Towards Smart Public Administration: A TOE-Based Empirical Study of AI Chatbot Adoption in a Transitioning Government Context
Abstract
1. Introduction
2. Literature Review
2.1. TOE Framework and Hypothesis Development
2.2. Technological Contexts
2.2.1. Perceived Usefulness
2.2.2. Compatibility
2.2.3. Complexity
2.3. Organizational Contexts
2.3.1. Traditional Leadership
2.3.2. Resistance to Mindset Change
2.3.3. Organizational Readiness
2.4. Environmental Contexts
2.4.1. Effective Accountability
2.4.2. Ethical AI Regulation
2.4.3. Concerns over Data Management and Security
3. Materials and Methods
3.1. Research Design and Measurement Scale
3.2. Data Collection and Sampling
3.3. Data Analysis Techniques
4. Results
4.1. Collinearity Test Results
4.2. Measurement Model
4.3. Structural Model Assessment
4.4. Results of Direct, Indirect, and Total Effects
5. Discussion
5.1. Interpretation of Main Findings
5.2. Theoretical Implications
5.3. Practical Implications and Policy Recommendations
5.4. Limitations and Directions for Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Constructs | References | |
---|---|---|
Perceived Usefulness (PU) | (Arpaci et al., 2012; Gefen & Straub, 2000; Mikhaylov et al., 2018; Oliveira & Martins, 2010; Wirtz et al., 2021). | |
PU1 | AI chatbots enhance the efficiency of government administrative services. | |
PU2 | I believe AI-powered chatbots help my engagement. | |
Competability (Comp) | (P. Chen et al., 2021; Gangwar et al., 2015; Thong, 1999; Venkatesh et al., 2012). | |
Comp1 | AI chatbots fit with current work processes and workflows. | |
Comp2 | AI chatbots are compatible with the technologies currently used in my organization. | |
System Complexity (SCom) | (Chatterjee & Chaudhuri, 2022; Oliveira & Martins, 2011; Rogers et al., 2005; Wirtz et al., 2021). | |
SCom1 | I believe that the AI chatbot system is too complex for our organization’s employees to use effectively. | |
SCom2 | Using the AI chatbot requires specialized skills or training that most staff members do not have. | |
Traditional Top-Down Leadership (TL) | (Chuang & Shaw, 2005; Ifinedo, 2012; Low et al., 2011; McLeod, 2007; Peters, 2015; Silva, 2016). | |
TL1 | In my organization, decisions about adopting AI tools are made only by senior management. | |
TL2 | My organization’s leadership style is traditional for new digital tools. | |
Resistance to Mindset Change (RMC) | (Bwalya & Mutula, 2015; Chong et al., 2021; Labadze et al., 2023; Murphy & Reeves, 2019; Rawassizadeh et al., 2019; Thierer et al., 2017). | |
SMC1 | My organization’s employees are reluctant to change their traditional ways of working even when new technologies are introduced. | |
SMC2 | There is a reluctance among employees and management to adopt AI technologies such as chatbots. | |
Organizational Readiness (OR) | (Chatterjee & Chaudhuri, 2022; Edwards et al., 2024; Madan & Ashok, 2023; Mergel et al., 2019; Venkatesh & Davis, 2000; Zhai et al., 2021; Zhu et al., 2006). | |
OR1 | The organization has sufficient technical infrastructure to support AI chatbot implementation. | |
OR2 | Skilled personnel are available to manage and maintain AI chatbot systems. | |
Effective Accountability (EA) | (Arpaci et al., 2012; Cameron, 2004; Dwivedi et al., 2021; Hubbell, 2007; Wirtz et al., 2019). | |
EA1 | AI chatbots help improve compliance with rules and regulations. | |
EA2 | The use of AI chatbots supports accountable decision-making by tracking actions and outcomes. | |
Ethical AI Regulation (EAR) | (Androutsopoulou et al., 2019; Gordon, 2001; Reis et al., 2019; Thierer et al., 2017; Wirtz et al., 2021). | |
EAR1 | My organization follows national guidelines and international AI ethics standards (e.g., OECD, UNESCO) to use of AI chatbots. | |
EAR2 | Ethical concerns about AI chatbot adoption are actively addressed by top management. | |
Concerns over Data Management and Security (CDMS) | (Bertino, 2016; Chatterjee & Chaudhuri, 2022; P. Chen et al., 2021; Chong et al., 2021; Dwivedi et al., 2021; Mannuru et al., 2023; Medaglia et al., 2021; Wirtz et al., 2019). | |
CDMS1 | I am always concerned that the use of AI chatbots in administrative services could compromise the security of sensitive data. | |
CDMS2 | My organization does not yet have clear policies or safeguards in place to manage data processed by AI chatbots. |
References
- Adam, M., Wessel, M., & Benlian, A. (2021). AI-based chatbots in customer service and their effects on user compliance. Electronic Markets, 31(2), 427–445. [Google Scholar] [CrossRef]
- Aderibigbe, A. O., Ohenhen, P. E., Nwaobia, N. K., Gidiagba, J. O., & Ani, E. C. (2023). Artificial intelligence in developing countries: Bridging the gap between potential and implementation. Computer Science & IT Research Journal, 4(3), 185–199. [Google Scholar] [CrossRef]
- Alateyah, S., Crowder, R. M., & Wills, G. B. (2013). An exploratory study of proposed factors to adopt e-government services. International Journal of Advanced Computer Science and Applications, 4(11), 57–66. [Google Scholar] [CrossRef]
- Albu, D. (2023). Report “Progress on the sustainable development goals: The gender snapshot 2023” (UN Women, UN DESA, 2023). Drepturile Omului, 94. [Google Scholar]
- Ali, O., Abdelbaki, W., Shrestha, A., Elbasi, E., Alryalat, M. A. A., & Dwivedi, Y. K. (2023). A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. Journal of Innovation & Knowledge, 8(1), 100333. [Google Scholar] [CrossRef]
- Alraja, M. N., Khan, S. F., Khashab, B., & Aldaas, R. (2020). Does Facebook commerce enhance SMEs performance? A structural equation analysis of Omani SMEs. Sage Open, 10(1), 2158244019900186. [Google Scholar] [CrossRef]
- Alsuqayh, N., Mirza, A., & Alhogail, A. (2024, December 2). A phishing website detection system based on hybrid feature engineering with SHAP explainable artificial intelligence technique. International Conference on Web Information Systems Engineering, Doha, Qatar. [Google Scholar]
- Androutsopoulou, A., Karacapilidis, N., Loukis, E., & Charalabidis, Y. (2019). Transforming the communication between citizens and government through AI-guided chatbots. Government Information Quarterly, 36(2), 358–367. [Google Scholar] [CrossRef]
- Aoki, N. (2020). An experimental study of public trust in AI chatbots in the public sector. Government Information Quarterly, 37(4), 101490. [Google Scholar] [CrossRef]
- Arpaci, I., Yardimci, Y. C., Ozkan, S., & Turetken, O. (2012). Organizational adoption of information technologies: A literature review. International Journal of Ebusiness and Egovernment Studies, 4(2), 37–50. [Google Scholar]
- Bannister, F., & Connolly, R. (2020). Administration by algorithm: A risk management framework. Information Polity, 25(4), 471–490. [Google Scholar] [CrossRef]
- Bertino, E. (2016, June 10–14). Data security and privacy: Concepts, approaches, and research directions. 2016 IEEE 40th Annual computer Software and Applications conference (cOMPSAc), Atlanta, GA, USA. [Google Scholar]
- Bilginoğlu, E., & Yozgat, U. (2023). The validity and reliability of the measure for digital leadership: Turkish form. In Multidimensional and strategic outlook in digital business transformation: Human resource and management recommendations for performance improvement (pp. 53–67). Springer. [Google Scholar]
- Boomsma, A. (2003). Structural equation modeling: Foundations and extensions (Advanced quantitative techniques in the social sciences series, vol. 10.) by David Kaplan. Structural Equation Modeling, 10(2), 323–331. [Google Scholar] [CrossRef]
- Brown, B. J., & Baker, S. (2012). Responsible citizens: Individuals, health, and policy under neoliberalism. Anthem Press. [Google Scholar]
- Bwalya, K. J., & Mutula, S. M. (2015). Digital solutions for contemporary democracy and government. IGI Global. [Google Scholar]
- Cameron, W. (2004). Public accountability: Effectiveness, equity, ethics. Australian Journal of Public Administration, 63(4), 59–67. [Google Scholar] [CrossRef]
- Chatterjee, S., & Chaudhuri, R. (2022). Adoption of artificial intelligence integrated customer relationship management in organizations for sustainability. In Business under crisis, volume III: Avenues for innovation, entrepreneurship and sustainability (pp. 137–156). Palgrave Macmillan. [Google Scholar]
- Chen, P., Jamet, C., Zhang, Z., He, Y., Mao, Z., Pan, D., Wang, T., Liu, D., & Yuan, D. (2021). Vertical distribution of subsurface phytoplankton layer in South China Sea using airborne lidar. Remote Sensing of Environment, 263, 112567. [Google Scholar] [CrossRef]
- Chong, T., Yu, T., Keeling, D. I., & de Ruyter, K. (2021). AI-chatbots on the services frontline addressing the challenges and opportunities of agency. Journal of Retailing and Consumer Services, 63, 102735. [Google Scholar] [CrossRef]
- Chuang, M.-L., & Shaw, W. H. (2005). A roadmap for e-business implementation. Engineering Management Journal, 17(2), 3–13. [Google Scholar] [CrossRef]
- Cowls, J., King, T., Taddeo, M., & Floridi, L. (2019). Designing AI for social good: Seven essential factors. SSRN. [Google Scholar] [CrossRef]
- Dasgupta, A., & Wendler, S. (2019). AI adoption strategies. Centre for Technology and Global Affairs, University of Oxford. Available online: https://www.politics.ox.ac.uk/sites/default/files/2022-03/201903-CTGA-Dasgupta%20A-Wendler%20S-aiadoptionstrategies.pdf (accessed on 18 September 2022).
- Davis, F. D. (1989). Technology acceptance model: TAM. Al-Suqri, MN, Al-Aufi, AS: Information Seeking Behavior and Technology Adoption, 205(219), 5. [Google Scholar]
- Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71. [Google Scholar] [CrossRef]
- Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., & Eirug, A. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. [Google Scholar] [CrossRef]
- Edwards, D. B., Jr., Caravaca, A., Rappeport, A., & Sperduti, V. R. (2024). World Bank influence on policy formation in education: A systematic review of the literature. Review of Educational Research, 94(4), 584–622. [Google Scholar] [CrossRef]
- Engin, Z., & Treleaven, P. (2019). Algorithmic government: Automating public services and supporting civil servants in using data science technologies. The Computer Journal, 62(3), 448–460. [Google Scholar] [CrossRef]
- Folorunso, A., Olanipekun, K., Adewumi, T., & Samuel, B. (2024). A policy framework on AI usage in developing countries and its impact. Global Journal of Engineering and Technology Advances, 21(01), 154–166. [Google Scholar] [CrossRef]
- Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. [Google Scholar] [CrossRef]
- Gangwar, H., Date, H., & Ramaswamy, R. (2015). Developing a cloud-computing adoption framework. Global Business Review, 16(4), 632–651. [Google Scholar] [CrossRef]
- Gefen, D., & Straub, D. W. (2000). The relative importance of perceived ease of use in IS adoption: A study of e-commerce adoption. Journal of the Association for Information Systems, 1(1), 8. [Google Scholar] [CrossRef]
- Goralski, M. A., & Tan, T. K. (2020). Artificial intelligence and sustainable development. The International Journal of Management Education, 18(1), 100330. [Google Scholar] [CrossRef]
- Gordon, K. (2001). The OECD guidelines and other corporate responsibility instruments: A comparison. Organisation for Economic Co-operation and Development. [Google Scholar]
- Gulyamov, S., Akhmedov, A., Bazarov, S., Ubaydullaeva, A., Musaev, S., Rodionov, A., & Odilkhujaev, I. (2024, November 13–15). Using digital twins for modeling and testing cybersecurity scenarios in smart cities. 2024 6th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), Lipetsk, Russia. [Google Scholar]
- Gulyamov, S., Karieva, G., & Rasulova, M. (2023). Experience of development of digital technologies in Uzbekistan. E3S Web of Conferences, 389, 03040. [Google Scholar] [CrossRef]
- Gupta, A., Hathwar, D., & Vijayakumar, A. (2020). Introduction to AI chatbots. International Journal of Engineering Research and Technology, 9(7), 255–258. [Google Scholar]
- Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. [Google Scholar] [CrossRef]
- Hair, J. F., Sarstedt, M., Pieper, T. M., & Ringle, C. M. (2012). The use of partial least squares structural equation modeling in strategic management research: A review of past practices and recommendations for future applications. Long Range Planning, 45(5–6), 320–340. [Google Scholar] [CrossRef]
- Henman, P. (2020). Improving public services using artificial intelligence: Possibilities, pitfalls, governance. Asia Pacific Journal of Public Administration, 42(4), 209–221. [Google Scholar] [CrossRef]
- Hubbell, L. L. (2007). Quality, efficiency, and accountability: Definitions and applications. New Directions for Higher Education, 2007(140), 5–13. [Google Scholar] [CrossRef]
- Ifinedo, P. (2012). Drivers of e-government maturity in two developing regions: Focus on Latin America and Sub-Saharan Africa. JISTEM-Journal of Information Systems and Technology Management, 9, 5–22. [Google Scholar] [CrossRef]
- Jais, R., Ngah, A. H., Rahi, S., Rashid, A., Ahmad, S. Z., & Mokhlis, S. (2024). Chatbots adoption intention in public sector in Malaysia from the perspective of TOE framework. The moderated and mediation model. Journal of Science and Technology Policy Management. [Google Scholar] [CrossRef]
- Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389–399. [Google Scholar] [CrossRef]
- Kobilov, A., Bozorov, J., Rajabov, S. B., Abdulakhatov, M., & Sapaev, I. (2023). Development of the digital economy in the Republic of Uzbekistan. E3S Web of Conferences, 402, 08038. [Google Scholar] [CrossRef]
- Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of e-Collaboration (IJEC), 11(4), 1–10. [Google Scholar] [CrossRef]
- Kulal, A., Rahiman, H. U., Suvarna, H., Abhishek, N., & Dinesh, S. (2024). Enhancing public service delivery efficiency: Exploring the impact of AI. Journal of Open Innovation: Technology, Market, and Complexity, 10(3), 100329. [Google Scholar] [CrossRef]
- Kuldosheva, G. (2021). Challenges and opportunities of digital transformation in the public sector in transition economies: Examination of the case of Uzbekistan. Asian Development Bank Institute. [Google Scholar]
- Labadze, L., Grigolia, M., & Machaidze, L. (2023). Role of AI chatbots in education: Systematic literature review. International Journal of Educational Technology in Higher Education, 20(1), 56. [Google Scholar] [CrossRef]
- Lindgren, S. (2021). Digital media and society. SAGE Publications Ltd. [Google Scholar]
- Lippert, S. K., & Govindarajulu, C. (2006). Technological, organizational, and environmental antecedents to web services adoption. Communications of the IIMA, 6(1), 14. [Google Scholar] [CrossRef]
- Low, C., Chen, Y., & Wu, M. (2011). Understanding the determinants of cloud computing adoption. Industrial Management & Data Systems, 111(7), 1006–1023. [Google Scholar]
- Madan, R., & Ashok, M. (2023). AI adoption and diffusion in public administration: A systematic literature review and future research agenda. Government Information Quarterly, 40(1), 101774. [Google Scholar] [CrossRef]
- Mannuru, N. R., Shahriar, S., Teel, Z. A., Wang, T., Lund, B. D., Tijani, S., Pohboon, C. O., Agbaji, D., Alhassan, J., & Galley, J. (2023). Artificial intelligence in developing countries: The impact of generative artificial intelligence (AI) technologies for development. Information Development, 41, 1036–1054. [Google Scholar] [CrossRef]
- Martin, G., & Pear, J. J. (2019). Behavior modification: What it is and how to do it. Routledge. [Google Scholar]
- McLeod, S. (2007). Maslow’s hierarchy of needs. Simply Psychology, 1, 1–18. [Google Scholar]
- Medaglia, R., Misuraca, G., & Aquaro, V. (2021, June 9–11). Digital government and the united nations’ sustainable development goals: Towards an analytical framework. 22nd Annual International Conference on Digital Government Research, Omaha, NE, USA. [Google Scholar]
- Mergel, I. (2019). Digital service teams in government. Government Information Quarterly, 36(4), 101389. [Google Scholar] [CrossRef]
- Mergel, I., Edelmann, N., & Haug, N. (2019). Defining digital transformation: Results from expert interviews. Government Information Quarterly, 36(4), 101385. [Google Scholar] [CrossRef]
- Mergel, I., Edelmann, N., & Haug, N. (n.d.). Outcomes of value co-creation and co-destruction in the digital transformation of public services. Digital Government: Research and Practice.
- Mikhaylov, S. J., Esteve, M., & Campion, A. (2018). Artificial intelligence for the public sector: Opportunities and challenges of cross-sector collaboration. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2128), 20170357. [Google Scholar] [CrossRef]
- Ministry for the Development of Information Technologies and Communications of the Republic of Uzbekistan. (2020). Digital Uzbekistan—2030 strategy. Government of Uzbekistan. Available online: https://lex.uz/docs/7008256 (accessed on 5 August 2025).
- Moon, J., Choi, J. W., & Kim, K. H. (2024). Regional disparities in safe and clean environments in Uzbekistan: Analysis of 2021–2022 Uzbekistan multiple indicator cluster survey data. Sustainability, 16(4), 1580. [Google Scholar] [CrossRef]
- Murphy, M. C., & Reeves, S. L. (2019). Personal and organizational mindsets at work. Research in Organizational Behavior, 39, 100121. [Google Scholar] [CrossRef]
- Neumann, O., Guirguis, K., & Steiner, R. (2024). Exploring artificial intelligence adoption in public organizations: A comparative case study. Public Management Review, 26(1), 114–141. [Google Scholar] [CrossRef]
- Nicolescu, L., & Tudorache, M. T. (2022). Human-computer interaction in customer service: The experience with AI chatbots—A systematic literature review. Electronics, 11(10), 1579. [Google Scholar] [CrossRef]
- Oliveira, T., & Martins, M. F. (2010). Understanding e-business adoption across industries in European countries. Industrial Management & Data Systems, 110(9), 1337–1354. [Google Scholar]
- Oliveira, T., & Martins, M. F. (2011). Literature review of information technology adoption models at firm level. Electronic Journal of Information Systems Evaluation, 14(1), 110–121. [Google Scholar]
- Orr, G. (2003). Diffusion of innovations, by Everett Rogers (1995). Free Press. Available online: https://web.stanford.edu/class/symbsys205/Diffusion%20of%20Innovations (accessed on 21 January 2005).
- Peters, R. S. (2015). The concept of motivation. Routledge. [Google Scholar]
- Radhakrishnan, J., & Chattopadhyay, M. (2020, December 18–19). Determinants and barriers of artificial intelligence adoption—A literature review. International Working Conference on Transfer and Diffusion of IT. [Google Scholar]
- Rana, N. P., Dwivedi, Y. K., Lal, B., Williams, M. D., & Clement, M. (2017). Citizens’ adoption of an electronic government system: Towards a unified view. Information Systems Frontiers, 19, 549–568. [Google Scholar] [CrossRef]
- Rawassizadeh, R., Sen, T., Kim, S. J., Meurisch, C., Keshavarz, H., Mühlhäuser, M., & Pazzani, M. (2019). Manifestation of virtual assistants and robots into daily life: Vision and challenges. CCF Transactions on Pervasive Computing and Interaction, 1, 163–174. [Google Scholar] [CrossRef]
- Reis, J., Santo, P. E., & Melão, N. (2019). Artificial intelligence in government services: A systematic literature review. In New knowledge in information systems and technologies: Volume 1 (pp. 241–252). Springer. [Google Scholar]
- Rogers, E. M., Medina, U. E., Rivera, M. A., & Wiley, C. J. (2005). Complex adaptive systems and the diffusion of innovations. The Innovation Journal: The Public Sector Innovation Journal, 10(3), 1–26. [Google Scholar]
- Rönkkö, M., & Cho, E. (2022). An updated guideline for assessing discriminant validity. Organizational Research Methods, 25(1), 6–14. [Google Scholar] [CrossRef]
- Samoili, S., Lopez Cobo, M., Gomez Gutierrez, E., de Prato, G., Martinez-Plumed, F., & Delipetrev, B. (2020). AI WATCH. Defining Artificial Intelligence (No. 1). European Comission. [Google Scholar]
- Sas, M., Hardyns, W., Van Nunen, K., Reniers, G., & Ponnet, K. (2021). Measuring the security culture in organizations: A systematic overview of existing tools. Security Journal, 34, 340–357. [Google Scholar] [CrossRef]
- Scheuren, F. (2004). What is a survey? American Statistical Association. [Google Scholar]
- Setayesh, M. H., & Daryaei, A. A. (2017). Good governance, innovation, economic growth and the stock market turnover rate. The Journal of International Trade & Economic Development, 26(7), 829–850. [Google Scholar] [CrossRef]
- Sharma, A., Bahl, S., Bagha, A. K., Javaid, M., Shukla, D. K., & Haleem, A. (2022). Blockchain technology and its applications to combat COVID-19 pandemic. Research on Biomedical Engineering, 38, 173–180. [Google Scholar] [CrossRef]
- Shi, D., Lee, T., & Maydeu-Olivares, A. (2019). Understanding the model size effect on SEM fit indices. Educational and Psychological Measurement, 79(2), 310–334. [Google Scholar] [CrossRef]
- Shin, S.-C., Ho, J.-W., & Pak, V. Y. (2020, February 16–19). Digital transformation through e-Government innovation in Uzbekistan. 22nd International Conference on Advanced Communication Technology (ICACT), Phoenix Park, Republic of Korea. [Google Scholar]
- Silva, A. (2016). What is leadership? Journal of Business Studies Quarterly, 8(1), 1. [Google Scholar]
- Sousa, M. J., & Rocha, Á. (2019). Digital learning: Developing skills for digital transformation of organizations. Future Generation Computer Systems, 91, 327–334. [Google Scholar] [CrossRef]
- Stahl, B. C., Andreou, A., Brey, P., Hatzakis, T., Kirichenko, A., Macnish, K., Shaelou, S. L., Patel, A., Ryan, M., & Wright, D. (2021). Artificial intelligence for human flourishing–Beyond principles for machine learning. Journal of Business Research, 124, 374–388. [Google Scholar] [CrossRef]
- Sun, T. Q., & Medaglia, R. (2019). Mapping the challenges of Artificial Intelligence in the public sector: Evidence from public healthcare. Government Information Quarterly, 36(2), 368–383. [Google Scholar] [CrossRef]
- Taheri, S., Zaghloul, H., Chagoury, O., Elhadad, S., Ahmed, S. H., El Khatib, N., Abou Amona, R., El Nahas, K., Suleiman, N., & Alnaama, A. (2020). Effect of intensive lifestyle intervention on bodyweight and glycaemia in early type 2 diabetes (DIADEM-I): An open-label, parallel-group, randomised controlled trial. The Lancet Diabetes & Endocrinology, 8(6), 477–489. [Google Scholar]
- Thierer, A. D., Castillo O’Sullivan, A., & Russell, R. (2017). Artificial intelligence and public policy. Mercatus Research Paper. Mercatus Center at George Mason University. [Google Scholar]
- Thong, J. Y. (1999). An integrated model of information systems adoption in small businesses. Journal of Management Information Systems, 15(4), 187–214. [Google Scholar] [CrossRef]
- Trottier, T., Van Wart, M., & Wang, X. (2008). Examining the nature and significance of leadership in government organizations. Public Administration Review, 68(2), 319–333. [Google Scholar] [CrossRef]
- Ursachi, G., Horodnic, I. A., & Zait, A. (2015). How reliable are measurement scales? External factors with indirect influence on reliability estimators. Procedia Economics and Finance, 20, 679–686. [Google Scholar] [CrossRef]
- Van Noordt, C., & Misuraca, G. (2022). Artificial intelligence for the public sector: Results of landscaping the use of AI in government across the European Union. Government Information Quarterly, 39(3), 101714. [Google Scholar] [CrossRef]
- Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. [Google Scholar] [CrossRef]
- Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27, 425–478. [Google Scholar] [CrossRef]
- Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36, 157–178. [Google Scholar] [CrossRef]
- Vogl, T. M., Seidelin, C., Ganesh, B., & Bright, J. (2020). Smart technology and the emergence of algorithmic bureaucracy: Artificial intelligence in UK local authorities. Public Administration Review, 80(6), 946–961. [Google Scholar] [CrossRef]
- Wirtz, B. W., Langer, P. F., & Fenner, C. (2021). Artificial intelligence in the public sector—A research agenda. International Journal of Public Administration, 44(13), 1103–1128. [Google Scholar] [CrossRef]
- Wirtz, B. W., Weyerer, J. C., & Geyer, C. (2019). Artificial intelligence and the public sector—Applications and challenges. International Journal of Public Administration, 42(7), 596–615. [Google Scholar] [CrossRef]
- Zhai, F., Guan, Y., Zhu, B., Chen, S., & He, R. (2021). Intraparticle and interparticle transferable DNA walker supported by DNA micelles for rapid detection of microRNA. Analytical Chemistry, 93(36), 12346–12352. [Google Scholar] [CrossRef]
- Zhu, K., Dong, S., Xu, S. X., & Kraemer, K. L. (2006). Innovation diffusion in global contexts: Determinants of post-adoption digital transformation of European companies. European Journal of Information Systems, 15(6), 601–616. [Google Scholar] [CrossRef]
- Zouridis, S., van Eck, M., & Bovens, M. (2020). Automated discretion. In T. Evans, & P. Hupe (Eds.), Discretion and the quest for controlled freedom. Springer Nature. [Google Scholar]
- Zuiderwijk, A., Chen, Y.-C., & Salem, F. (2021). Implications of the use of artificial intelligence in public governance: A systematic literature review and a research agenda. Government Information Quarterly, 38(3), 101577. [Google Scholar] [CrossRef]
TOE Dimension | Construct | Code | Hypothesis Statement |
---|---|---|---|
Technological | Perceived usefulness | H1 | Perceived usefulness positively influences the intention to adopt AI chatbots in public administration. |
Compatibility | H2 | Compatibility positively influences the intention to adopt AI chatbots in public administration. | |
System complexity | H3 | System complexity negatively influences the intention to adopt AI chatbots in public administration. | |
Organizational | Traditional top-down leadership | H4 | Traditional top-down leadership negatively influences the intention to adopt AI chatbots in public administration. |
Resistance to mindset change | H5 | Resistance to mindset change negatively influences the intention to adopt AI chatbots in public administration. | |
Organizational readiness | H6 | Organizational readiness positively influences the intention to adopt AI chatbots in public administration. | |
Environmental | Effective accountability | H7 | Effective accountability positively influences the intention to adopt AI chatbots in public administration. |
Ethical AI regulation | H8 | Ethical AI regulation positively influences the intention to adopt AI chatbots in public administration. | |
Concerns over data management security | H9 | Concerns over data management security negatively influence the intention to adopt AI chatbots in public administration. |
Demographic Variables | Frequency (n = 501) | Percentage (%) |
---|---|---|
Gender | ||
Male | 350 | 69.90% |
Female | 151 | 30.10% |
Age | ||
18–25 years | 123 | 23.80% |
26–45 years | 240 | 49.90% |
Over 46 years | 138 | 26.30% |
Level of Education | ||
Undergraduate | 153 | 30.10% |
Graduate (master’s) | 290 | 58.30% |
PhD and others | 58 | 11.60% |
Year of Experiences | ||
0–5 | 124 | 24.40% |
6–10 | 233 | 47.30% |
Over 11 years | 144 | 28.30% |
Items | PU | Comp | SCom | TL | RMC | OR | EaA | EAR | CDMS | IAAC |
---|---|---|---|---|---|---|---|---|---|---|
VIF | 1.312 | 1.297 | 1.574 | 1.529 | 1.516 | 1.240 | 1.677 | 1.487 | 1.691 | 1.408 |
TOE | Constructs | Codes | Factor Loadings | C.A | C.R | AVE |
---|---|---|---|---|---|---|
Technological Context | Perceived usefulness | PU1 | 0.805 | 0.655 | 0.849 | 0.738 |
PU2 | 0.910 | |||||
Compatibility | Comp1 | 0.899 | 0.647 | 0.848 | 0.736 | |
Comp2 | 0.814 | |||||
System complexity | SCom1 | 0.886 | 0.753 | 0.890 | 0.802 | |
SCom2 | 0.905 | |||||
Organizational Context | Traditional top-down leadership | TL1 | 0.886 | 0.741 | 0.885 | 0.794 |
TL2 | 0.896 | |||||
Resistance to mindset change | RMC1 | 0.890 | 0.737 | 0.884 | 0.792 | |
RMC2 | 0.890 | |||||
Organizational readiness | OR1 | 0.804 | 0.611 | 0.835 | 0.717 | |
OR2 | 0.888 | |||||
Environmental Context | Effective accountability | EA1 | 0.896 | 0.777 | 0.900 | 0.818 |
EA2 | 0.912 | |||||
Ethical AI regulation | EAR1 | 0.878 | 0.728 | 0.880 | 0.786 | |
EAR2 | 0.895 | |||||
Concerns over data management and security | CDMS1 | 0.875 | 0.780 | 0.899 | 0.817 | |
CDMS2 | 0.932 | |||||
Intention to adopt AI chatbots | IAAC1 | 0.881 | ||||
IAAC2 | 0.873 | 0.700 | 0.869 | 0.769 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1. Compatibility | 0.858 | |||||||||
2. SCom | 0.641 | 0.895 | ||||||||
3. CDMS | 0.724 | 0.663 | 0.904 | |||||||
4. EA | 0.716 | 0.706 | 0.908 | 0.904 | ||||||
5. EAR | 0.666 | 0.869 | 0.733 | 0.792 | 0.887 | |||||
6. IAAC | 0.772 | 0.619 | 0.657 | 0.711 | 0.629 | 0.877 | ||||
7. TL | 0.792 | 0.719 | 0.759 | 0.779 | 0.858 | 0.616 | 0.891 | |||
8. OR | 0.692 | 0.735 | 0.832 | 0.766 | 0.716 | 0.685 | 0.737 | 0.847 | ||
9. PU | 0.756 | 0.724 | 0.706 | 0.749 | 0.743 | 0.775 | 0.732 | 0.723 | 0.859 | |
10. RMC | 0.651 | 0.750 | 0.738 | 0.795 | 0.892 | 0.603 | 0.869 | 0.724 | 0.810 | 0.890 |
Compatibility | SCom | CDMS | EA | EAR | TL | OR | PU | RMC | IAAC | |
---|---|---|---|---|---|---|---|---|---|---|
Comp1 | 0.899 | 0.476 | 0.564 | 0.577 | 0.512 | 0.523 | 0.533 | 0.640 | 0.485 | 0.745 |
Comp2 | 0.814 | 0.656 | 0.706 | 0.672 | 0.657 | 0.896 | 0.682 | 0.668 | 0.664 | 0.561 |
SCom1 | 0.559 | 0.886 | 0.527 | 0.571 | 0.650 | 0.643 | 0.678 | 0.613 | 0.642 | 0.530 |
SCom2 | 0.589 | 0.905 | 0.654 | 0.688 | 0.895 | 0.646 | 0.640 | 0.680 | 0.700 | 0.578 |
CDMS1 | 0.670 | 0.566 | 0.875 | 0.706 | 0.625 | 0.733 | 0.804 | 0.625 | 0.680 | 0.501 |
CDMS2 | 0.647 | 0.627 | 0.932 | 0.912 | 0.696 | 0.656 | 0.718 | 0.652 | 0.663 | 0.668 |
EaA1 | 0.648 | 0.651 | 0.702 | 0.896 | 0.738 | 0.757 | 0.665 | 0.705 | 0.781 | 0.616 |
EaA2 | 0.647 | 0.627 | 0.932 | 0.912 | 0.696 | 0.656 | 0.718 | 0.652 | 0.663 | 0.668 |
EAR1 | 0.593 | 0.626 | 0.646 | 0.717 | 0.878 | 0.886 | 0.630 | 0.636 | 0.890 | 0.537 |
EAR2 | 0.589 | 0.905 | 0.654 | 0.688 | 0.895 | 0.646 | 0.640 | 0.680 | 0.700 | 0.578 |
TL1 | 0.593 | 0.626 | 0.646 | 0.717 | 0.878 | 0.886 | 0.630 | 0.636 | 0.890 | 0.537 |
TL2 | 0.814 | 0.656 | 0.706 | 0.672 | 0.657 | 0.896 | 0.682 | 0.668 | 0.664 | 0.561 |
OR1 | 0.670 | 0.566 | 0.875 | 0.706 | 0.625 | 0.733 | 0.804 | 0.625 | 0.680 | 0.501 |
OR2 | 0.526 | 0.671 | 0.579 | 0.609 | 0.597 | 0.545 | 0.888 | 0.608 | 0.567 | 0.647 |
PU1 | 0.565 | 0.710 | 0.668 | 0.698 | 0.710 | 0.660 | 0.659 | 0.805 | 0.890 | 0.536 |
PU2 | 0.718 | 0.570 | 0.573 | 0.616 | 0.599 | 0.617 | 0.605 | 0.910 | 0.571 | 0.767 |
RMC1 | 0.565 | 0.710 | 0.668 | 0.698 | 0.710 | 0.660 | 0.659 | 0.805 | 0.890 | 0.536 |
RMC2 | 0.593 | 0.626 | 0.646 | 0.717 | 0.878 | 0.886 | 0.630 | 0.636 | 0.890 | 0.537 |
IAAC1 | 0.720 | 0.491 | 0.508 | 0.546 | 0.525 | 0.529 | 0.534 | 0.686 | 0.480 | 0.881 |
IAAC2 | 0.632 | 0.597 | 0.647 | 0.703 | 0.579 | 0.553 | 0.670 | 0.673 | 0.579 | 0.873 |
Fit Index | Value | Threshold | Interpretation |
---|---|---|---|
SRMR | 0.085 | <0.10 | Acceptable model fit |
NFI | 0.771 | ≥0.80 | Slightly acceptable |
d_ULS | 1.506 | 0 | Acceptable |
d_G | 1.126 | 0 | Acceptable |
Chi-square | 4332.9 | — | For reference only |
Collinearity (VIF) | <3.3 for all constructs | <3.3 (Kock, 2015) | No multicollinearity |
Hypothesis | Relationship | β (Path Coefficient) | Standard Deviation | t-Value | p-Value | Supported |
---|---|---|---|---|---|---|
H1 | PU -> IAAC | 0.427 | 0.060 | 7.11 | 0.000 | Yes |
H2 | Comp -> IAAC | 0.482 | 0.065 | 7.42 | 0.000 | Yes |
H3 | SCom -> IAAC | −0.155 | 0.079 | 1.96 | 0.025 | No |
H4 | TL -> IAAC | −0.313 | 0.071 | 4.41 | 0.000 | No |
H5 | RMC -> IAAC | −0.272 | 0.075 | 3.63 | 0.000 | No |
H6 | OR -> IAAC | 0.292 | 0.070 | 4.19 | 0.000 | Yes |
H7 | EaA -> IAAC | 0.421 | 0.076 | 5.50 | 0.000 | Yes |
H8 | EAR -> IAAC | 0.328 | 0.107 | 3.04 | 0.001 | Yes |
H9 | CDMS -> IAAC | −0.317 | 0.080 | 3.94 | 0.000 | No |
Path Coefficients | Direct Effects | Indirect Effects | Total Effects |
---|---|---|---|
Compatibility -> IAAC | 0.482 * | 0 | 0.482 * |
SCom -> IAAC | −0.155 * | 0 | −0.155 * |
CDMS -> IAAC | −0.317 * | 0 | −0.317 * |
EA -> IAAC | 0.421 * | 0 | 0.421 * |
EAR -> IAAC | 0.328 * | 0 | 0.328 * |
TL -> IAAC | −0.313 * | 0 | −0.313 * |
OR -> IAAC | 0.292 * | 0 | 0.292 * |
PU -> IAAC | 0.427 * | 0 | 0.427 * |
RMC -> IAAC | −0.272 * | 0 | −0.272 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omonov, M.S.; Ahn, Y. Towards Smart Public Administration: A TOE-Based Empirical Study of AI Chatbot Adoption in a Transitioning Government Context. Adm. Sci. 2025, 15, 324. https://doi.org/10.3390/admsci15080324
Omonov MS, Ahn Y. Towards Smart Public Administration: A TOE-Based Empirical Study of AI Chatbot Adoption in a Transitioning Government Context. Administrative Sciences. 2025; 15(8):324. https://doi.org/10.3390/admsci15080324
Chicago/Turabian StyleOmonov, Mansur Samadovich, and Yonghan Ahn. 2025. "Towards Smart Public Administration: A TOE-Based Empirical Study of AI Chatbot Adoption in a Transitioning Government Context" Administrative Sciences 15, no. 8: 324. https://doi.org/10.3390/admsci15080324
APA StyleOmonov, M. S., & Ahn, Y. (2025). Towards Smart Public Administration: A TOE-Based Empirical Study of AI Chatbot Adoption in a Transitioning Government Context. Administrative Sciences, 15(8), 324. https://doi.org/10.3390/admsci15080324