EMG-Assisted Algorithm to Account for Shoulder Muscles Co-Contraction in Overhead Manual Handling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Protocol
2.2. Musculoskeletal Model
- Static optimization on the uncalibrated model (SO),
- Static optimization on the calibrated model (SOcal),
- EMG-assisted method on the calibrated model in CEINMS (EMGA).
- Inverse dynamics joint moments tracking error,
- The sum of experimental excitations tracking error for all experimental excitations,
- The sum of squared excitations for the 17 lines of actions.
2.3. Analysis
3. Results
3.1. Net Moment Tracking
3.2. EMG and Muscle Forces
3.3. Joint Reaction Forces
4. Discussion
4.1. Net Moment Tracking and Calibration
4.2. EMG and Muscle Forces
4.3. Joint Reaction Forces
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Muscles | RMSd | R |
---|---|---|
Anterior Deltoid | 0.11 ± 0.05 | 0.74 ± 0.17 |
Median Deltoid | 0.08 ± 0.03 | 0.84 ± 0.10 |
Posterior Deltoid | 0.05 ± 0.03 | 0.77 ± 0.19 |
Pectoralis Major | 0.02 ± 0.03 | 0.58 ± 0.20 |
Latissimus Dorsi | 0.02 ± 0.03 | 0.63 ± 0.25 |
Infraspinatus | 0.05 ± 0.05 | 0.64 ± 0.38 |
Supraspinatus | 0.05 ± 0.03 | 0.57 ± 0.41 |
Subscapularis | 0.03 ± 0.03 | 0.30 ± 0.39 |
Biceps | 0.07 ± 0.03 | 0.71 ± 0.22 |
Triceps | 0.04 ± 0.04 | 0.82 ± 0.11 |
References
- Lippitt, S.; Matsen, F. Mechanisms of glenohumeral joint stability. Clin. Orthop. Relat. Res. 1993, 291, 20–28. [Google Scholar] [CrossRef]
- Veeger, H.E.J.; van der Helm, F.C.T. Shoulder function: The perfect compromise between mobility and stability. J. Biomech. 2007, 40, 2119–2129. [Google Scholar] [CrossRef] [PubMed]
- Ackland, D.C.; Pandy, M.G. Lines of action and stabilizing potential of the shoulder musculature. J. Anat. 2009, 215, 184–197. [Google Scholar] [CrossRef] [PubMed]
- Pribicevic, M. The Epidemiology of Shoulder Pain: A Narrative Review of the Literature. In Pain in Perspective; InTech: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Ambrósio, J.; Quental, C.; Pilarczyk, B.; Folgado, J.; Monteiro, J. Multibody biomechanical models of the upper limb. Procedia IUTAM 2011, 2, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Engelhardt, C.; Camine, V.M.; Ingram, D.; Müllhaupt, P.; Farron, A.; Pioletti, D.; Terrier, A. Comparison of an EMG-based and a stress-based method to predict shoulder muscle forces. Comput. Methods Biomech. Biomed. Eng. 2015, 18, 1272–1279. [Google Scholar] [CrossRef] [Green Version]
- Klemt, C.; Prinold, J.A.; Morgans, S.; Smith, S.H.L.; Nolte, D.; Reilly, P.; Bull, A.M.J. Analysis of shoulder compressive and shear forces during functional activities of daily life. Clin. Biomech. 2018, 54, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Quental, C.; Folgado, J.; Ambrósio, J. A window moving inverse dynamics optimization for biomechanics of motion. Multibody Syst. Dyn. 2016, 38, 157–171. [Google Scholar] [CrossRef]
- Praagman, M.; Chadwick, E.K.J.; van der Helm, F.C.T.; Veeger, H.E.J. The relationship between two different mechanical cost functions and muscle oxygen consumption. J. Biomech. 2006, 39, 758–765. [Google Scholar] [CrossRef]
- Buchanan, T.S.; Shreeve, D.A. An Evaluation of Optimization Techniques for the Prediction of Muscle Activation Patterns During Isometric Tasks. J. Biomech. Eng. 1996, 118, 565–574. [Google Scholar] [CrossRef]
- Erdemir, A.; McLean, S.; Herzog, W.; van den Bogert, A.J. Model-based estimation of muscle forces exerted during movements. Clin. Biomech. 2007, 22, 131–154. [Google Scholar] [CrossRef] [Green Version]
- Pizzolato, C.; Lloyd, D.G.; Sartori, M.; Ceseracciu, E.; Besier, T.F.; Fregly, B.J.; Reggiani, M. CEINMS: A toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks. J. Biomech. 2015, 48, 3929–3936. [Google Scholar] [CrossRef] [PubMed]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerus, P.; Sartori, M.; Besier, T.F.; Fregly, B.J.; Delp, S.L.; Banks, S.A.; Pandy, M.G.; D’Lima, D.D.; Lloyd, D.G. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J. Biomech. 2013, 46, 2778–2786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kian, A.; Pizzolato, C.; Halaki, M.; Ginn, K.; Lloyd, D.; Reed, D.; Ackland, D. Static optimization underestimates antagonist muscle activity at the glenohumeral joint: A musculoskeletal modeling study. J. Biomech. 2019, 109348. [Google Scholar] [CrossRef] [PubMed]
- Sartori, M.; Reggiani, M.; Farina, D.; Lloyd, D.G. EMG-Driven Forward-Dynamic Estimation of Muscle Force and Joint Moment about Multiple Degrees of Freedom in the Human Lower Extremity. PLoS ONE 2012, 7, e52618. [Google Scholar] [CrossRef] [Green Version]
- Farina, D.; Negro, F. Accessing the Neural Drive to Muscle and Translation to Neurorehabilitation Technologies. IEEE Rev. Biomed. Eng. 2012, 5, 3–14. [Google Scholar] [CrossRef]
- Nikooyan, A.A.; Veeger, H.E.J.; Westerhoff, P.; Bolsterlee, B.; Graichen, F.; Bergmann, G.; van der Helm, F.C.T. An EMG-driven musculoskeletal model of the shoulder. Hum. Mov. Sci. 2012, 31, 429–447. [Google Scholar] [CrossRef]
- Wu, W.; Lee, P.V.S.; Bryant, A.L.; Galea, M.; Ackland, D.C. Subject-specific musculoskeletal modeling in the evaluation of shoulder muscle and joint function. J. Biomech. 2016, 49, 3626–3634. [Google Scholar] [CrossRef]
- Dickerson, C.R.; Chaffin, D.B.; Hughes, R.E. A mathematical musculoskeletal shoulder model for proactive ergonomic analysis. Comput. Methods Biomech. Biomed. Eng. 2007, 10, 389–400. [Google Scholar] [CrossRef]
- Bouffard, J.; Martinez, R.; Plamondon, A.; Côté, J.N.; Begon, M. Sex differences in glenohumeral muscle activation and coactivation during a box lifting task. Ergonomics 2019, 1–12. [Google Scholar] [CrossRef]
- Martinez, R.; Bouffard, J.; Michaud, B.; Plamondon, A.; Côté, J.N.; Begon, M. Sex differences in upper limb 3D joint contributions during a lifting task. Ergonomics 2019, 62, 682–693. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.K.; Andersen, L.; Jørgensen, K. The muscular load on the lower back and shoulders due to lifting at different lifting heights and frequencies. Appl. Ergon. 1998, 29, 445–450. [Google Scholar] [CrossRef]
- Jackson, M.; Michaud, B.; Tétreault, P.; Begon, M. Improvements in measuring shoulder joint kinematics. J. Biomech. 2012, 45, 2180–2183. [Google Scholar] [CrossRef] [PubMed]
- Dal Maso, F.; Marion, P.; Begon, M. Optimal Combinations of Isometric Normalization Tests for the Production of Maximum Voluntary Activation of the Shoulder Muscles. Arch. Phys. Med. Rehabil. 2016, 97, 1542–1551.e2. [Google Scholar] [CrossRef] [PubMed]
- Blache, Y.; Begon, M.; Michaud, B.; Desmoulins, L.; Allard, P.; Dal Maso, F. Muscle function in glenohumeral joint stability during lifting task. PLoS ONE 2017, 12, e0189406. [Google Scholar] [CrossRef] [Green Version]
- Martinez, R. Pyomeca/Pyosim: Interface between OpenSim and the Pyomeca Library. Available online: https://github.com/pyomeca/pyosim (accessed on 4 December 2018).
- Martinez, R.; Michaud, B.; Begon, M. Pyomeca: Biomechanics toolbox for python. J. Open-Source Softw. 2020. (submitted for publication). [Google Scholar]
- Inman, V.T.; Saunders, J.B.; Abbott, L.C. Observations of the Function of the Shoulder Joint. Clin. Orthop. Relat. Res. 1996, 330, 3–12. [Google Scholar] [CrossRef]
- Hicks, J.L.; Uchida, T.K.; Seth, A.; Rajagopal, A.; Delp, S.L. Is My Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement. J. Biomech. Eng. 2015, 137, 020905. [Google Scholar] [CrossRef]
- Lloyd, D.G.; Besier, T.F. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 2003, 36, 765–776. [Google Scholar] [CrossRef]
- Sartori, M.; Farina, D.; Lloyd, D.G. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization. J. Biomech. 2014, 47, 3613–3621. [Google Scholar] [CrossRef]
- Kvam, P.H.; Vidakovic, B. Nonparametric Statistics with Applications to Science and Engineering; Wiley Series in Probability and Statistics; Wiley-Interscience: Hoboken, NJ, USA, 2007; ISBN 978-0-470-08147-1. [Google Scholar]
- Breakthroughs in Statistics; Kotz, S.; Johnson, N.L. (Eds.) Springer Series in Statistics; Springer: New York, NY, USA, 1992; ISBN 978-0-387-97566-5. [Google Scholar]
- Jennrich, R.I. An Asymptotic χ2 Test for the Equality of Two Correlation Matrices. J. Am. Stat. Assoc. 1970, 65, 904–912. [Google Scholar] [CrossRef]
- Kapandji, A.I.; Tubiana, R. Physiologie Articulaire: Schémas Commentés de Mécanique Humaine: 805 Dessins Originaux de l’auteur; Maloine: Paris, France, 2005; ISBN 978-2-224-02647-9. [Google Scholar]
- Rudolph, K.S.; Axe, M.J.; Snyder-Mackler, L. Dynamic stability after ACL injury: Who can hop? Knee Surg. Sports Traumatol. Art. 2000, 8, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Winby, C.R.; Lloyd, D.G.; Kirk, T.B. Evaluation of different analytical methods for subject-specific scaling of musculotendon parameters. J. Biomech. 2008, 41, 1682–1688. [Google Scholar] [CrossRef] [PubMed]
- Martinez, R.; Assila, N.; Goubault, E.; Begon, M. Sex differences in upper limb musculoskeletal biomechanics during a lifting task. Appl. Ergon. 2020, 86, 103106. [Google Scholar] [CrossRef]
- Hoang, H.X.; Pizzolato, C.; Diamond, L.E.; Lloyd, D.G. Subject-specific calibration of neuromuscular parameters enables neuromusculoskeletal models to estimate physiologically plausible hip joint contact forces in healthy adults. J. Biomech. 2018, 80, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, D.; Larivière, C.; Loisel, P. Comparative ability of EMG, optimization, and hybrid modelling approaches to predict trunk muscle forces and lumbar spine loading during dynamic sagittal plane lifting. Clin. Biomech. 2001, 16, 359–372. [Google Scholar] [CrossRef]
- Robertson, D.G.E.; Caldwell, G.E.; Hamill, J.; Kamen, G.; Whittlesey, S.N. Research Methods in Biomechanics, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2014; ISBN 978-0-7360-9340-8. [Google Scholar]
- Cholewicki, J.; McGill, S.M.; Norman, R.W. Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: Towards development of a hybrid approach. J. Biomech. 1995, 28, 321–331. [Google Scholar] [CrossRef]
- Palmerud, G.; Forsman, M.; Sporrong, H.; Herberts, P.; Kadefors, R. Intramuscular pressure of the infra- and supraspinatus muscles in relation to hand load and arm posture. Eur. J. Appl. Physiol. 2000, 83, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.; Hentzen, E.; Smallwood, L.; Eastlack, R.; Burns, K.; Fithian, D.; Friden, J.; Lieber, R. Rotator Cuff Muscle Architecture: Implications for Glenohumeral Stability. Clin. Orthop. Relat. Res. 2006, 448, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Wattanaprakornkul, D.; Halaki, M.; Boettcher, C.; Cathers, I.; Ginn, K.A. A comprehensive analysis of muscle recruitment patterns during shoulder flexion: An electromyographic study. Clin. Anat. 2011, 24, 619–626. [Google Scholar] [CrossRef]
- Jeno, S.H.; Varacallo, M. Anatomy, Back, Latissimus Dorsi. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Arslan, Y.Z.; Jinha, A.; Kaya, M.; Herzog, W. Prediction of muscle forces using static optimization for different contractile conditions. J. Mech. Med. Biol. 2012, 13, 1350022. [Google Scholar] [CrossRef]
- Bergmann, G.; Graichen, F.; Bender, A.; Kääb, M.; Rohlmann, A.; Westerhoff, P. In vivo glenohumeral contact forces—Measurements in the first patient 7 months postoperatively. J. Biomech. 2007, 40, 2139–2149. [Google Scholar] [CrossRef] [PubMed]
- Westerhoff, P.; Graichen, F.; Bender, A.; Halder, A.; Beier, A.; Rohlmann, A.; Bergmann, G. In vivo measurement of shoulder joint loads during activities of daily living. J. Biomech. 2009, 42, 1840–1849. [Google Scholar] [CrossRef] [PubMed]
- Blache, Y.; Begon, M. Influence of Shoulder Kinematic Estimate on Joint and Muscle Mechanics Predicted by Musculoskeletal Model. IEEE Trans. Biomed. Eng. 2018, 65, 715–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanagawa, T.; Goodwin, C.J.; Shelburne, K.B.; Giphart, J.E.; Torry, M.R.; Pandy, M.G. Contributions of the Individual Muscles of the Shoulder to Glenohumeral Joint Stability During Abduction. J. Biomech. Eng. 2008, 130. [Google Scholar] [CrossRef]
- Klemt, C.; Nolte, D.; Grigoriadis, G.; Federico, E.D.; Reilly, P.; Bull, A.M.J. The contribution of the glenoid labrum to glenohumeral stability under physiological joint loading using finite element analysis. Comput. Methods Biomech. Biomed. Eng. 2017, 20, 1613–1622. [Google Scholar] [CrossRef]
- Ludewig, P.M.; Reynolds, J.F. The Association of Scapular Kinematics and Glenohumeral Joint Pathologies. J. Orthop. Sports. Phys. Ther. 2009, 39, 90–104. [Google Scholar] [CrossRef] [Green Version]
- Soslowsky, L.J.; Malicky, D.M.; Blasier, R.B. Active and passive factors in inferior glenohuimeral stabilization: A biomechanical model. J. Shoulder Elbow Surg. 1997, 6, 371–379. [Google Scholar] [CrossRef]
- Halder, A.; Kuhl, S.; Zobitz, M.; Larson, D.; An, K. Effects of the Glenoid Labrum and Glenohumeral Abduction on Stability of the Shoulder Joint Through Concavity-Compression: An in Vitro Study. J. Bone Joint Surg. Am. 2001, 83, 1062–1069. [Google Scholar] [CrossRef]
Mass (kg) | GH DOF | RMSd (N.m) | Residual Actuators (N.m) | R |
---|---|---|---|---|
6 | Plane of elevation | 0.61 ± 0.70 | 1.29 ± 4.74 | 0.99 ± 0.03 |
Elevation | 0.81 ± 1.03 | 1.23 ± 2.19 | 0.99 ± 0.02 | |
Axial rotation | 0.74 ± 0.67 | 1.60 ± 4.42 | 0.96 ± 0.06 | |
12 | Plane of elevation | 1.69 ± 7.99 | 1.00 ± 2.70 | 0.98 ± 0.09 |
Elevation | 2.10 ± 10.77 | 1.54 ± 3.86 | 0.99 ± 0.06 | |
Axial rotation | 1.24 ± 4.03 | 1.17 ± 2.26 | 0.97 ± 0.10 |
Muscles | RMSd | R | ||||
---|---|---|---|---|---|---|
SO | SOcal | EMGA | SO | SOcal | EMGA | |
Anterior Deltoid | 0.34 ± 0.11 | 0.27 ± 0.10 | 0.11 ± 0.07 | 0.46 ± 0.31 | 0.53 ± 0.29 | 0.90 ± 0.09 |
Median Deltoid | 0.25 ± 0.13 | 0.21 ± 0.07 | 0.08 ± 0.04 | 0.37 ± 0.42 | 0.22 ± 0.39 | 0.88 ± 0.16 |
Posterior Deltoid | 0.13 ± 0.07 | 0.13 ± 0.09 | 0.08 ± 0.05 | −0.17 ± 0.26 | −0.08 ± 0.30 | 0.31 ± 0.51 |
Pectoralis Major | 0.09 ± 0.09 | 0.10 ± 0.09 | 0.11 ± 0.08 | 0.17 ± 0.37 | 0.11 ± 0.36 | 0.34 ± 0.41 |
Latissimus Dorsi | 0.16 ± 0.16 | 0.11 ± 0.09 | 0.12 ± 0.08 | −0.13 ± 0.37 | −0.19 ± 0.35 | 0.49 ± 0.44 |
Infraspinatus | 0.32 ± 0.15 | 0.25 ± 0.13 | 0.06 ± 0.04 | 0.32 ± 0.30 | 0.28 ± 0.29 | 0.85 ± 0.17 |
Supraspinatus | 0.31 ± 0.15 | 0.28 ± 0.17 | 0.06 ± 0.05 | −0.05 ± 0.31 | −0.13 ± 0.33 | 0.76 ± 0.30 |
Subscapularis | 0.24 ± 0.20 | 0.21 ± 0.20 | 0.06 ± 0.04 | 0.06 ± 0.34 | 0.01 ± 0.37 | 0.56 ± 0.29 |
Biceps | 0.18 ± 0.08 | 0.14 ± 0.06 | 0.05 ± 0.03 | −0.36 ± 0.30 | −0.28 ± 0.33 | 0.76 ± 0.24 |
Triceps | 0.11 ± 0.07 | 0.11 ± 0.07 | 0.07 ± 0.06 | −0.13 ± 0.26 | −0.04 ± 0.33 | 0.30 ± 0.57 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assila, N.; Pizzolato, C.; Martinez, R.; Lloyd, D.G.; Begon, M. EMG-Assisted Algorithm to Account for Shoulder Muscles Co-Contraction in Overhead Manual Handling. Appl. Sci. 2020, 10, 3522. https://doi.org/10.3390/app10103522
Assila N, Pizzolato C, Martinez R, Lloyd DG, Begon M. EMG-Assisted Algorithm to Account for Shoulder Muscles Co-Contraction in Overhead Manual Handling. Applied Sciences. 2020; 10(10):3522. https://doi.org/10.3390/app10103522
Chicago/Turabian StyleAssila, Najoua, Claudio Pizzolato, Romain Martinez, David G. Lloyd, and Mickaël Begon. 2020. "EMG-Assisted Algorithm to Account for Shoulder Muscles Co-Contraction in Overhead Manual Handling" Applied Sciences 10, no. 10: 3522. https://doi.org/10.3390/app10103522
APA StyleAssila, N., Pizzolato, C., Martinez, R., Lloyd, D. G., & Begon, M. (2020). EMG-Assisted Algorithm to Account for Shoulder Muscles Co-Contraction in Overhead Manual Handling. Applied Sciences, 10(10), 3522. https://doi.org/10.3390/app10103522