Assessment of the RACPC Performance under Diffuse Radiation for Use in BIPV System
Abstract
Featured Application
Abstract
1. Introduction
2. Novel Rotationally Asymmetrical Compound Parabolic Concentrator (RACPC)
3. Simulation Performance Analysis
4. Experimental Performance Analysis
4.1. Fabrication of the RACPC-PV Cell
4.2. Experimental Setup and Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aelenei, D.; Lopes, R.A.; Aelenei, L.; Gonçalves, H. Investigating the potential for energy flexibility in an office building with a vertical BIPV and a PV roof system. Renew. Energy 2019, 137, 189–197. [Google Scholar] [CrossRef]
- Saretta, E.; Caputo, P.; Frontini, F. A review study about energy renovation of building facades with BIPV in urban environment. Sustain. Cities Soc. 2019, 44, 343–355. [Google Scholar] [CrossRef]
- Kumar, N.M.; Sudhakar, K.; Samykano, M. Performance comparison of BAPV and BIPV systems with c-Si, CIS and CdTe photovoltaic technologies under tropical weather conditions. Case Stud. Therm. Eng. 2019, 13, 100374. [Google Scholar] [CrossRef]
- Heinstein, P.; Ballif, C.; Perret-Aebi, L.-E. Building Integrated Photovoltaics (BIPV): Review, Potentials, Barriers and Myths. Green 2013, 3, 125–156. [Google Scholar] [CrossRef]
- Chen, X.; Huang, J.; Zhang, W.; Yang, H. Exploring the optimization potential of thermal and power performance for a low-energy high-rise building. Energy Procedia 2019, 158, 2469–2474. [Google Scholar] [CrossRef]
- Aguacil, S.; Lufkin, S.; Rey, E. Active surfaces selection method for building-integrated photovoltaics (BIPV) in renovation projects based on self-consumption and self-sufficiency. Energy Build. 2019, 193, 15–28. [Google Scholar] [CrossRef]
- Shukla, A.K.; Sudhakar, K.; Baredar, P. Recent advancement in BIPV product technologies: A review. Energy Build. 2017, 140, 188–195. [Google Scholar] [CrossRef]
- Polysolar. Guide to BIPV; Polysolar: Cambridge, UK, 2015. [Google Scholar]
- Sharma, P.; Kolhe, M.; Sharma, A. Economic performance assessment of building integrated photovoltaic system with battery energy storage under grid constraints. Renew. Energy 2020, 145, 1901–1909. [Google Scholar] [CrossRef]
- Solarfassade. Building-Integrated PV (BIPV). Available online: http://www.solarfassade.info/en/fundamentals/bipv/index.php (accessed on 24 October 2014).
- The Green Age. Introduction to Solar PV. Available online: https://www.thegreenage.co.uk/tech/types-of-solar-panel/ (accessed on 29 March 2019).
- Onyx Solar. Projects & References; Onyx Solar: Avila, Spain, 2017. [Google Scholar]
- Zero Carbon Hub. Zero Carbon Homes and Nearly Zero Energy Buildings: UK Building Regulations and EU Directives; Zero Carbon Hub: London, UK, 2014. [Google Scholar]
- IEA-PVPS. Trends 2018 in Photovoltaic Applications; IEA-PVPS: Paris, France, 2018. [Google Scholar]
- Baig, H.; Fernández, E.F.; Mallick, T.K. Influence of spectrum and latitude on the annual optical performance of a dielectric based BICPV system. Sol. Energy 2016, 124, 268–277. [Google Scholar] [CrossRef]
- Meng, X.; Sellami, N.; Knox, A.R.; Montecucco, A.; Siviter, J.; Mullen, P.; Ashraf, A.; Samarelli, A.; Llin, L.F.; Paul, D.J.; et al. A novel absorptive/reflective solar concentrator for heat and electricity generation: An optical and thermal analysis. Energy Convers. Manag. 2016, 114, 142–153. [Google Scholar] [CrossRef]
- Abu-Bakar, S.H.; Muhammad-Sukki, F.; Freier, D.; Ramirez-Iniguez, R.; Mallick, T.K.; Munir, A.B.; Mohd Yasin, S.H.; Abubakar Mas’ud, A.; Abu-Bakar, S.S.; Bani, N.A.; et al. Potential of implementing the low concentration photovoltaic systems in the United Kingdom. Int. J. Electr. Comput. Eng. 2017, 7, 1398–1405. [Google Scholar] [CrossRef][Green Version]
- Abu-Bakar, S.H.; Muhammad-Sukki, F.; Freier, D.; Ramirez-Iniguez, R.; Mallick, T.K.; Munir, A.B.; Mohd Yasin, S.H.; Abubakar Mas’ud, A.; Md Yunus, N. Performance analysis of a novel rotationally asymmetrical compound parabolic concentrator. Appl. Energy 2015, 154, 221–231. [Google Scholar] [CrossRef]
- Mammo, E.D.; Sellami, N.; Mallick, T.K. Performance analysis of a reflective 3D crossed compound parabolic concentrating photovoltaic system for building façade integration. Prog. Photovoltaics Res. Appl. 2013, 21, 1095–1103. [Google Scholar] [CrossRef]
- Freier, D.; Muhammad-Sukki, F.; Abu-Bakar, S.; Ramirez-Iniguez, R.; Munir, A.B.; Mohd Yasin, S.H.; Bani, N.A.; Abubakar Mas’ud, A.; Ardila-Rey, J.A.; Karim, M.E. Annual prediction output of an RADTIRC-PV module. Energies 2018, 11, 544. [Google Scholar] [CrossRef]
- Cruz-Silva, O.H.; Jaramillo, O.A.; Borunda, M. Full analytical formulation for Dielectric Totally Internally Reflecting Concentrators designs and solar applications. Renew. Energy 2017, 101, 804–815. [Google Scholar] [CrossRef]
- Aste, N.; Buzzetti, M.; Del Pero, C.; Fusco, R.; Leonforte, F.; Testa, D. Triggering a large scale luminescent solar concentrators market: The smart window project. J. Clean. Prod. 2019, 219, 35–45. [Google Scholar] [CrossRef]
- Gajic, M.; Lisi, F.; Kirkwood, N.; Smith, T.A.; Mulvaney, P.; Rosengarten, G. Circular luminescent solar concentrators. Sol. Energy 2017, 150, 30–37. [Google Scholar] [CrossRef]
- Sarmah, N.; Richards, B.S.; Mallick, T.K. Design, development and indoor performance analysis of a low concentrating dielectric photovoltaic module. Sol. Energy 2014, 103, 390–401. [Google Scholar] [CrossRef]
- Mallick, T.; Eames, P. Design and fabrication of low concentrating second generation PRIDE concentrator. Sol. Energy Mater. Sol. Cells 2007, 91, 597–608. [Google Scholar] [CrossRef]
- Dayanand, A.; Aykapadathu, M.; Sellami, N.; Nazarinia, M. Experimental investigation of a novel absorptive/feflective solar concentrator: A thermal analysis. Energies 2020, 13, 1281. [Google Scholar] [CrossRef]
- Abu-Bakar, S.H.; Muhammad-Sukki, F.; Freier, D.; Ramirez-Iniguez, R.; Mallick, T.K.; Munir, A.B.; Mohd Yasin, S.H.; Abubakar Mas’ud, A.; Bani, N.A. Performance analysis of a solar window incorporating a novel rotationally asymmetrical concentrator. Energy 2016, 99, 181–192. [Google Scholar] [CrossRef]
- Marín-Sáez, J.; Chemisana, D.; Moreno, Á.; Riverola, A.; Atencia, J.; Collados, M.-V. Energy simulation of a holographic PVT concentrating system for building integration applications. Energies 2016, 9, 577. [Google Scholar] [CrossRef]
- Timmermans, G.H.; Douma, R.F.; Lin, J.; Debije, M.G. Dual thermal-/tlectrical-responsive luminescent ‘smart’ window. Appl. Sci. 2020, 10, 1421. [Google Scholar] [CrossRef]
- Aghaei, M.; Nitti, M.; Ekins-Daukes, N.J.; Reinders, A.H.M.E. Simulation of a novel configuration for luminescent solar concentrator photovoltaic devices using bifacial silicon solar cells. Appl. Sci. 2020, 10, 871. [Google Scholar] [CrossRef]
- IRENA. Renewable Energy Technologies: Cost Analysis Series-Solar Photovoltaics; IRENA: Abu Dhabi, UAE, 2012. [Google Scholar]
- Abu-Bakar, S.H.; Muhammad-Sukki, F.; Ramirez-Iniguez, R.; Mallick, T.K.; Munir, A.B.; Mohd Yasin, S.H.; Abdul Rahim, R. Rotationally asymmetrical compound parabolic concentrator for concentrating photovoltaic applications. Appl. Energy 2014, 136, 363–372. [Google Scholar] [CrossRef]
- Abu-Bakar, S.H. Novel Rotationally Asymmetrical Solar Concentrator for the Building Integrated Photovoltaic System. Ph.D Thesis, Glasgow Caledonian University, Glasgow, UK, 2016. [Google Scholar]
- Freier, D. Software Simulation and Experimental Characterisation of a MSDTIR Concentrator for BIPV Systems under Direct and Diffuse Solar Radiation. Bachelor’s Thesis, University of Applied Sciences, Berlin, Germany, 2014. [Google Scholar]
- Hämmerle, M.; Gál, T.; Unger, J.; Matzarakis, A. Introducing a script for calculating the sky view factor used for urban climate investigations. Acta Climatol. Chorol. 2011, 44–45, 83–92. [Google Scholar]
- Davis Instruments. Wireless Vantage Pro2 & Vantage Pro2 Plus Station. Available online: https://www.weathershop.co.uk/shop/davis-vantage-pro2-plus-fars-weather-station (accessed on 29 March 2019).
- Quaschning, V. Understanding Renewable Energy Systems, 1st ed.; Earthscan: Bath, UK, 2005; ISBN 1-84407-128-6. [Google Scholar]
Authors | Type of Concentrator | Configuration | Findings |
---|---|---|---|
Sarmah et al. [24] | Asymmetric compound parabolic concentrator | Building façade | Achieved an electrical conversion efficiency of 12.1%. In terms of cost per unit power output, the CPV module could achieve a 20% reduction when compared with a non-concentrating counterpart. |
Mallick and Eames [25] | Asymmetric compound parabolic concentrator | Building façade | Achieved an electrical conversion efficiency of 10.2% when characterised outdoors. Potential cost reduction of 40% per m2 under mass production when compared to similar PV module. |
Dayanand et al. [26] | Cross-compound parabolic concentrator | Roof mounted | Achieved an overall electrical conversion efficiency of 15%. |
Abu-Bakar et al. [27] | Rotationally asymmetrical dielectric totally internally reflecting concentrators | Window | Generated 0.749 W at normal incidence, 4.8 × higher than the non- concentrating PV. |
Marín-Sáez et al. [28] | Holographic | Integrated as building blinds | Achieved optical efficiency of 43%. Generate 9.1% of electricity requirement of the building. |
Timmermans et al. [29] | Luminescent solar concentrator | Window | Achieved an overall electrical conversion efficiency of 3%. |
Aghaei et al. [30] | Luminescent solar concentrator | n/a | Obtained an electrical conversion efficiency of 16.9% under standard test conditions (STC). |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foster, S.; Muhammad-Sukki, F.; Ramirez-Iniguez, R.; Raine, D.F.; Deciga-Gusi, J.; Abu-Bakar, S.H.; Bani, N.A.; Munir, A.B.; Mas’ud, A.A.; Ardila-Rey, J.A. Assessment of the RACPC Performance under Diffuse Radiation for Use in BIPV System. Appl. Sci. 2020, 10, 3552. https://doi.org/10.3390/app10103552
Foster S, Muhammad-Sukki F, Ramirez-Iniguez R, Raine DF, Deciga-Gusi J, Abu-Bakar SH, Bani NA, Munir AB, Mas’ud AA, Ardila-Rey JA. Assessment of the RACPC Performance under Diffuse Radiation for Use in BIPV System. Applied Sciences. 2020; 10(10):3552. https://doi.org/10.3390/app10103552
Chicago/Turabian StyleFoster, Stephania, Firdaus Muhammad-Sukki, Roberto Ramirez-Iniguez, Daria Freier Raine, Jose Deciga-Gusi, Siti Hawa Abu-Bakar, Nurul Aini Bani, Abu Bakar Munir, Abdullahi Abubakar Mas’ud, and Jorge Alfredo Ardila-Rey. 2020. "Assessment of the RACPC Performance under Diffuse Radiation for Use in BIPV System" Applied Sciences 10, no. 10: 3552. https://doi.org/10.3390/app10103552
APA StyleFoster, S., Muhammad-Sukki, F., Ramirez-Iniguez, R., Raine, D. F., Deciga-Gusi, J., Abu-Bakar, S. H., Bani, N. A., Munir, A. B., Mas’ud, A. A., & Ardila-Rey, J. A. (2020). Assessment of the RACPC Performance under Diffuse Radiation for Use in BIPV System. Applied Sciences, 10(10), 3552. https://doi.org/10.3390/app10103552