Analysis of Labour Market Expectations in the Digital World Based on Job Advertisements
Abstract
1. Introduction
2. Literature Review
2.1. The Relationship Between Digitalisation and the Labour Market
2.2. The Importance of Competencies for Intellectual Jobs
2.3. Differences in Job Advertising Across the EU
2.4. Research Questions
- RQ1: What similarities and differences can be observed between managerial and administrative business occupations across EU countries? If we did not know the exact position, could we determine whether a job advertisement refers to a managerial or a subordinate role based solely on the competencies listed in the ad?
- RQ2: Among the competencies listed in job advertisements, which can be considered general, and which are occupation-specific across EU countries?
- RQ3: Are there country-specific characteristics that can be identified in the examined occupations?
3. Materials and Methods
3.1. Description of the Database
- Core skills and competencies;
- Thinking skills and competencies;
- Self-management skills and competencies;
- Social and communication skills and competencies;
- Physical and manual skills and competencies;
- Life skills and competencies.
- 121. Business services and administration managers (e.g., Finance Managers, Human Resource Managers, Policy and Planning Managers, and Business Services and Administration Managers Not Elsewhere Classified).
- 241. Finance professionals (e.g., Accountants, Financial and Investment Advisers, and Financial Analysts).
- 242. Administration professionals (e.g., Management and Organisation Analysts, Policy Administration Professionals, Personnel and Careers Professionals, and Training and Staff Development Professionals).
- 331. Financial and mathematical associate professionals (e.g., Securities and Finance Dealers and Brokers, Credit and Loans Officers, Accounting Associate Professionals, Statistical, Mathematical and Related Associate Professionals, and Valuers and Loss Assessors).
- 333. Business services agents (e.g., Clearing and Forwarding Agents, Conference and Event Planners, Employment Agents and Contractors, Real Estate Agents, and Property Managers).
- 334. Administrative and specialised secretaries (e.g., Office Supervisors, Legal Secretaries, Administrative and Executive Secretaries, and Medical Secretaries).
3.2. Limitation of the Research
3.3. Description of the Methods Used
- The value of Pearson correlation should be at least 0.3;
- The Kaiser–Meyer–Olkin Measure of Sampling Adequacy (KMO) should be above 0.5;
- The diagonal values of the Anti-Image Correlation Matrix should be above 0.5;
- The cumulative explained variance should be at least 60%.
4. Results
- Competencies cannot be assigned to different job levels.
- Competencies cannot be assigned to specific occupational groups.
- Complying with health and safety procedures (17.0%);
- Developing recipes or menus (2.6%);
- Promoting products, services, or programmes (2.8%);
- Records, reports, or budgets (2.2%).
- Advising on educational or vocational matters (skills) (2.6%);
- Operating machinery for the manufacture and treatment of textiles, fur, and leather products (skills) (2.2%);
- Adapt to change (transversal skill and competence) (2.6%);
- Manage quality (transversal skill and competence) (7.6%).
- 121. Business services and administration managers—Cramer’s V = 0.119, p = 0.739.
- 241. Finance professionals—Cramer’s V = 0.097, p = 0.998.
- 242. Administration professionals—Cramer’s V = 0.124, p = 0.371.
- 331. Financial and mathematical associate professionals—Cramer’s V = 0.122, p = 0.418.
- 333. Business services agents—Cramer’s V = 0.108, p = 0.789.
- 334. Administrative and specialised secretaries—Cramer’s V = 0.129, p = 0.137.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Country/Occupational Group | OC121 | OC241 | OC242 | OC331 | OC333 | OC334 |
---|---|---|---|---|---|---|
AT | 1 | 1 | 1 | 1 | 1 | 1 |
BE | 2 | 2 | 2 | 2 | 2 | 1 |
BG | 3 | 3 | 3 | 2 | 2 | 1 |
CY | 1 | 3 | 2 | |||
CZ | 2 | 2 | 2 | 4 | 3 | 2 |
DE | 2 | 1 | 1 | 5 | 2 | 1 |
DK | 2 | 1 | 1 | 5 | 1 | 1 |
EE | 4 | 3 | ||||
EL | 2 | 3 | 3 | 3 | 2 | |
ES | 3 | 3 | 2 | 3 | 3 | 3 |
FI | 2 | 3 | 2 | 5 | 3 | 1 |
FR | 2 | 2 | 2 | 1 | 2 | 1 |
HR | 3 | 2 | 3 | 2 | 3 | 1 |
HU | 3 | 2 | 2 | 2 | 3 | 3 |
IE | 1 | 1 | 1 | 1 | 4 | |
IT | 1 | 1 | 1 | 2 | 2 | 1 |
LT | 3 | 2 | 2 | 2 | 3 | 3 |
LU | 2 | 2 | 4 | 3 | 3 | 3 |
LV | 2 | 2 | 2 | 2 | 3 | 2 |
MT | 1 | 1 | 1 | 5 | 1 | 4 |
NL | 2 | 1 | 1 | 5 | 1 | 1 |
PL | 4 | 3 | 3 | 4 | 3 | 3 |
PT | 2 | 2 | 2 | 2 | 3 | 2 |
RO | 3 | 2 | 2 | 3 | 2 | 2 |
SE | 2 | 1 | 1 | 5 | 1 | 1 |
SI | 4 | 3 | 3 | 4 | 3 | 3 |
SK | 3 | 2 | 2 | 2 | 3 | 2 |
References
- Adams, A. (2018). Technology and the labour market: The assessment. Oxford Review of Economic Policy, 34(3), 349–361. [Google Scholar] [CrossRef]
- Baculakova, K., & Harakalova, L. (2017). Creative industries in the EU: Factors influencing employment. Economic Annals-XXI, 164(3–4), 40–44. [Google Scholar] [CrossRef]
- Brockmann, M., Clarke, L., & Winch, C. (2011). Knowledge, skills and competence in the European labour Market: What’s in a vocational qualification? Routledge. [Google Scholar]
- Csehné Papp, I., & Hajós, L. (2011). Regional discrepancies in Hungary. Acta Regionalia et Environmentalica, 2(3), 42–46. [Google Scholar]
- Dieguez, T. (2024). Understanding Gen Z to innovate in industry 4.0. In J. Machado, F. Soares, J. Trojanowska, V. Ivanov, K. Antosz, D. Cagáňová, V. K. Manupati, & A. Pereira (Eds.), Innovations in industrial engineering III. Lecture notes in mechanical engineering. Springer. [Google Scholar] [CrossRef]
- Dzobelova, V., Bakunin, S., Lukinov, V., & Erofeeva, V. (2023). The main trends in the labour market development in the context of the economy digitalization. Reliability: Theory and Applications, 18(5), 336–341. [Google Scholar] [CrossRef]
- Feng, R., Shen, C., & Guo, Y. (2024). Digital finance and labor demand of manufacturing enterprises: Theoretical mechanism and heterogeneity analysis. International Review of Economics & Finance, 89(Pt A), 17–32. [Google Scholar] [CrossRef]
- Götz, M., & Jankowska, B. (2020). Adoption of industry 4.0 technologies and company competitiveness: Case studies from a post-transition economy. Фoрсайт, 14(4), 61–78. [Google Scholar] [CrossRef]
- Graham, M., & Anwar, M. A. (2019). The global gig economy: Towards a planetary labour market? First Monday, 24(4), 1–31. [Google Scholar] [CrossRef]
- Grigorescu, A., Zamfir, A.-M., Sigurdarson, H. T., & Carlson, E. L. (2022). Skill needs among European workers in knowledge production and transfer occupations. Electronics, 11(18), 2927. [Google Scholar] [CrossRef]
- Heeks, R. (2022). Digital inequality beyond the digital divide: Conceptualizing adverse digital incorporation in the global south. Information Technology for Development, 28(4), 688–704. [Google Scholar] [CrossRef]
- Heijke, H., Men, C., & Ramaekers, G. (2003). An investigation into the role of human capital competencies and their pay-off. International Journal of Manpower, 24(7), 750–773. [Google Scholar] [CrossRef]
- Hetmańczyk, P. (2024). Digitalization and its impact on labour market and education. Selected aspects. Education and Information Technologies, 29, 11119–11134. [Google Scholar] [CrossRef]
- Javaid, M., Haleem, A., Singh, R. P., & Sinha, A. K. (2023). Digital economy to improve the culture of industry 4.0: A study on features, implementation and challenges. Green Technologies and Sustainability, 2(2), 100083. [Google Scholar] [CrossRef]
- Jánosa, A. (2015). Adatelemzés IBM SPSS statistics megoldások alkalmazásával. Magyar Könyvvizsgálói Kamara Oktatási Központ Kft. [Google Scholar]
- Kornelakis, A., & Veliziotis, M. (2018). Job quality in Europe: Regulation, workplace innovation and human resources practices. Routledge. [Google Scholar] [CrossRef]
- Korshunov, I., Lubnikov, S. V., & Shirkova, N. N. (2023). Adult education and training for the development of problem-solving skills. The Education and Science Journal, 25(6), 166–192. [Google Scholar] [CrossRef]
- Lekashvili, E., & Jamagidze, L. (2023). Structural transformation and export performance in Georgia: Is there a need for the new industrial policy? In Strategic planning and marketing in digital world (pp. 4–14). University of National and World Economy. [Google Scholar] [CrossRef]
- Li, W., Yang, X., & Yin, X. (2024). Digital transformation and labor upgrading. Pacific-Basin Finance Journal, 83, 102280. [Google Scholar] [CrossRef]
- Ligonenko, L., Antoniuk, L., Ilnytskyy, D., & Tsyrkun, O. (2022). Assessment of the impact of digital skills on the level of satisfaction with digital transformation processes in Ukraine. Scientific Horizons, 25(7), 43–54. [Google Scholar] [CrossRef]
- Mosteanu, N. R. (2020). Finance digitalization and its impact on labour market. Technium Social Studies Journal, 8, 598–605. [Google Scholar] [CrossRef]
- Müller, J. M., Kiel, D., & Voigt, K.-I. (2018). What drives the implementation of industry 4.0? The role of opportunities and challenges in the context of sustainability. Sustainability, 10(1), 247. [Google Scholar] [CrossRef]
- Ojan, M. P., Lara-Navarra, P., & Sánchez-Navarro, L. (2025). Revolution or adaptation of soft skills? Evolution and priorities in the Spanish labour market. Transforming Government: People, Process and Policy. [Google Scholar] [CrossRef]
- Omol, E. J. (2024). Organizational digital transformation: From evolution to future trends. Digital Transformation and Society, 3(3), 240–256. [Google Scholar] [CrossRef]
- Pater, R., Szkola, J., & Kozak, M. (2019). A method for measuring detailed demand for workers’ competencies. Economics, 13(1), 20190027. [Google Scholar] [CrossRef]
- Piątkowski, M. J. (2020). Expectations and challenges in the labour market in the context of industrial revolution 4.0. The agglomeration method-based analysis for Poland and other EU member states. Sustainability, 12(13), 5437. [Google Scholar] [CrossRef]
- Pokrovskaia, N. N., Golohvastov, D. V., & Ababkova, M. Y. (2021). Innovative growth of the virtual economy: A regulatory paradigm shift. Economics and Management, 27(8), 576–592. [Google Scholar] [CrossRef]
- Poszytek, P., Hyrcza-Michalska, M., Brodny, J., Wawrzała, P., Gębal, P., Lisok, J., Kruszewska, J., Sigurðardóttir, A. G., Bugnova, M., & Dobrowolska, M. (2023). Theoretical review of research to date on competencies 4.0—What do we know about competencies in industry 4.0? A status quo analysis. Sustainability, 15(16), 12267. [Google Scholar] [CrossRef]
- Rainnie, A., & Dean, M. (2020). Industry 4.0 and the future of quality work in the global digital economy. Labour and Industry, 30(1), 16–33. [Google Scholar] [CrossRef]
- Rashid, A. B., & Kausik, A. K. (2024). AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications. Hybrid Advances, 7, 100277. [Google Scholar] [CrossRef]
- Reci, S., & Kokaj, G. (2023). Legal framework of professional mobility in the EU. Social and Legal Studios, 6(3), 135–142. [Google Scholar] [CrossRef]
- Richiardi, M. G., Westhoff, L., Astarita, C., Ernst, E., Fenwick, C., Khabirpour, N., & Pelizzari, L. (2025). The impact of a decade of digital transformation on employment, wages, and inequality in the EU: A “conveyor belt” hypothesis. Socio-Economic Review, mwaf011. [Google Scholar] [CrossRef]
- Sajtos, L., & Mitev, A. (2007). SPSS kutatási és adatelemzési kézikönyv. Alinea Kiadó. [Google Scholar]
- Sjödin, D., Parida, V., & Kohtamäki, M. (2023). Artificial intelligence enabling circular business model innovation in digital servitization: Conceptualizing dynamic capabilities, AI capacities, business models and effects. Technological Forecasting and Social Change, 197, 122903. [Google Scholar] [CrossRef]
- Stek, K., Zunk, B. M., Koch, V., & Schiele, H. (2022). Culture’s consequences for purchasing: Comparing purchasing job ad requirements from different European countries with cultural models. International Journal of Procurement Management, 15(3), 305–339. [Google Scholar] [CrossRef]
- Székelyi, M., & Barna, I. (2002). Túlélőkészlet az SPSS-hez Többváltozós elemzési technikákról társadalomkutatók számára. TYPOTEX Kiadó. [Google Scholar]
- Tóth, A., Kálmán, B. G., Poór, J., & Papp, I. C. (2023). Impact of the pandemic on unemployment in selected countries and country groups. Regional Statistics, 13(3), 451–486. [Google Scholar] [CrossRef]
- Vrchota, J., Mařiková, M., Řehoř, P., Rolínek, L., & Toušek, R. (2020). Human resources readiness for industry 4.0. Journal of Open Innovation: Technology, Market, and Complexity, 6(1), 3. [Google Scholar] [CrossRef]
- Zakarevičius, P., & Žukauskas, P. (2008). A Comparative study of managers’ career factors in selected EU countries. Transformations in Business and Economics, 7(2), 84–97. [Google Scholar]
Country Code/Occupation Code | OC121 | OC241 | OC242 | OC331 | OC333 | OC334 | Total |
---|---|---|---|---|---|---|---|
AT | 2681 | 2971 | 5170 | 5091 | 2709 | 5773 | 24,395 |
BE | 6870 | 12,297 | 18,029 | 23,163 | 10,886 | 19,275 | 90,520 |
BG | 277 | 337 | 957 | 988 | 726 | 174 | 3459 |
CY | 7 | 11 | 13 | 15 | 13 | 11 | 70 |
CZ | 1536 | 4973 | 1415 | 3551 | 1571 | 1795 | 14,841 |
DE | 44,499 | 59,150 | 101,502 | 63,267 | 40,159 | 141,584 | 450,161 |
DK | 4144 | 1321 | 2764 | 3568 | 1583 | 3006 | 16,386 |
EE | 54 | 33 | 286 | 225 | 83 | 148 | 829 |
EL | 516 | 1038 | 695 | 869 | 1848 | 1101 | 6067 |
ES | 1921 | 7327 | 3726 | 3885 | 22,390 | 10,830 | 50,079 |
FI | 12 | 22 | 30 | 13 | 12 | 12 | 101 |
FR | 50,253 | 57,862 | 46,547 | 146,223 | 112,139 | 92,803 | 505,827 |
HR | 386 | 92 | 202 | 237 | 272 | 365 | 1554 |
HU | 2890 | 2627 | 1645 | 6610 | 1669 | 3831 | 19,272 |
IE | 748 | 443 | 798 | 255 | 262 | 893 | 3399 |
IT | 5773 | 6223 | 14,922 | 8812 | 14,901 | 32,746 | 83,377 |
LT | 2018 | 1937 | 1189 | 2227 | 1635 | 1907 | 10,913 |
LU | 7 | 3 | 5 | 25 | 5 | 11 | 56 |
LV | 182 | 509 | 428 | 570 | 189 | 201 | 2079 |
MT | 352 | 528 | 213 | 254 | 213 | 326 | 1886 |
NL | 1930 | 1418 | 4849 | 3215 | 5066 | 5229 | 21,707 |
PL | 9895 | 13,411 | 7297 | 9170 | 6112 | 2158 | 48,043 |
PT | 668 | 730 | 1691 | 1065 | 1780 | 884 | 6818 |
RO | 19 | 43 | 54 | 62 | 124 | 80 | 382 |
SE | 12,576 | 2443 | 10,092 | 11,408 | 2652 | 6059 | 45,230 |
SI | 199 | 83 | 311 | 337 | 81 | 105 | 1116 |
SK | 2141 | 1665 | 2389 | 4373 | 2378 | 2012 | 14,958 |
Total | 152,554 | 179,497 | 227,219 | 299,478 | 231,458 | 333,319 | 1,423,525 |
Country Code/Occupation Code | OC121 | OC241 | OC242 | OC331 | OC333 | OC334 |
---|---|---|---|---|---|---|
AT | 69 | 75 | 77 | 79 | 76 | 86 |
BE | 99 | 95 | 112 | 122 | 119 | 137 |
BG | 36 | 47 | 44 | 38 | 55 | 28 |
CY | 7 | 48 | 12 | 28 | 26 | 29 |
CZ | 53 | 69 | 54 | 55 | 53 | 48 |
DE | 157 | 146 | 175 | 153 | 161 | 169 |
DK | 82 | 66 | 83 | 85 | 78 | 99 |
EE | 10 | 10 | 15 | 4 | 4 | 6 |
EL | 40 | 49 | 41 | 34 | 64 | 41 |
ES | 68 | 86 | 78 | 71 | 122 | 89 |
FI | 24 | 26 | 35 | 19 | 13 | 21 |
FR | 171 | 161 | 175 | 196 | 200 | 215 |
HR | 28 | 29 | 8 | 26 | 30 | 27 |
HU | 60 | 74 | 62 | 76 | 73 | 59 |
IE | 52 | 59 | 54 | 42 | 69 | 68 |
IT | 83 | 89 | 94 | 87 | 113 | 94 |
LT | 52 | 73 | 47 | 57 | 47 | 53 |
LU | 36 | 18 | 16 | 24 | 19 | 24 |
LV | 22 | 35 | 30 | 37 | 32 | 25 |
MT | 43 | 52 | 40 | 40 | 51 | 47 |
NL | 77 | 86 | 104 | 104 | 129 | 119 |
PL | 98 | 98 | 95 | 98 | 108 | 71 |
PT | 51 | 64 | 64 | 58 | 71 | 57 |
RO | 23 | 43 | 42 | 34 | 54 | 35 |
SE | 113 | 94 | 110 | 123 | 100 | 116 |
SI | 27 | 15 | 24 | 32 | 17 | 15 |
SK | 58 | 77 | 70 | 76 | 69 | 62 |
Occupational Group\Competence | Personal Skills and Development (Knowledge) | Accounting and Taxation (Knowledge) | Accessing and Analysing Digital Data (Skills) | Demonstrating Willingness to Learn (Transversal Skills) |
---|---|---|---|---|
OC121 | 1380.25% | 1387.40% | 1632.63% | |
OC241 | 1378.33% | 1301.49% | 1589.05% | |
OC242 | 1240.91% | 1019.02% | 1597.74% | |
OC331 | 1183.39% | 849.91% | 1230.89% | |
OC333 | 1121.36% | 814.27% | 1270.96% | |
OC334 | 821.83% | 1053.97% | 1431.43% |
ESCO_Hier_Level_0 | OC121 | OC241 | OC242 | OC331 | OC333 | OC334 |
---|---|---|---|---|---|---|
knowledge | 70 | 65 | 70 | 75 | 74 | 78 |
language skills and knowledge | 1 | 1 | 1 | 1 | 1 | 1 |
skills | 130 | 125 | 140 | 142 | 155 | 157 |
transversal skills and competencies | 23 | 27 | 31 | 28 | 27 | 28 |
Category | Mean | N | Std. Deviation | Relative Standard Deviation (RSD) |
---|---|---|---|---|
knowledge | 0.0359 | 432 | 0.1001 | 279.0% |
language skills and knowledge | 0.4677 | 6 | 0.0315 | 6.7% |
skills | 0.0284 | 849 | 0.0664 | 234.1% |
transversal skills and competencies | 0.1113 | 164 | 0.1700 | 152.8% |
Clusters | Number/Case | Average/OC121 | Average/OC241 | Average/OC242 | Average/OC331 | Average/OC333 | Average/OC334 |
---|---|---|---|---|---|---|---|
1 | 9 | 0.265 | 0.267 | 0.210 | 0.399 | 0.199 | 0.172 |
2 | 122 | 0.010 | 0.012 | 0.012 | 0.008 | 0.010 | 0.011 |
3 | 29 | 0.138 | 0.102 | 0.110 | 0.069 | 0.139 | 0.067 |
4 | 6 | 0.576 | 0.492 | 0.543 | 0.416 | 0.416 | 0.392 |
Total | 166 | 0.066 | 0.059 | 0.059 | 0.054 | 0.058 | 0.043 |
Esco_Hier_Level_0 | Esco_Hier_Level_3 | OC121 | OC241 | OC242 | OC331 | OC333 | OC334 |
---|---|---|---|---|---|---|---|
knowledge | management and administration | 0.650 | 0.443 | 0.514 | 0.324 | 0.398 | 0.088 |
knowledge | personal skills and development | 0.570 | 0.448 | 0.545 | 0.139 | 0.391 | 0.273 |
language skills and knowledge | languages | 0.478 | 0.477 | 0.512 | 0.453 | 0.417 | 0.470 |
skills | accessing and analysing digital data | 0.557 | 0.454 | 0.451 | 0.414 | 0.372 | 0.374 |
transversal skills and competencies | collaborating in teams and networks | 0.538 | 0.492 | 0.526 | 0.571 | 0.406 | 0.492 |
transversal skills and competencies | demonstrating willingness to learn | 0.663 | 0.638 | 0.706 | 0.594 | 0.511 | 0.657 |
Code | OC121 | OC241 | OC242 | OC331 | OC333 | OC334 |
---|---|---|---|---|---|---|
Number of clusters | 4 | 3 | 4 | 5 | 3 | 4 |
Countries not in the cluster | Cyprus Estonia | - | Cyprus Estonia | Estonia Ireland | Cyprus Estonia | Estonia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musinszki, Z.; Horváthné Csolák, E.; Lipták, K. Analysis of Labour Market Expectations in the Digital World Based on Job Advertisements. Adm. Sci. 2025, 15, 282. https://doi.org/10.3390/admsci15070282
Musinszki Z, Horváthné Csolák E, Lipták K. Analysis of Labour Market Expectations in the Digital World Based on Job Advertisements. Administrative Sciences. 2025; 15(7):282. https://doi.org/10.3390/admsci15070282
Chicago/Turabian StyleMusinszki, Zoltán, Erika Horváthné Csolák, and Katalin Lipták. 2025. "Analysis of Labour Market Expectations in the Digital World Based on Job Advertisements" Administrative Sciences 15, no. 7: 282. https://doi.org/10.3390/admsci15070282
APA StyleMusinszki, Z., Horváthné Csolák, E., & Lipták, K. (2025). Analysis of Labour Market Expectations in the Digital World Based on Job Advertisements. Administrative Sciences, 15(7), 282. https://doi.org/10.3390/admsci15070282