- Winter, W.; Klein, D.; Karl, M. Effect of Model Parameters on Finite Element Analysis of Micromotions in Implant Dentistry. J. Oral Implant. 2013, 39, 23–29. [Google Scholar] [CrossRef]
- Carvalho, M.A.; Sotto-Maior, B.S.; Cury, A.D.B.; Henriques, G.E.P. Effect of platform connection and abutment material on stress distribution in single anterior implant-supported restorations: A nonlinear 3-dimensional finite element analysis. J. Prosthet. Dent. 2014, 112, 1096–1102. [Google Scholar] [CrossRef]
- Ghadiri, M.; Shafiei, N.; Salekdeh, S.H.; Mottaghi, P.; Mirzaie, T. Investigation of the dental implant geometry effect on stress distribution at dental implant–bone interface. J. Braz. Soc. Mech. Sci. Eng. 2015, 38, 335–343. [Google Scholar] [CrossRef]
- Murakami, N.; Wakabayashi, N. Finite element contact analysis as a critical technique in dental biomechanics: A review. J. Prosthodont. Res. 2014, 58, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jansen, J.A.; Walboomers, X.F.; Beucken, J.J.V.D. Mechanical aspects of dental implants and osseointegration: A narrative review. J. Mech. Behav. Biomed. Mater. 2020, 103, 103574. [Google Scholar] [CrossRef] [PubMed]
- Żmudzki, J.; Malara, P.; Chladek, G. Full contoured tooth-implant supported 3-pointic all-ceramic denture during occlusal load transfer in lateral region Arch. Metall. Mater. 2016, 61, 843–846. [Google Scholar] [CrossRef]
Material | Young’s Modulus (GPa) | Poisson’s Ratio |
---|---|---|
Cortical bone | 13.7 | 0.3 |
Cancellous bone | 1.37 | 0.3 |
Titanium grade 5 (Ti6Al4V) | 113.8 | 0.342 |
Esthetic ceramic | 69 | 0.3 |
NM | WG | LT | AA | |
---|---|---|---|---|
Nodes | 683,939 | 813,164 | 2,329,462 | 948,758 |
Elements | 443,189 | 527,604 | 1,517,408 | 614,022 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.-S.; Lee, W.-C.; Kim, P.-G.; Park, J.-M.; Koo, K.-T.; Ryu, J.-J.; Shin, S.-W. Biomechanical Evaluation of Initial Stability of a Root Analogue Implant Design with Drilling Protocol: A 3D Finite Element Analysis. Appl. Sci. 2020, 10, 4104. https://doi.org/10.3390/app10124104
Lee K-S, Lee W-C, Kim P-G, Park J-M, Koo K-T, Ryu J-J, Shin S-W. Biomechanical Evaluation of Initial Stability of a Root Analogue Implant Design with Drilling Protocol: A 3D Finite Element Analysis. Applied Sciences. 2020; 10(12):4104. https://doi.org/10.3390/app10124104
Chicago/Turabian StyleLee, Ki-Sun, Won-Chang Lee, Pan-Gyu Kim, Ji-Man Park, Ki-Tae Koo, Jae-Jun Ryu, and Sang-Wan Shin. 2020. "Biomechanical Evaluation of Initial Stability of a Root Analogue Implant Design with Drilling Protocol: A 3D Finite Element Analysis" Applied Sciences 10, no. 12: 4104. https://doi.org/10.3390/app10124104
APA StyleLee, K.-S., Lee, W.-C., Kim, P.-G., Park, J.-M., Koo, K.-T., Ryu, J.-J., & Shin, S.-W. (2020). Biomechanical Evaluation of Initial Stability of a Root Analogue Implant Design with Drilling Protocol: A 3D Finite Element Analysis. Applied Sciences, 10(12), 4104. https://doi.org/10.3390/app10124104