Performance Evaluation of Active Noise Control for a Real Device Casing
Abstract
1. Introduction
2. Active Noise Control
3. Experimental Verification
3.1. Plant
3.2. Experimental Setup
3.3. Control System
3.4. Experimental Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cheer, J.; Elliott, S.J. Multichannel control systems for the attenuation of interior road noise in vehicles. Mech. Syst. Signal Process. 2015, 60, 753–769. [Google Scholar] [CrossRef]
- Lorente, J.; Ferrer, M.; de Diego, M.; Gonzalez, A. The frequency partitioned block modified filtered-x NLMS with orthogonal correction factors for multichannel Active Noise Control. Digit. Signal Process. 2015, 43, 47–58. [Google Scholar] [CrossRef]
- Lam, B.; Elliott, S.; Cheer, J.; Gan, W.S. Physical limits on the performance of active noise control through open windows. Appl. Acoust. 2018, 137, 9–17. [Google Scholar] [CrossRef]
- Misol, M.; Algermissen, S.; Rose, M.; Monner, H.P. Aircraft Lining Panels with Low-Cost Hardware for Active Noise Reduction. In Proceedings of the 2018 Joint Conference-Acoustics, Ustka, Poland, 11–14 September 2018; pp. 1–6. [Google Scholar]
- Jeong, U.C.; Kim, J.S.; Kim, Y.D.; Oh, J.E. Reduction of radiated exterior noise from the flexible vibrating plate of a rectangular enclosure using multi-channel active control. Appl. Acoust. 2016, 105, 45–54. [Google Scholar] [CrossRef]
- Puri, A.; Modak, S.V.; Gupta, K. Global active control of harmonic noise in a vibro-acoustic cavity using Modal FxLMS algorithm. Appl. Acoust. 2019, 150, 147–161. [Google Scholar] [CrossRef]
- Fuller, C.; Mcloughlin, M.; Hildebrand, S. Active Acoustic Transmission Loss Box. WO Patent No. WO1994009484A1, 1994. [Google Scholar]
- Mazur, K.; Pawelczyk, M. Active control of noise emitted from a device casing. In Proceedings of the 22nd International Congress of Sound and Vibration, Florence, Italy, 12–16 July 2015. [Google Scholar]
- Mazur, K.; Pawelczyk, M. Internal Model Control for a light-weight active noise-reducing casing. Arch. Acoust. 2016, 41, 315–322. [Google Scholar] [CrossRef]
- Mao, Q.; Pietrzko, S.J. Control of sound transmission though double wall partitions using optimally tuned Helmholtz resonators. Acta Acust. United Acust. 2005, 95, 723–731. [Google Scholar]
- Morzyński, L.; Szczepański, G. Double Panel Structure for Active Control of Noise Transmission. Arch. Acoust. 2018, 43, 689–696. [Google Scholar]
- Ho, J.H.; Berkhoff, A. Comparison of various decentralised structural and cavity feedback control strategies for transmitted noise reduction through a double panel structure. J. Sound Vib. 2014, 333, 1857–1873. [Google Scholar] [CrossRef]
- Pietrzko, S.J. Contributions to Noise and Vibration Control Technology; AGH—University of Science and Technology Press: Krakow, Poland, 2009. [Google Scholar]
- Kowal, J.; Kot, A. Active vibration reduction system with energy regeneration. Arch. Control. Sci. 2007, 17, 343–352. [Google Scholar]
- Kowal, J.; Pluta, J.; Konieczny, J.; Kot, A. Energy recovering in active vibration isolation system—Results of experimental research. J. Vib. Control. 2008, 14, 1075–1088. [Google Scholar] [CrossRef]
- Mazur, K.; Wrona, S.; Pawelczyk, M. Active noise control for a washing machine. Appl. Acoust. 2019, 146, 89–95. [Google Scholar] [CrossRef]
- Mazur, K.; Wrona, S.; Pawelczyk, M. Design and implementation of multichannel global active structural acoustic control for a device casing. Mech. Syst. Signal Process. 2018, 98, 877–889. [Google Scholar] [CrossRef]
- Mazur, K.; Pawelczyk, M. Virtual microphone control for a light-weight active noise-reducing casing. In Proceedings of the 23nd International Congress of Sound and Vibration, Athens, Greece, 10–14 July 2016. [Google Scholar]
- Elliott, S.E.; Stothers, I.M.; Nelson, P.A. A Multiple Error LMS Algorithm and Its Application to the Active Control of Sound and Vibration. IEEE Trans. Acoust. Speech Signal Process. 1987, ASSP-35, 1423–1434. [Google Scholar] [CrossRef]
- Snyder, S.D.; Tanaka, N. Active control of vibration using a neural network. IEEE Trans. Neural Netw. 1995, 6, 819–828. [Google Scholar] [CrossRef]
- Cupial, P.; Lacny, L. Neural Network control design considerations for the active damping of a smart beam. J. Theor. Appl. Mech. 2015, 53, 767–774. [Google Scholar] [CrossRef][Green Version]
- Bismor, D.; Czyz, K.; Ogonowski, Z. Review and Comparison of Variable Step-Size LMS Algorithms. Int. J. Acoust. Vib. 2016, 21, 24–39. [Google Scholar] [CrossRef]
- Wrona, S.; Pawelczyk, M. Optimal placement of actuators for Active Structural Acoustic Control of a light-weight device casing. In Proceedings of the 23nd International Congress of Sound and Vibration, Athens, Greece, 10–14 July 2016. [Google Scholar]
- Wyrwał, J.; Zawiski, R.; Pawelczyk, M.; Klamka, J. Modelling of coupled vibro-acoustic interactions in an active casing for the purpose of control. Appl. Math. Model. 2017, 50, 219–236. [Google Scholar] [CrossRef]
- Wrona, S.; Pawelczyk, M. Shaping frequency response of a vibrating plate for passive and active control applications by simultaneous optimization of arrangement of additional masses and ribs. Part I: Modeling. Mech. Syst. Signal Process. 2016, 70–71, 682–698. [Google Scholar] [CrossRef]
- Wiora, J.; Wrona, S.; Pawelczyk, M. Evaluation of measurement value and uncertainty of sound pressure level difference obtained by active device noise reduction. Measurement 2017, 96, 67–75. [Google Scholar] [CrossRef]
- Bismor, D. Extension of LMS stability condition over a wide set of signals. Int. J. Adapt. Control. Signal Process. 2015, 29, 653–670. [Google Scholar] [CrossRef]
P | to | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
128 | 160 | 128 | 256 | 4 | 4 | 0.001 | 3 | 4 |
F | R | L | T | M0 | M1 | M2 | M3 | M4 | |
---|---|---|---|---|---|---|---|---|---|
[dB] | [dB] | [dB] | [dB] | [dB] | [dB] | [dB] | [dB] | [dB] | |
1200 rpm | |||||||||
without active control | 76.3 | 86.8 | 79.7 | 78.2 | 69.0 | 66.0 | 63.4 | 64.3 | 65.9 |
with active control | 69.1 | 77.6 | 74.5 | 68.9 | 60.6 | 62.1 | 60.9 | 60.4 | 60.0 |
difference | −7.2 | −9.2 | −5.2 | −9.3 | −8.4 | −3.9 | −2.5 | −3.9 | −5.9 |
1000 rpm | |||||||||
without active control | 69.7 | 79.5 | 74.9 | 72.7 | 63.7 | 61.4 | 60.2 | 59.9 | 59.3 |
with active control | 66.3 | 76.3 | 68.2 | 64.8 | 57.5 | 57.3 | 58.0 | 57.5 | 54.8 |
difference | −3.4 | −3.2 | −6.7 | −7.9 | −6.2 | −4.1 | −2.2 | −2.4 | −4.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazur, K.; Wrona, S.; Pawelczyk, M. Performance Evaluation of Active Noise Control for a Real Device Casing. Appl. Sci. 2020, 10, 377. https://doi.org/10.3390/app10010377
Mazur K, Wrona S, Pawelczyk M. Performance Evaluation of Active Noise Control for a Real Device Casing. Applied Sciences. 2020; 10(1):377. https://doi.org/10.3390/app10010377
Chicago/Turabian StyleMazur, Krzysztof, Stanislaw Wrona, and Marek Pawelczyk. 2020. "Performance Evaluation of Active Noise Control for a Real Device Casing" Applied Sciences 10, no. 1: 377. https://doi.org/10.3390/app10010377
APA StyleMazur, K., Wrona, S., & Pawelczyk, M. (2020). Performance Evaluation of Active Noise Control for a Real Device Casing. Applied Sciences, 10(1), 377. https://doi.org/10.3390/app10010377