The Fate of MTBE and BTEX in Constructed Wetlands
Abstract
:1. Introduction
2. Fate of Benzene in Constructed Wetlands
3. Fate of MTBE in Constructed Wetlands
4. Effect on MTBE and BTEX Fate by Other Compounds
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stefanakis, A.I.; Seeger, E.; Dorer, C.; Sinke, A.; Thullner, M. Performance of pilot-scale horizontal subsurface flow constructed wetlands treating groundwater contaminated with phenols and petroleum derivatives. Ecol. Eng. 2016, 95, 514–526. [Google Scholar] [CrossRef]
- Langwaldt, J.H.; Puhakka, J.A. On-site biological remediation of contaminated groundwater: A review. Environ. Pollut. 2000, 107, 187–197. [Google Scholar] [CrossRef]
- Levchuk, I.; Bhatnagar, A.; Sillanpää, M. Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water. Sci. Total Environ. 2014, 476–477, 415–433. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Lerner, D.N.; Banwart, S.A.; Thornton, S.F.; Pickup, R.W. Persistence of fermentative process to phenolic toxicity in groundwater. J. Environ. Qual. 2006, 35, 2021–2025. [Google Scholar] [CrossRef] [Green Version]
- Stefanakis, A.I.; Akratos, C.S.; Tsihrintzis, V.A. Vertical Flow Constructed Wetlands: Eco-Engineering Systems for Wastewater and Sludge Treatment, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- USEPA. List of Drinking Water Contaminants and MCLs. 2009. Available online: https://www.epa.gov/ground-water-and-drinking-water/table-regulated-drinking-water-contaminants (accessed on 24 November 2019).
- USEPA. Integrated Risk Information System (IRIS). 2015. Available online: http://www.epa.gov/iris (accessed on 28 November 2019).
- Costa, C.R.; Botta, C.M.R.; Espindola, E.L.G.; Olivi, P. Electrochemical treatment of tannery wastewater using DSA® electrodes. J. Hazard. Mater. 2008, 153, 616–627. [Google Scholar] [CrossRef]
- Herouvim, E.; Akratos, C.S.; Tekerlekopoulou, A.; Vayenas, D.V. Treatment of olive mill wastewater in pilot-scale vertical flow constructed wetland. Ecol. Eng. 2011, 37, 931–939. [Google Scholar] [CrossRef]
- Abira, M.A.; Van Bruggen, J.J.A.; Denny, P. Potential of a tropical subsurface constructed wetland to remove phenol from pre-treated pulp and paper mill wastewater. Water Sci. Technol. 2005, 51, 173–176. [Google Scholar] [CrossRef]
- Stottmeister, U.; Kuschk, P.; Wiessner, A. Full-scale bioremediation and long-term monitoring of a phenolic wastewater disposal lake. Pure Appl. Chem. 2010, 82, 161–173. [Google Scholar] [CrossRef] [Green Version]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Deeb, R.A.; Chu, K.-H.; Shih, T.; Linder, S.; Suffet, I.; Kavanaugh, M.C. MTBE and other oxygenates: Environmental sources, analysis, occurrence, and treatment. Environ. Eng. Sci. 2003, 20, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Hodaifa, G.; Ochando-Pulido, J.M.; Rodriguez-Vives, S.; Nartinez-Ferez, A. Optimization of continuous reactor at pilot scale for olive-oil mill wastewater treatment by Fenton-like process. Chem. Eng. J. 2013, 220, 117–124. [Google Scholar] [CrossRef]
- Stefanakis, A.I.; Thullner, M. Fate of phenolic compounds in Constructed Wetlands treating contaminated water. In Phytoremediation, 1st ed.; Abid, A.A., Sarvajeet, S.G., Ritu, G., Guy, R.L., Lee, N., Eds.; Springer: Cham, Switzerland, 2016; Volume 6, pp. 311–325. [Google Scholar]
- Stefanakis, A.I. Constructed Wetlands for Industrial Wastewater Treatment, 1st ed.; John Wiley & Sons Ltd.: Chichester, UK, 2018. [Google Scholar]
- Galbraith, D.; Gross, S.A.; Paustenbach, D. Benzene and human health: A historical review and appraisal of associations with various diseases. Crit. Rev. Toxicol. 2010, 40, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Rakoczy, J.; Remy, B.; Vogy, C.; Richnow, H.H. A bench-scale Constructed Wetland as a model to characterize benzene biodegradation processes in freshwater wetlands. Environ. Sci. Technol. 2011, 45, 10036–10044. [Google Scholar] [CrossRef] [PubMed]
- Squillace, P.J.; Zogorski, J.S.; Wilber, W.G.; Price, C.V. Preliminary assessment of the occurrence and possible sources of MTBE in groundwater in the United States, 1993–1994. Environ. Sci. Technol. 1996, 30, 1721–1730. [Google Scholar] [CrossRef]
- Alexander, M. Biodegradation and Bioremediation, 2nd ed.; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Agteren, M.H.V.; Keuning, S.; Janssen, D.B. Handbook on Biodegradation and Biological Treatment of Hazardous Organic Compounds, 1st ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Yerushalmi, L.; Lascourreges, J.F.; Guiot, S.R. Kinetics of benzene biotransformation under microaerophilic and oxygen-limited conditions. Biotechnol. Bioeng. 2002, 79, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Foght, J. Anaerobic biodegradation of aromatic hydrocarbons: Pathways and prospects. J. Mol. Microbiol. Biotechnol. 2008, 15, 93–120. [Google Scholar] [CrossRef]
- Jechalke, S.; Vogt, C.; Reich, N.; Franchini, A.G.; Borsdorf, H.; Neu, T.R.; Richnow, H.H. Aerated treatment pond technology with biofilm promoting mats for the bioremediation of benzene, MTBE and ammonium contaminated groundwater. Water Res. 2010, 44, 1785–1796. [Google Scholar] [CrossRef]
- Zhou, E.; Crawford, R.L. Effects of oxygen, nitrogen, and temperature on gasoline biodegradation in soil. Biodegradation 1995, 6, 127–140. [Google Scholar] [CrossRef]
- Imfeld, G.; Braeckevelt, M.; Kuschk, P.; Richnow, H.H. Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere 2009, 74, 349–362. [Google Scholar] [CrossRef]
- Braeckevelt, M.; Reiche, N.; Trapp, S.; Wiessner, A.; Paschke, H.; Kuschk, P.; Kaestner, M. Chlorobenzene removal efficiencies and removal processes in a pilot-scale constructed wetland treating contaminated groundwater. Ecol. Eng. 2011, 37, 903–913. [Google Scholar] [CrossRef]
- De Biase, C.; Reger, D.; Schmidt, A.; Jechalke, S.; Reiche, N.; Martinez-Lavanchy, P.M.; Rosell, M.; Van Afferden, M.; Maier, U.; Oswald, S.E.; et al. Treatment of volatile organic contaminants in a vertical flow filter: Relevance of different removal processes. Ecol. Eng. 2011, 37, 1292–1303. [Google Scholar] [CrossRef]
- Seeger, E.; Kuschk, P.; Fazekas, H.; Grathwohl, P.; Kaestner, M. Bioremediation of benzene-, MTBE-and ammonia-contaminated groundwater with pilot-scale constructed wetlands. Environ. Pollut. 2011, 159, 3769–3776. [Google Scholar] [CrossRef] [PubMed]
- Stottmeister, U.; Wießner, A.; Kuschk, P.; Kappelmeyer, U.; Kästner, M.; Bederski, O.; Müller, R.A.; Moormann, H. Effects of plants and microorganisms in Constructed Wetlands for wastewater treatment. Biotechnol. Adv. 2003, 22, 93–117. [Google Scholar] [CrossRef] [PubMed]
- Sugai, S.F.; Lindstrom, J.E.; Braddockm, J.F. Environmental influences on the microbial degradation of Exxon Valdez oil on the shorelines of Prince William Sound, Alaska. Env. Sci. Technol. 1997, 31, 1564–1572. [Google Scholar] [CrossRef]
- Pardue, J.H.; Kassenga, G.; Shinm, W.S. Design approaches for chlorinated VOC treatment wetland. In Wetlands & Remediation: An International Conference; Means, J.L., Hinchee, R.E., Eds.; Battelle Press: Columbus, OH, USA, 2000; pp. 301–308. [Google Scholar]
- Ridgeway, H.F.; Safarik, J.; Phipps, D.; Carl, P.; Clark, D. Identification and catabolic activity of well-derived gasoline degrading bacteria and a contaminated aquifer. Appl. Environ. Microbiol. 1990, 56, 3565–3575. [Google Scholar]
- Braeckevelt, M.; Rokadia, H.; Imfeld, G.; Stelzer, N.; Paschke, H.; Kuschk, P.; Kaestner, M.; Richnow, H.H.; Weber, S. Assessment of in situ biodegradation of monochlorobenzene in contaminated groundwater treated in a constructed wetland. Environ. Pollut. 2007, 148, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Briggs, G.G.; Bromilow, R.H.; Evans, A.A. Relationships between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pestic. Sci. 1982, 13, 495–504. [Google Scholar] [CrossRef]
- Schirmer, M.; Butler, B.J.; Barker, J.F.; Church, C.D.; Schirmer, K. Evaluation of biodegradation and dispersion as natural attenuation processes of MTBE and benzene at the Borden field site. Phys. Chem. Earth PT B Hydrol. Ocean. Atm. 1999, 24, 557–560. [Google Scholar] [CrossRef]
- Pilon-Smits, E. Phytoremediation. Annu. Rev. Plant Biol. 2005, 56, 15–39. [Google Scholar] [CrossRef]
- Burken, J.G.; Schnoor, J.L. Distribution and volatilization of organic compounds following uptake by hybrid poplar trees. Int. J. Phytoremediat. 1999, 1, 139–151. [Google Scholar] [CrossRef]
- Trapp, S.; Karlson, U. Aspects of phytoremediation of organic pollutants. J. Soils Sediments 2001, 1, 37–43. [Google Scholar] [CrossRef]
- Reiche, N.; Lorenz, W.; Borsdorf, H. Development and application of dynamic air chambers for measurement of volatilization fluxes of benzene and MTBE from constructed wetlands planted with common reed. Chemosphere 2010, 79, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Eke, P.E.; Scholz, M. Benzene removal with vertical-flow constructed treatment wetlands. J. Chem. Technol. Biotechnol. 2008, 83, 55–63. [Google Scholar] [CrossRef]
- Chen, Z.; Kuschk, P.; Reiche, N.; Borsdorf, H.; Kaestner, M.; Koeser, H. Comparative evaluation of pilot scale horizontal subsurface-flow constructed wetlands and plant root mats for treating groundwater contaminated with benzene and MTBE. J. Hazard. Mater. 2012, 209–210, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Seeger, E.; Reiche, N.; Kuschk, P.; Borsdorf, H.; Kaestner, M. Performance evaluation using a three compartment mass balance for the removal of volatile organic compounds in pilot scale Constructed Wetlands. Environ. Sci. Technol. 2011, 45, 8467–8474. [Google Scholar] [CrossRef]
- Van Afferden, M.; Rahman, K.Z.; Mosig, P.; De Biase, C.; Thullner, M.; Oswald, S.E.; Mueller, R.A. Remediation of groundwater contaminated with MTBE and benzene: The potential of vertical-flow soil filter systems. Water Res. 2011, 45, 5063–5074. [Google Scholar] [CrossRef]
- Wallace, S.; Kadlec, R. BTEX degradation in a cold-climate wetland system. Water Sci. Technol. 2005, 51, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Ranieri, E.; Gikas, P.; Tchobanoglous, G. BTEX removal in pilot-scale horizontal subsurface flow constructed wetlands. Desalin. Water Treat. 2013, 51, 3032–3039. [Google Scholar] [CrossRef]
- Mothes, F.; Reiche, N.; Fiedler, P.; Moeder, M.; Borsdorf, H. Capability of headspace based sample preparation methods for the determination of methyl tert-butyl ether and benzene in reed (phragmites australis) from constructed wetlands. Chemosphere 2010, 80, 396–403. [Google Scholar] [CrossRef]
- Bedessem, M.E.; Ferro, A.; Hiegel, T. Pilot-scale Constructed Wetlands for petroleum-contaminated groundwater. Water Environ. Res. 2007, 79, 581–586. [Google Scholar] [CrossRef]
- Tang, X.; Scholz, M.; Emeka, P.; Huang, S. Nutrient removal as a function of benzene supply within vertical-flow constructed wetlands. Environ. Technol. 2010, 31, 681–691. [Google Scholar] [CrossRef]
- Ballesteros, F., Jr.; Vuong, T.H.; Secondes, M.F.; Tuan, P.D. Removal efficiencies of constructed wetland and efficacy of plant on treating benzene. Sustain. Environ. Res. 2016, 26, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Atif, M.; Azim, M.K.; Raza, Z.; Kori, J.A. BTEX removal in a modified free water surface wetland. Chem. Eng. J. 2018, 333, 451–455. [Google Scholar]
- Tang, X.; Eke, P.; Scholz, M.; Huang, S. Processes impacting on benzene removal in vertical-flow constructed wetlands. Bioresour. Technol. 2009, 100, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Haberl, R.; Grego, S.; Langergraber, G.; Kadlec, R.H.; Cicalini, A.R.; Dias, S.M.; Novais, J.M.; Aubert, S.; Gerth, A.; Thomas, H.; et al. Constructed wetlands for treatment of organic pollutants. J. Soils Sediments 2003, 3, 109–124. [Google Scholar] [CrossRef]
- Gerhardt, K.E.; Huang, X.D.; Glick, B.R. Greenberg BM. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci. 2009, 176, 20–30. [Google Scholar] [CrossRef]
- Ranieri, E.; Gorgoglione, A.; Montanaro, C.; Iacovelli, A.; Gikas, P. Removal capacity of BTEX and metals of constructed wetlands under the influence of hydraulic conductivity. Desalin. Water Treat. 2014. [Google Scholar] [CrossRef]
- Braeckevelt, M.; Mischel, G.; Wiessner, A.; Rueckert, M.; Reiche, N.; Vogt, C.; Schultz, A.; Paschke, H.; Kuschk, P.; Kaestner, M. Treatment of chlorobenzene-contaminated groundwater in a pilot-scale constructed wetland. Ecol. Eng. 2008, 33, 45–53. [Google Scholar] [CrossRef]
- Stefanakis, A.I.; Tsihrintzis, V.A. Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of pilot-scale Vertical Flow Constructed Wetlands. Chem. Eng. J. 2012, 181–182, 416–430. [Google Scholar] [CrossRef]
- Schmidt, T.C.; Schirmer, M.; Weiss, H.; Haderlein, S.B. Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface. J. Contam. Hydrol. 2004, 70, 173–203. [Google Scholar] [CrossRef]
- Baehr, A.L.; Stackelberg, P.E.; Baker, R.J. Evaluation of the atmosphere as a source of volatile organic compounds in shallow groundwater. Water Resour. Res. 1999, 35, 127–136. [Google Scholar] [CrossRef]
- Von Kraus, K.M.; Harremoes, P. MTBE in petrol as a substitute for lead. In Late Lessons from Early Warnings: The Precautionary Principle 1896–2000; Environmental Issue Report, 22; Hearremoes, P., Ed.; Office for Official Publications of the European Communities: Copenhagen, Denmark, 2001. [Google Scholar]
- Kujawa, J.; Cerneaux, S.; Kujawski, W. Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes. J. Membr. Sci. 2015, 474, 11–19. [Google Scholar] [CrossRef]
- Johnson, R.; Pankow, J.; Bender, D.; Price, C.; Zogorski, J. MTBE-To what extent will past releases contaminate community water supply wells? Environ. Sci. Technol. 2000, 34, 210A–217A. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.C.; Morgenroth, E.; Schirmer, M.; Effenberger, M.; Haderlein, S.B. Use and occurrence of fuel oxygenates in Europe. In Oxygenates in Gasoline: Environmental Aspects, 1st ed.; Diaz, A.F., Dorgos, D.L., Eds.; ACS: Washington, DC, USA, 2002; pp. 58–79. [Google Scholar]
- Morgenstern, P.; Versteegh, A.F.M.; de Korte, G.A.L.; Hoogerbrugge, R.; Mooibroek, D.; Bannink, A. Survey of the occurrence of residues of methyl tertiary butyl ether (MTBE) in Dutch drinking water sources and drinking water. J. Environ. Monitor. 2003, 5, 885. [Google Scholar] [CrossRef] [PubMed]
- Klinger, J.; Stieler, C.; Sacher, F.; Brauch, H.J. MTBE (methyl tertiary-butyl ether) in groundwaters: Monitoring results from Germany. J. Environ. Monitor. 2002, 4, 276–279. [Google Scholar] [CrossRef]
- Wilhelm, M.J.; Adams, D.; Curtis, J.G.; Middlebrooks, E.J. Carbon adsorption and air-stripping removal of MTBE from river water. J. Env. Eng. Asce. 2002, 128, 813–823. [Google Scholar] [CrossRef]
- Davis, S.W.; Powers, S.E. Alternate sorbents for removing MTBE from gasoline-contaminated ground water. J. Environ. Eng. 2000, 126, 354–360. [Google Scholar] [CrossRef]
- Sutherland, J.; Adams, C.; Kekobad, J. Treatment of MTBE by air stripping, carbon adsorption, and advanced oxidation: Technical and economic comparison for five groundwaters. Water Res. 2004, 38, 193–205. [Google Scholar] [CrossRef]
- Aivalioti, M.; Vamvasakis, I.; Gidarakos, E. BTEX and MTBE adsorption onto raw and thermally modified diatomite. J. Hazard. Mater. 2010, 178, 136–143. [Google Scholar] [CrossRef]
- Deeb, R.A.; Scow, K.M.; Alvarez-Cohen, L. Aerobic MTBE biodegradation: An examination of past studies, current challenges and future research directions. Biodegradation 2000, 11, 171–186. [Google Scholar] [CrossRef]
- Raynal, M.; Pruden, A. Aerobic MTBE biodegradation in the presence of BTEX by two consortia under batch and semi-batch conditions. Biodegradation 2008, 19, 269–282. [Google Scholar] [CrossRef]
- Stocking, A.J.; Deeb, R.A.; Flores, A.E.; Stringfellow, W.; Talley, J.; Brownell, R. Bioremediation of MTBE: A review from a practical perspective. Biodegradation 2000, 11, 187–201. [Google Scholar] [CrossRef]
- Moreels, D.; Bastiaens, L.; Ollevier, F.; Merckx, R.; Diels, L.; Springael, D. Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems. FEMS Microbiol. Ecol. 2004, 49, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Schirmer, M.; Butler, B.J.; Church, C.D.; Barker, J.; Nadarajah, N. Laboratory evidence of MTBE biodegradation in Borden aquifer material. J. Contam. Hydrol. 2003, 60, 229–249. [Google Scholar] [CrossRef]
- Müller, R.H.; Rohwerder, T.; Harms, H. Carbon conversion efficiency and limits of productive bacterial degradation of methyl tert-butyl ether and related compounds. Appl. Environ. Microbiol. 2007, 73, 1783–1791. [Google Scholar] [CrossRef] [Green Version]
- Rohwerder, T.; Muller, R.H.; Weichler, M.T.; Schuster, J.; Hubschmann, T.; Muller, S. Cultivation of Aquincola tertiaricarbonis L108 on the fuel oxygenate intermediate tert-butyl alcohol induces aerobic anoxygenic photosynthesis at extremely low feeding rates. Microbiology 2013, 159 Pt 10, 2180–2190. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, N.L.; Malandain, C.; Fayolle-Guichard, F. Enzymes and genes involved in the aerobic biodegradation of methyl tert-butyl ether (MTBE). Appl. Microbiol. Biotechnol. 2006, 72, 252–262. [Google Scholar] [CrossRef]
- Martienssen, M.; Fabritius, H.; Kukla, S.; Balcke, G.U.; Hasselwander, E.; Schirmer, M. Determination of naturally occurring MTBE biodegradation by analysing metabolites and biodegradation by-products. J. Contam. Hydrol. 2006, 87, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.T.; Adair, C.; Kaiser, P.; Kolhatkar, R. Anaerobic biodegradation of MTBE at a gasoline spill site. Ground Water Monit. Remed. 2005, 25, 103–115. [Google Scholar] [CrossRef]
- Salanitro, J.P.; Johnson, P.C.; Spinnler, G.E.; Maner, P.M.; Wisniewski, H.L.; Bruce, C. Field-scale demonstration of enhanced MTBE bioremediation through aquifer bioaugmentation and oxygenation. Environ. Sci. Technol. 2000, 34, 4152–4162. [Google Scholar] [CrossRef]
- Wilson, R.D.; Mackay, D.M.; Scow, K.M. In Situ MTBE biodegradation supported by diffusive oxygen release. Environ. Sci. Technol. 2002, 36, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.E.; Hristova, K.; Wood, I.; Mackay, D.M.; Lory, E.; Lorenzan, D. Comparison of biostimulation versus bioaugmentation with bacterial strain PM1 for treatment of groundwater contaminated with Methyl Tertiary Butyl Ether (MTBE). Environ. Health Persp. 2005, 113, 317–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, M.S.; Fermayan, W.F.; Dortch, I.J.; Chiang, C.Y.; McMillan, S.K.; Schnoor, J.L. Phytoremediation of MTBE from a groundwater plume. Environ. Sci. Technol. 2001, 35, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Rubin, E.; Ramaswami, A. The potential for phytoremediation of MTBE. Water Res. 2001, 35, 1348–1353. [Google Scholar] [CrossRef]
- Zhang, Q.; Davis, L.C.; Erickson, L.E. Transport of Methyl tert-Butyl Ether through alfalfa plants. Environ. Sci. Technol. 2001, 35, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.Z.; Gu, J.D. Uptake, metabolism, and toxicity of methyl tert-butyl ether (MTBE) in weeping willows. J. Hazard. Mater. 2006, 137, 1417–1423. [Google Scholar] [CrossRef]
- Arnold, C.W.; Parfitt, D.G.; Kaltreider, M. Field note phytovolatilization of oxygenated gasoline-impacted groundwater at an underground storage tank site via conifers. Int. J. Phytoremediation 2007, 9, 53–69. [Google Scholar] [CrossRef]
- Trapp, S.; Yu, X.; Mosbaek, H. Persistence of Methyl tertiary butyl ether (MTBE) against metabolism by Danish vegetation. Environ. Sci. Pollut. Res. 2006, 10, 357–360. [Google Scholar] [CrossRef]
- Ferro, A.M.; Kadlec, R.H.; Deschamp, J. Constructed Wetland system to treat wastewater at the BP Amoco former Casper refinery: Pilot scale project. In Proceedings of the 9th International Petroleum Environmental Conference, Albuquerque, NM, USA, 22–25 October 2002. [Google Scholar]
- Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.; McKnight, D.M.; Wass, R.D. Conservative and reactive solute transport in constructed wetlands. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef] [Green Version]
- De Biase, C.; Carminati, A.; Oswald, S.E.; Thullner, M. Numerical modeling analysis of VOC removal processes in different aerobic vertical flow systems for groundwater remediation. J. Contam. Hydrol. 2013, 154, 53–69. [Google Scholar] [CrossRef]
- Stefanakis, A.I. Constructed Wetlands case studies for the treatment of water polluted with fuel and oil hydrocarbons. In Phytoremediation, Management of Environmental Contaminants, 1st ed.; Ansari, A.A., Gill, S.S., Gill, R., Lanza, G.R., Newman, L., Eds.; Springer: Cham, Switzerland, 2018; Volume 6, pp. 151–167. [Google Scholar]
- Reger, D. Analysis of Contaminant Degradation in Vertical Soil Filter Systems; Technical University Bergakademie Freiberg: Freiberg, Germany, 2009. [Google Scholar]
- Khan, A.M.; Wick, L.Y.; Harms, H.; Thullner, M. Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments. Environ. Pollut. 2016, 211, 325–331. [Google Scholar] [CrossRef]
- De Biase, C.; Maier, U.; Baeder-Bederski, O.; Bayer, P.; Oswald, S.E.; Thullner, M. Removal of volatile organic compounds in Vertical Flow Filters: Predictions from reactive transport modeling. Ground Water Monit. Remed. 2012, 32, 106–121. [Google Scholar] [CrossRef]
- Seeger, E.M.; Maier, U.; Grathwohl, P.; Kuschk, P.; Kaestner, M. Performance evaluation of different horizontal subsurface flow wetland types by characterization of flow behavior, mass removal and depth-dependent contaminant load. Water Res. 2013, 47, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Rakoczy, J.; Vogt, C.; Harnisch, F.; Schumann, R.; Richnow, H.H. Enhancement and monitoring of pollutant removal in a constructed wetland by microbial electrochemical technology. Bioresour. Technol. 2015, 196, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Deshusses, M.A. Biotreatment of groundwater contaminated with MTBE: Interaction of common environmental co-contaminants. Biodegradation 2007, 18, 37–50. [Google Scholar] [CrossRef]
- Deeb, R.A.; Hu, H.Y.; Hanson, J.R.; Scow, K.M.; Alvarez-Cohen, L. Substrate interactions in BTEX and MTBE mixtures by an MTBE-degrading isolate. Environ. Sci. Technol. 2001, 35, 312–317. [Google Scholar] [CrossRef]
- Sedran, M.A.; Pruden, A.; Wilson, G.J.; Suidan, M.T.; Venosa, A.D. Effect of BTEX on degradation of MTBE and TBA by mixed bacterial consortium. J. Environ. Eng. 2002, 128, 830–835. [Google Scholar] [CrossRef]
Wetland Type Dimensions (L × W × D; m) ¹ | Plant Species | Substrate | Flow (m³/day) | HRT ² (days) | Influent (mg/L) | Removal Rate (%) | Reference |
---|---|---|---|---|---|---|---|
HSSF ³ CW (6 × 1 × 0.5) | Phragmites australis | gravel (67%) sand (25%) lignite (10%) | 0.113 | 6 | 0.026 | 93 | [34] |
HSSF CW (5.9 × 1.1 × 1.2) | P. australis | gravel | 0.528 | 10 | 10.2 | 72–82 | [1] |
HSSF CW (5 × 1.1 × 0.6) | P. australis | fine gravel, charcoal | 0.144 | 20 | 81–43 (summer– winter) | [29] | |
Plant root mat (water depth 0.15 m) | P. australis | − | 0.166 | 20 | 99–18 (summer– winter) | ||
HSSF CW pilot (7 × 1.7 × 1.1) full scale HSSF + SF CW (1.9 ha, d = 0.9) | Salix, Phragmites, Schoenoplectus, Juncus, Cornus, Typha angustfolia | gravel, sand | 5.4 and 6000 | 1 | 0.17 (benzene) 0.47 (BTEX) | 100 (below detection limit) | [45] |
HSSF CW (4.8 × 7.2 × 0.6) | P. australis, Typha latifolia | clay soil, stones, gravel | 1 | 1.5 | 0.6 | 57 | [46] |
HSSF CW (5 × 1.1 × 0.6) | P. australis | 0.144 | up to 24 | 1900 mg/day | [47] | ||
HSSF CW (5 × 1.1 × 0.6) | P. australis | gravel | 0.144 | 6 | 13 | 100 (summer) | [44] |
Plant root mat (water depth 0.15) | P. australis | − | 0.144 | 100 (summer) | |||
HSSF CW (7 × 1.7 × 1.1) | Phragmites, Scirpus, Juncus, Cornus | washed soil, sand, pea, gravel | 5.5 | 0.395 | 61–81 | [48] | |
VF CW 4 (H = 0.75, d = 0.1) | P. australis | stones, gravel, sand | 1 | 1.3 | 85–95 | [41] | |
VF CW (0.75, d = 0.1) | P. australis | stones, gravel, sand | 3.5 | 1 | 73–89 | [49] | |
VF CW (2.3 × 1.75 × 1.75) | Salix alba | granular media, clay, zeolite | up to 1.9 | 13.9 | 100 | [43] | |
SF CW (1 × 0.6 × 0.8) | Phragmites karka | gravel, soil | 8 | 66–45 | 48 | [50] | |
SF CW 5 (4 × 12 × 0.45) | P. australis T. latifolia | soil | 3 | 1.573 (benzene) 4.14 (BTEX) | 93 92.4 | [51] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanakis, A.I. The Fate of MTBE and BTEX in Constructed Wetlands. Appl. Sci. 2020, 10, 127. https://doi.org/10.3390/app10010127
Stefanakis AI. The Fate of MTBE and BTEX in Constructed Wetlands. Applied Sciences. 2020; 10(1):127. https://doi.org/10.3390/app10010127
Chicago/Turabian StyleStefanakis, Alexandros I. 2020. "The Fate of MTBE and BTEX in Constructed Wetlands" Applied Sciences 10, no. 1: 127. https://doi.org/10.3390/app10010127
APA StyleStefanakis, A. I. (2020). The Fate of MTBE and BTEX in Constructed Wetlands. Applied Sciences, 10(1), 127. https://doi.org/10.3390/app10010127