True Equalization of Polarization-Dependent Loss in Presence of Fast Rotation of SOP †
Abstract
:1. Introduction
2. The Effect of PDL with the Presence of RSOP
3. The True Equalization of PDL in the Presence of Fast RSOP
3.1. Obtaining Decoupling Model When PDL and RSOP Coexist
3.2. The Power Equalization and RSOP Tracking
- (1)
- (2)
- Based on the RSOP compensation matrix in Equation (10), we decide the state vector asIt reflects the three independent parameters of RSOP.
- (3)
- The choice of measurement vector is based on the location of the ideal constellation points after compensation. As for the Golden-coded QPSK signal, the ideal constellation points are located at three rings with the radii r1, r2, and r3, as shown in Figure 5b. Thus, we design as:
3.3. BER Recovery by Polarization-Time Code
4. Simulation and Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Savory, S. Digital filters for coherent optical receivers. Opt. Express 2008, 16, 804–817. [Google Scholar] [CrossRef] [PubMed]
- Awwad, E.; Tran, P.; Charlet, G. A low-complexity implementation of full-rate polarization-time codes for PDL mitigation in single-carrier optical transmissions using the constant modulus algorithm. In Proceedings of the European Conference and Exhibition on Optical Communications, Dusseldorf, Germany, 18–22 September 2016. [Google Scholar]
- Muga, N.; Pinto, A. Digital PDL compensation in 3D Stokes space. J. Lightwave Technol. 2013, 31, 2122–2130. [Google Scholar] [CrossRef]
- Muga, N.; Pinto, A. Adaptive 3-D stokes space-based polarization demultiplexing algorithm. J. Lightwave Technol. 2014, 32, 3290–3298. [Google Scholar] [CrossRef]
- Muga, N.; Pinto, A. Extended Kalman filter vs. geometrical approach for Stokes space-based polarization demultiplexing. J. Lightwave Technol. 2015, 33, 4826–4833. [Google Scholar] [CrossRef]
- Yu, Z.; Yi, X.; Zhang, J.; Deng, M.; Zhang, H.; Qiu, K. Modified constant modulus algorithm with polarization demultiplexing in Stokes space in optical coherent receiver. J. Lightwave Technol. 2013, 31, 3203–3209. [Google Scholar] [CrossRef]
- Yu, Z.; Yi, X.; Zhang, J.; Zhao, D.; Qiu, K. Experimental demonstration of polarization-dependent loss monitoring and compensation in Stokes space for coherent optical PDM-OFDM. J. Lightwave Technol. 2014, 32, 3926–3931. [Google Scholar]
- Ishimura, S.; Nishimura, K. Decision-directed adaptive PDL-compensation algorithm for stokes vector receivers. In Proceedings of the European Conference and Exhibition on Optical Communications, Rome, Italy, 23–27 September 2018. [Google Scholar]
- Szafraniec, B.; Nebendahl, B. Polarization demultiplexing in Stokes space. Opt. Express 2010, 18, 17928–17939. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, S.; Rekaya, G.; Jaouen, Y. Space-time codes for optical fiber communication with polarization multiplexing. In Proceedings of the IEEE International Conference on Communications, Cape Town, South Africa, 23–27 May 2010. [Google Scholar]
- Mumtaz, S.; Li, J.; Koenig, S.; Jaouen, Y.; Schmogrow, R.; Othman, G.; Leuthold, J. Experimental demonstration of PDL mitigation using polarization-time coding in PDM-OFDM systems. In Proceedings of the Signal Processing in Photonic Communications, Toronto, ON, Canada, 12–15 June 2011. [Google Scholar]
- Mumtaz, S.; Othman, G.; Jaouen, Y.; Li, J.; Koenig, S.; Leuthold, J.; Schmogrow, R. Alamouti code against PDL in polarization multiplexed systems. In Proceedings of the Signal Processing in Photonic Communications, Toronto, ON, Canada, 12–15 June 2011. [Google Scholar]
- Mumtaz, S.; Othman, G.; Jaouen, Y. PDL mitigation in PolMux OFDM systems using Golden and Silver polarization-time codes. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 21–25 March 2010. [Google Scholar]
- Lightning Strikes and 100G Transport. Available online: https://cdn.extranet.coriant.com/resources/White-Papers/Coriant_WP_Lightning_Strikes_and_100G_Transport.pdf (accessed on 11 March 2016).
- Lightning Affects Coherent Optical Transmission in Aerial Fiber. Available online: http://www.lightwaveonline.com/articles/2016/03/lightning-affects-coherent-optical-transmission-in-aerial-fiber.html (accessed on 2 March 2016).
- Are Ultrafast SOP Events Affecting Your Coherent Receivers? Available online: https://newridgetech.com/are-ultrafast-sop-events-affecting-your-receivers. (accessed on 16 February 2016).
- Charlton, D.; Clarke, S.; Doucet, D.; O’Sullivan, M.; Peterson, D.L.; Wilson, D.; Wellbrock, G.; Bélanger, M. Field measurements of SOP transients in OPGW, with time and location correlation to lightning strikes. Opt. Express 2017, 25, 9689–9696. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Namiki, S. Carrier recovery for M-QAM signals based on a block estimation process with Kalman filter. Opt. Express 2014, 22, 15376–15387. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Yang, Y.; Zhang, Q.; Cao, H.; Yao, Y. Adaptive and joint frequency offset and carrier phase estimation based on Kalman filter for 16QAM signals. Opt. Commun. 2019, 430, 336–341. [Google Scholar]
- Pakala, L.; Schmauss, B. Extended Kalman filtering for joint mitigation of phase and amplitude noise in coherent QAM systems. Opt. Express 2016, 24, 6391–6401. [Google Scholar] [CrossRef] [PubMed]
- Zibar, D.; Piels, M.; Jones, R.; Schäeffer, C. Machine learning techniques in optical communication. J. Lightwave Technol. 2016, 34, 1442–1452. [Google Scholar] [CrossRef] [Green Version]
- Szafraniec, B.; Marshall, T.S.; Nebendahl, B. Performance monitoring and measurement techniques for coherent optical systems. J. Lightwave Technol. 2013, 31, 648–663. [Google Scholar] [CrossRef]
- Cui, N.; Zhang, X.; Zheng, Z.; Xu, H.; Zhang, W.; Tang, X.; Xi, L.; Fang, Y.; Li, L. Two-parameter-SOP and three-parameter-RSOP fiber channels: Problem and solution for polarization demultiplexing using Stokes space. Opt. Express 2018, 26, 21170–21183. [Google Scholar] [CrossRef] [PubMed]
- Cui, N.; Zheng, Z.; Zhang, X.; Yi, W.; Guo, R.; Zhang, W.; Tang, X.; Xu, H.; Xi, L. Joint blind equalization of CD and RSOP using a time-frequency domain Kalman filter structure in Stokes vector direct detection system. Opt. Express 2019, 27, 11557–11570. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Cui, N.; Xu, H.; Zhang, X.; Zhang, W.; Xi, L.; Fang, Y.; Li, L. Window-split structured frequency domain Kalman equalization scheme for large PMD and ultra-fast RSOP in an optical coherent PDM-QPSK system. Opt. Express 2018, 26, 7211–7226. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Zheng, Z.; Cui, N.; Zhang, X.; Qiu, L.; Zhang, N.; Xi, L.; Zhang, W.; Tang, X. Joint equalization scheme of ultra-fast RSOP and large PMD compensation in presence of residual chromatic dispersion. Opt. Express 2019, 27, 21896–21913. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, Y.; Zhong, K.; Liu, J.; Wu, X.; Yao, Y. Joint polarization tracking and channel equalization based on radius-directed linear Kalman filter. Opt. Commun. 2018, 407, 142–147. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, G.; Zhong, K.; Zhou, X.; Yao, Y.; Alan, P.T.; Lu, C. Fast polarization-state tracking scheme based on radius-directed linear Kalman filter. Opt. Express 2015, 23, 19673–19680. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hu, S.; Tang, B.; Zhang, J.; Qiu, K. Adaptive unscented Kalman filter for polarization stake tracking. In Proceedings of the Asia Communications and Photonics Conference, Chengdu, China, 2–5 November 2020. [Google Scholar]
- Agrell, E.; Secondini, M. Information-theoretic tools for optical communications engineers. In Proceedings of the IEEE Photonics Conference, Reston, VA, USA, 30 September–4 October 2018. [Google Scholar]
- Sleiffer, V.; Jung, Y.; Leoni, P.; Kuschnerov, M.; Wheeler, N.; Baddela, N.; Uden, R.; Okonkwo, C.; Hayes, J.; Wooler, J.; et al. 30.7 Tb/s (96x320 Gb/s) DP-32QAM transmission over 19-cell Photonic Band Gap Fiber. In Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 17–21 March 2013. [Google Scholar]
- Gnauck, A.H.; Winter, P.J.; Chandrasekhar, S.; Liu, X.; Zhu, B.; Peckham, D.V. Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM. J. Lightwave Technol. 2011, 29, 373–377. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, N.; Zhang, X.; Zhang, W.; Tang, X.; Xi, L. True Equalization of Polarization-Dependent Loss in Presence of Fast Rotation of SOP. Appl. Sci. 2020, 10, 3844. https://doi.org/10.3390/app10113844
Cui N, Zhang X, Zhang W, Tang X, Xi L. True Equalization of Polarization-Dependent Loss in Presence of Fast Rotation of SOP. Applied Sciences. 2020; 10(11):3844. https://doi.org/10.3390/app10113844
Chicago/Turabian StyleCui, Nan, Xiaoguang Zhang, Wenbo Zhang, Xianfeng Tang, and Lixia Xi. 2020. "True Equalization of Polarization-Dependent Loss in Presence of Fast Rotation of SOP" Applied Sciences 10, no. 11: 3844. https://doi.org/10.3390/app10113844
APA StyleCui, N., Zhang, X., Zhang, W., Tang, X., & Xi, L. (2020). True Equalization of Polarization-Dependent Loss in Presence of Fast Rotation of SOP. Applied Sciences, 10(11), 3844. https://doi.org/10.3390/app10113844