FTIR-ATR Spectroscopy Combined with Multivariate Regression Modeling as a Preliminary Approach for Carotenoids Determination in Cucurbita spp.
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Determination of Physicochemical Properties
2.3. Determination of Total Carotenoid Content (TCC) by UV-Vis Spectrophotometry
2.4. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR)
2.5. Partial Least Squares Regression (PLS)
3. Results and Discussion
3.1. Total Carotenoid Content and Physicochemical Quality Indexes of Cucurbita spp. Samples
3.2. Spectral Analysis
3.3. PLS Regression: Carotenoid Content Prediction by IR Spectral Data
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sample Description | Number of Samples | Total Carotenoid Content (Dry Basis) (µg/g) (X ± σ [min.–max.]) | pH (X ± σ [min.–max.]) | Titratable Acidity (g malic acideq/100 g) (X ± σ [min.–max.]) | Total Soluble Solids (Brix) (X ± σ [min.–max.]) | |
---|---|---|---|---|---|---|
Cultivar/ Geographical Origin | Species | |||||
cv. Abanico 75 | C. moschata | 9 | 517.7 ± 173.3 BC [292.1–749.0] | 6.070 ± 0.199 CD [5.830–6.500] | 0.295 ± 0.064 A [0.194–0.403] | 10.561 ± 1.521 A [8.100–13.400] |
Meta | C. moschata | 8 | 1065.4 ± 616.1 AB [614.2–2081.3] | 6.349 ± 0.368 AB [5.990–7.030] | 0.136 ± 0.017 BCD [0.127–0.200] | 5.475 ± 1.705 D [3.700–8.000] |
cv. Mandarino | C. maxima | 8 | 388.2 ± 127.0 BC [263.5–597.7] | 6.026 ± 0.138 D [5.800–6.270] | 0.107 ± 0.027 CDE [0.066–0.142] | 5.094 ± 0.812 DE [3.900–6.400] |
cv. Boloverde | C. moschata | 6 | 399.1 ± 192.3 BC [205.7–729.6] | 6.259 ± 0.264 BCD [5.910–6.650] | 0.149 ± 0.032 BC [0.115–0.214] | 7.775 ± 0.990 C [6.500–9.500] |
cv. Dorado | C. moschata | 8 | 207.0 ± 55.0 C [155.8–291.8] | 6.301 ± 0.184 ABC [6.050–6.630] | 0.178 ± 0.064 B [0.111–0.280] | 9.313 ± 1.063 B [7.400–11.300] |
Valle del Cauca | C. moschata | 8 | 744.3 ± 394.2 ABC [247.1–1299.7] | 5.740 ± 0.166 E [5.560–6.020] | 0.101 ± 0.035 DE [0.062–0.135] | 5.688 ± 1.148 D [3.700–7.200] |
Huila | C. moschata | 8 | 754.2 ± 266.2 ABC [453.600–1096.9] | 6.424 ± 0.291 AB [5.900–6.700] | 0.065 ± 0.003 E [0.057–0.059] | 4.100 ± 0.825 E [2.700–5.200] |
Tolima | C. moschata | 8 | 1203.1 ± 880.3 A [229.8–2137.3] | 6.554 ± 0.225 A [6.250–6.960] | 0.067 ± 0.001 E [0.063–0.068] | 5.206 ± 0.713 DE [4.200–6.500] |
Global | 63 | 659.9 ± 345.0 [155.8–2137.3] | 6.215 ± 0.259 [5.560–7.030] | 0.295 ± 0.064 [0.057–0.403] | 6.652 ± 2.298 [3.700–13.400] |
References
- Sharma, S.; Rao, T.V.R. Nutritional quality characteristics of pumpkin fruit as revealed by its biochemical analysis. Int. Food Res. J. 2013, 20, 2309–2316. [Google Scholar]
- Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Amaya, D.B. Status of carotenoid analytical methods and in vitro assays for the assessment of food quality and health effects. Curr. Opin. Food Sci. 2015, 1, 56–63. [Google Scholar] [CrossRef]
- Saini, R.K.; Nile, S.H.; Park, S.W. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res. Int. 2015, 76, 735–750. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Amaya, D.B. Quantitative analysis, in vitro assessment of bioavailability and antioxidant activity of food carotenoids—A review. J. Food Compos. Anal. 2010, 23, 726–740. [Google Scholar] [CrossRef]
- Karoui, R.; Downey, G.; Blecker, C. Mid-infrared spectroscopy coupled with chemometrics: A tool for the analysis of intact food systems and the exploration of their molecular structure—Quality relationships—A review. Chem. Rev. 2010, 110, 6144–6168. [Google Scholar] [CrossRef]
- Bassbasi, M.; De Luca, M.; Ioele, G.; Oussama, A.; Ragno, G. Prediction of the geographical origin of butters by partial least square discriminant analysis (PLS-DA) applied to infrared spectroscopy (FTIR) data. J. Food Compos. Anal. 2014, 33, 210–215. [Google Scholar] [CrossRef]
- Anjos, O.; Campos, M.G.; Ruiz, P.C.; Antunes, P. Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chem. 2015, 169, 218–223. [Google Scholar] [CrossRef]
- Mellado-Mojica, E.; Seeram, N.P.; López, M.G. Comparative analysis of maple syrups and natural sweeteners: Carbohydrates composition and classification (differentiation) by HPAEC-PAD and FTIR spectroscopy-chemometrics. J. Food Compos. Anal. 2016, 52, 1–8. [Google Scholar] [CrossRef]
- Biancolillo, A.; Marini, F.; D’Archivio, A.A. Geographical discrimination of red garlic (Allium sativum L.) using fast and non-invasive Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) spectroscopy combined with chemometrics. J. Food Compos. Anal. 2020, 86, 103351. [Google Scholar] [CrossRef]
- De Nardo, T.; Shiroma-Kian, C.; Halim, Y.; Francis, D.; Rodriguez-Saona, L.E. Rapid and simultaneous determination of lycopene and β-carotene contents in tomato juice by infrared spectroscopy. J. Agric. Food Chem. 2009, 57, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Baena García, D.; Ortiz Grisales, S.; Valdés Restrepo, M.P.; Estrada Salazar, E.I.; Vallejo Cabrera, F.A. Unapal–abanico 75: Nuevo cultivar de zapallo con alto contenido de materia seca en el fruto para fines agroindustriales. Acta Agronómica 2010, 59, 285–292. [Google Scholar]
- Vallejo, F.A.; Baena, D.; Ortiz, S.; Estrada, E.I.; Tobar, D.E. Unapal-Dorado, nuevo cultivar de zapallo con alto contenido de materia seca para consumo en fresco. Acta Agronómica 2010, 59, 127–134. [Google Scholar]
- Suarez, E.A.; Paz Peña, S.P.; Echeverria Restrepo, D.C.; Ruiz, K.; Mosquera Sanchez, S.A. Effect of the production system in the physiological maturity of Cucurbita moschata var. Green Bolo. Biotecnología Sector Agropecuario Agroindustrial 2016, 14, 29–37. [Google Scholar] [CrossRef][Green Version]
- AOAC. Official Methods of Analysis, 19th ed.; AOAC: Arlington, VA, USA, 2012. [Google Scholar]
- Shenk, J.S.; Westerhaus, M.O. Calibration the ISI way. In Near Infrared Spectroscroscopy: The Future Waves, Proceedings of the 7th International Conference on Near Infrared Spectroscopy, Montreal, Canada, 6–11 August 1996; Davies, A.M.C., Williams, P., Eds.; NIR Publications: Chichester, UK, 1996; pp. 198–202. [Google Scholar]
- Ortiz, S. Estudios Genéticos en Caracteres Relacionados con el Rendimiento y Calidad del Fruto de Zapallo Cucurbita Moschata Duch para Fines Agroindustriales. Ph.D. Thesis, Universidad Nacional de Colombia Sede Palmira, Palmira, Colombia, 2009. [Google Scholar]
- Carvalho, L.M.J.D.; Smiderle, L.D.A.S.M.; Carvalho, J.L.V.D.; Cardoso, F.D.S.N.; Koblitz, M.G.B. Assessment of carotenoids in pumpkins after different home cooking conditions. Food Sci. Technol. 2014, 34, 365–370. [Google Scholar] [CrossRef]
- Itle, R.A.; Kabelka, E.A. Correlation between L* a* b* color space values and carotenoid content in pumpkins and squash (Cucurbita spp.). HortScience 2009, 44, 633–637. [Google Scholar] [CrossRef]
- Kreck, M.; Kuerbel, P.; Ludwig, M.; Paschold, P.J.; Dietrich, H. Identification and quantification of carotenoids in pumpkin cultivars (Cucurbita maxima L.) and their juices by liquid chromatography with ultraviolet-diode array detection. J. Appl. Bot. Food Qual. 2006, 80, 93–99. [Google Scholar]
- Berezin, K.V.; Nechaev, V.V. Calculation of the IR Spectrum and the Molecular Structure of β-Carotene. J. Appl. Spectrosc. 2005, 72, 164–171. [Google Scholar] [CrossRef]
- Schlücker, S.; Szeghalmi, A.; Schmitt, M.; Popp, J.; Kiefer, W. Density functional and vibrational spectroscopic analysis of β-carotene. J. Raman Spectrosc. 2003, 34, 413–419. [Google Scholar] [CrossRef]
- Prabhu, A.; Abdul, K.S.; Rekha, P.-D. Isolation and Purification of Lutein from Indian Spinach Basella alba. Res. J. Pharm. Technol. 2015, 8, 1379–1382. [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A. The profile of secondary metabolites and other bioactive compounds in Cucurbita pepo L. and Cucurbita moschata pumpkin cultivars. Molecules 2019, 24, 2945. [Google Scholar] [CrossRef] [PubMed]
- Kulczyński, B.; Gramza-Michałowska, A. The Profile of Carotenoids and Other Bioactive Molecules in Various Pumpkin Fruits (Cucurbita maxima Duchesne) Cultivars. Molecules 2019, 24, 3212. [Google Scholar] [CrossRef] [PubMed]
- Torkova, A.; Lisitskaya, K.; Filimonov, I.; Glazunova, O.; Kachalova, G.; Golubev, V.N.; Fedorova, T.V. Physicochemical and Functional Properties of Cucurbita Maxima Pumpkin Pectin and Commercial Citrus and Apple Pectins: A Comparative Evaluation. PLoS ONE 2018, 13, e0204261. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Diaz, D.E.; De Nardo, T.; Santos, A.; de Jesus, S.; Francis, D.; Rodriguez-Saona, L.E. Profiling of nutritionally important carotenoids from genetically-diverse tomatoes by infrared spectroscopy. Food Chem. 2010, 120, 282–289. [Google Scholar] [CrossRef]
- Walton, H.F.; Reyes, J. Análisis Químico e Instrumental Moderno, 1st ed.; Reverté: Barcelona, Spain, 1983; p. 229. [Google Scholar]
- Williams, P. Implementation of Near Infrared Technology. In Near-Infrared Technology in the Agricultural and Food Industries, 2nd ed.; Williams, P.C., Norris, K.H., Eds.; American Association of Cereal Chemists Inc.: St. Paul, MN, USA, 2001; pp. 145–169. [Google Scholar]
- Martínez-Valdivieso, D.; Font, R.; Blanco-Díaz, M.T.; Moreno-Rojas, J.M.; Gómez, P.; Alonso-Moraga, Á.; Del Río-Celestino, M. Application of near-infrared reflectance spectroscopy for predicting carotenoid content in summer squash fruit. Comput. Electron. Agric. 2014, 108, 71–79. [Google Scholar] [CrossRef]
- Baranska, M.; Schütze, W.; Schulz, H. Determination of lycopene and β-carotene content in tomato fruits and related products: Comparison of FT-Raman, ATR-IR, and NIR spectroscopy. Anal. Chem. 2006, 78, 8456–8461. [Google Scholar] [CrossRef]
Sample Treatment | Spectral Range (cm−1) | LV | TCC Range of Variation (µg/g) | Calibration | Prediction | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
min | max | S.D. | R2CAL | RMSEC | bias | R2PRED | RMSEP | bias | RPD | |||
Fresh pulp | 1300–3000 | 4 | 21.0 | 230.1 | 57.1 | 0.72 | 23.26 | 0.05 | 0.66 | 25.66 | 0.81 | 1.72 |
Freeze-dried pulp | 920–3000 | 8 | 182.8 | 2137.3 | 522.6 | 0.95 | 109.80 | −5.73 | 0.93 | 193.10 | −18.95 | 3.78 |
Technique | Matrix | Range of Variation (µg/g) (max–min) | Analyte | R2 | RMSE | Source |
---|---|---|---|---|---|---|
MIR | Tomato juice | 92.5–15.22 | Lycopene | 0.97 | 0.4 | [11] |
MIR | Tomato juice | 1.8–6.6 | β-carotene | 0.91 | 0.054 | [11] |
NIR | Pumpkin | 67.1–451.2 | Total carotenoids | 0.95 | 31.7 | [30] |
NIR | Pumpkin | 50.3–434.3 | Lutein | 0.96 | 26.8 | [30] |
NIR | Pumpkin | 0–24 | β-carotene | 0.81 | 2.27 | [30] |
NIR | Tomato | 26.2–6290 | Lycopene | 0.85 | 91.19 | [31] |
NIR | Tomato | 2.3–28.3 | β-carotene | 0.80 | 0.41 | [31] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quijano-Ortega, N.; Fuenmayor, C.A.; Zuluaga-Dominguez, C.; Diaz-Moreno, C.; Ortiz-Grisales, S.; García-Mahecha, M.; Grassi, S. FTIR-ATR Spectroscopy Combined with Multivariate Regression Modeling as a Preliminary Approach for Carotenoids Determination in Cucurbita spp. Appl. Sci. 2020, 10, 3722. https://doi.org/10.3390/app10113722
Quijano-Ortega N, Fuenmayor CA, Zuluaga-Dominguez C, Diaz-Moreno C, Ortiz-Grisales S, García-Mahecha M, Grassi S. FTIR-ATR Spectroscopy Combined with Multivariate Regression Modeling as a Preliminary Approach for Carotenoids Determination in Cucurbita spp. Applied Sciences. 2020; 10(11):3722. https://doi.org/10.3390/app10113722
Chicago/Turabian StyleQuijano-Ortega, Natalia, Carlos Alberto Fuenmayor, Carlos Zuluaga-Dominguez, Consuelo Diaz-Moreno, Sanín Ortiz-Grisales, Maribel García-Mahecha, and Silvia Grassi. 2020. "FTIR-ATR Spectroscopy Combined with Multivariate Regression Modeling as a Preliminary Approach for Carotenoids Determination in Cucurbita spp." Applied Sciences 10, no. 11: 3722. https://doi.org/10.3390/app10113722
APA StyleQuijano-Ortega, N., Fuenmayor, C. A., Zuluaga-Dominguez, C., Diaz-Moreno, C., Ortiz-Grisales, S., García-Mahecha, M., & Grassi, S. (2020). FTIR-ATR Spectroscopy Combined with Multivariate Regression Modeling as a Preliminary Approach for Carotenoids Determination in Cucurbita spp. Applied Sciences, 10(11), 3722. https://doi.org/10.3390/app10113722