Artificial Intelligence Risks and Challenges in the Spanish Public Administration: An Exploratory Analysis through Expert Judgements
Abstract
:1. Introduction
- Do we need a legal definition of AI?
- What are the risks associated with the AI uses in Spanish public administration?
- Can current Spanish legal mechanisms solve them?
2. Background
2.1. Theoretical Frameworks on Artificial Intelligence in the Public Sector. Concept, Benefits, and Risks
2.2. Policies on AI in the European Union. Ethics and Human Rights as the Core to the Next Regulation
The European Proposal for a Regulation on the Uses of AI
2.3. AI in Spanish Public Administration. The Legal Guarantees of Administrative Law
3. Materials and Methods
3.1. Data Collection, Procedures, and Instrument
3.2. Data Analysis
4. Results
4.1. Concept and Design of the AI Algorithms
“We need a homogeneous and clear definition of artificial intelligence. Computerised systems capable of thinking and learning by themselves. The creation of these algorithms must be understood as a human process.”(Interviewee 10)
“An AI system needs a sequence of instructions that specify the different actions that the computer must execute to solve a specific problem. This sequence of instructions is the algorithmic structure used by the AI system. Therefore, “algorithm” is the procedure to find the solution to the problem.”(Interviewee 4)
“A system with machine learning could learn the data and classify with greater precision, but one with deep learning can ‘train’ with the new data it receives. That is, it can use the wrong differentiator and make a mistake once, but the next time the system use another it gets closer and closer to the correct result.”(Interviewee 8)
“Certainly, an AI design based on ethics can go a long way toward introducing positive values into society and preventing or correcting injustices.”(Interviewee 14)
“We also need to move forward in ethics, perhaps with an ethical statement for AI professionals like the one used by other professions (lawyers, doctors).”(Interviewee 1)
4.2. Transparency and Trust in AI algorithms
“We can trust in artificial intelligence, but we need to improve some issues related to the transparency and comprehension of algorithms and human supervision of all processes.”(Interviewee 1)
“The question would be if we can trust humans. Artificial intelligence is a development of the “human” for this reason, it carries several “pros and cons”. Yes, we can trust artificial intelligence but—like everything else—the level of trust will depend on where it comes from. For example, is a system developed in the European Union the same as one in China? No. Since they do not have an equal legal system. This situation is the same for companies, some are more reliable than others.”(Interviewee 4)
“Elements such as transparency (what data it uses, what decisions it makes, etc.) are essential to monitoring the performance of the algorithm once it is in a state of implementation. The possibility of carrying out external audits, for example, would also be interesting to study.”(Interviewee 6)
4.3. Risks in the Use of AI Algorithms
“The biases depend on the data that the algorithm uses, that is, if the data includes this type of discrimination, the biases are transmitted to the algorithm. These can be produced by the prejudices of the designers.”(Interviewee 5)
“Whoever designs the algorithm can determine the existence of biases in the algorithms. This can be conscious or unconscious, reproducing certain social patterns that may involve biases. However, although the design of an algorithm by a woman can avoid some of these biases, it may not happen in all cases since certain patterns are unconsciously maintained.”(Interviewee 2)
“I believe that biases, all of them, have to be dealt with holistically. Besides, the problem of bias must be approached from the design, and in AI implies the analysis of the data used for development, and of the variables selected in these in the first place.”(Interviewee 13)
“When the algorithms process personal data, the adoption of the necessary measures for the management of privacy and personal data is required under the provisions of The General Data Protection Regulation (GDPR).”(Interviewee 2)
“The opacity or lack of transparency is one of the main characteristics of the algorithms (black boxes) and one of its principal defects. To face this undeniable reality, major technology companies have also begun to recognise the problems that come with this type of AI technology.”(Interviewee 12)
“Algorithmic opacity makes it extremely difficult to detect algorithmic bias. Principles such as the explainability of the algorithm, its fearless face enormous difficulties in achieving their objectives due to the extremely high complexity of many algorithms, even for technological experts.”(Interviewee 3)
4.4. Legislative and Administrative Instruments
“Control over AI programming is essential and must be carried out by independent bodies or mechanisms, preferably collegiate and with the participation of the people/groups that may be affected by the decision. However, control/supervision cannot be limited to the initial moment, prior to its operation, but, on the contrary, it must be projected in an evolutionary way to the later phases of system operation, particularly if non-deterministic algorithms are used.”(Interviewee 8)
“We can take advantage of AI by adapting it to principles such as loyalty, explainability, or accountability. Different principles focused on achieving AI person-centred and therefore, with an egalitarian approach. In this sense, technological, ethical, and training measures can be implemented, especially the latter aimed at software designers.”(Interviewee 12)
“The quality of the artificial system could be assessed with a prior impact assessment (article 35 GDPR) but including equality. This evaluation should be carried out into the administrative procedure that leads to the approval of the algorithms if it is designed by the public administration itself. Although, in those cases in which the development of the algorithm is contracted to a private company, this evaluation must be agreed in the contract.”(Interviewee 9)
5. Discussion
5.1. Concept, Transparency, and Trust of Artificial Intelligence Algorithms
5.2. Main Risks of Using AI Algorithms in Public Administration
5.3. The Lack of Spanish Regulation and Preventive Proposals
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Abdeldayem, Marwam Mohamed, and Saeed Hameed Aldulaimi. 2020. Trends and Opportunities of Artificial Intelligence in Human Resource Management: Aspirations for Public Sector in Bahrain. International Journal of Scientific & Technology 9: 3867–71. [Google Scholar]
- Ali, Danish, and Samuel Frimpong. 2020. Artificial Intelligence, Machine Learning and Process Automation: Existing Knowledge Frontier and Way Forward for Mining Sector. Artificial Intelligence Review 53: 6025–42. [Google Scholar] [CrossRef]
- Allam, Zaheer, and Zaynah Asma Dhunny. 2019. On Big Data, Artificial Intelligence and Smart Cities. Cities 89: 80–91. [Google Scholar] [CrossRef]
- Ballester, Lluis, Carmen Orte, and Joseph Lluis Oliver. 2003. Análisis Cualitativo de Entrevistas. Nómadas 18: 140–49. [Google Scholar]
- Batarseh, Feras A., Laura Freeman, and Chih-Hao Huang. 2021. A Survey on Artificial Intelligence Assurance. Journal of Big Data 8: 1–30. [Google Scholar] [CrossRef]
- Bertolini, Massimo, Davide Mezzogori, Mattia Neroni, and Francesco Zammori. 2021. Machine Learning for Industrial Applications: A Comprehensive Literature Review. Expert Systems with Applications 175: 114–30. [Google Scholar] [CrossRef]
- Bogner, Alexander, Beate Littig, and Wolfgang Menz. 2009. Introduction: Expert Interviews—An Introduction to a New Methodological Debate. In Interviewing Experts. London: Palgrave Macmillan, pp. 1–13. [Google Scholar]
- Boix Palop, Andrés. 2020. Los Algoritmos Son Reglamentos: La Necesidad de Extender Las Garantías Propias de Las Normas Reglamentarias a Los Programas Empleados Por La Administración Para La Adopción de Decisiones. Revista de Derecho Público 1: 223–69. [Google Scholar]
- Caliskan, Aylin, Joanna J. Bryson, and Arvind Narayanan. 2017. Semantics Derived Automatically from Language Corpora Contain Human-Like Biases. Science 356: 183–86. [Google Scholar] [CrossRef] [Green Version]
- Campos Acuña, Ma Concepción. 2019. (In)Necesarias Regulaciones Para La Garantía Del Servicio Público. Revista Vasca de Gestión de Personas y Organizaciones Públicas 3: 74–91. [Google Scholar]
- Cerrillo i Martínez, Agustí. 2017. Contratació Oberta; Cataluña: Generalitat de Catalunya.
- Cerrillo i Martínez, Agustí. 2020a. ¿Son Fiables Las Decisiones de Las Administraciones Públicas Adoptadas Por Algoritmos? European Law of Digital Administration & Law 1: 18–36. [Google Scholar]
- Cerrillo i Martínez, Agustí. 2020b. El Derecho Para Una Inteligencia Artificial Centrada En El Ser Humano y Al Servicio de Las Instituciones. Revista de Internet, Derecho y Política 30: 1–6. [Google Scholar]
- Cerrillo i Martínez, Agustí. 2020c. El Impacto de La Inteligencia Artificial En Las Administraciones Públicas: Estado de La Cuestión y Una Agenda. In Retos Jurídicos de La Inteligencia Artificial. Edited by Agustí Cerrillo i Martínez and Miquel Peguera Poch. Pamplona: Thomson Reuters Aranzadi, pp. 75–92. [Google Scholar]
- Coglianese, Cary, and David Lehr. 2017. Regulating by Robot: Administrative Decision Making in the Machine-Learning Era. Georgetown Law Journal 17: 1147–223. [Google Scholar]
- Cotino Hueso, Lorenzo. 2017. Big Data e Inteligencia Artificial. Una Aproximación a Su Tratamiento Jurídico Desde Los Derechos Fundamentales. Dilemata 24: 131–50. [Google Scholar]
- Cotino Hueso, Lorenzo. 2019. Riesgos e Impactos Del Big Data, La Inteligencia Artificial y La Robótica. Enfoques, Modelos y Principios de La Respuesta Del Derecho. Revista General de Derecho Administrativo 50: 1–30. [Google Scholar]
- Criado, J. Ignacio. 2016. Las Administraciones Públicas En La Era Del Gobierno Abierto. Gobernanza Inteligente Para Un Cambio de Paradigma En La Gestión Pública. Revista de Estudios Políticos 173: 245–75. [Google Scholar] [CrossRef]
- Criado, J. Ignacio. 2021. La Política de Administración Digital En España. De Los Servicios Públicos Digitales a La Gobernanza Inteligente y Administración Pública 4.0. In Repensando la Administración Pública. Edited by Carles Ramió. Madrid: Instituto Nacional de la Administración Público, pp. 71–108. [Google Scholar]
- Dawes, Sharon S. 2013. Advancing Digital Government. The Research-Practice-Knowledge Connection. Gestión y Política Pública, 49–67. [Google Scholar]
- Dejonckheere, Melissa, and Lisa M. Vaughn. 2019. Semistructured interviewing in primary care research: A balance of relationship and rigour. Family Medicine and Community Health 7: 1–8. [Google Scholar] [CrossRef] [Green Version]
- European Commission. 2018. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committe of the Regions: Artificial Intelligence for Europe. Brussels. Available online: https://digital-strategy.ec.europa.eu/en/library/communication-artificial-intelligence-europe (accessed on 15 August 2021).
- European Parliament. 2019a. EU Guidelines on Ethics in Artificial Intelligence: Context and Implementation. Brussels. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2019/640163/EPRS_BRI(2019)640163_EN.pdf (accessed on 18 August 2021).
- European Parliament. 2019b. European Parliament Resolution of 12 February 2019 on a Comprehensive European Industrial Policy on Artificial Intelligence and Robotics. Strasbourg. Available online: https://www.europarl.europa.eu/doceo/document/TA-8-2019-0081_EN.html (accessed on 18 August 2021).
- European Parliamentary Research Service. 2019. EU Guidelines on Ethics in Artificial Intelligence: Context and Implementation. Brussels: European Parliament Research Service. [Google Scholar]
- Fernández Hernández, Carlos. 2021. Proyecto de Reglamento Europeo Sobre Inteligencia Artificial. Diario La Ley. Ciberderecho 50: 1–12. [Google Scholar]
- Fernandez-Aller, Celia, Arturo Fernandez de Velasco, Angeles Manjarres, David Pastor-Escuredo, Simon Pickin, Jesus Salgado Criado, and Txetxu Ausin. 2021. An Inclusive and Sustainable Artificial Intelligence Strategy for Europe Based on Human Rights. IEEE Technology and Society Magazine 40: 46–54. [Google Scholar] [CrossRef]
- Glaser, Barney G., and Anselm L. Strauss. 2000. Discovery of Grounded Theory: Strategies for Qualitative Research. New York: Routledge. [Google Scholar]
- Harris, John. 2018. Who Owns My Autonomous Vehicle? Ethics and Responsibility in Artificial and Human Intelligence. Cambridge Quarterly of Healthcare Ethics 27: 599–609. [Google Scholar] [CrossRef]
- Hildebrandt, Mirei. 2020. The Artificial Intelligence of European Union Law. German Law Journal 21: 74–79. [Google Scholar] [CrossRef] [Green Version]
- Huergo Lora, Alejandro. 2021. El Proyecto de Reglamento Sobre La Inteligencia Artificial. Almacén de Derecho. Available online: https://almacendederecho.org/el-proyecto-de-reglamento-sobre-la-inteligencia-artificial (accessed on 18 August 2021).
- King, Nigel, Christine Horrocks, and Joanna Brooks. 2019. Interviews in Qualitative Research. London: SAGE Publications. [Google Scholar]
- de la Sierra Morón, Susana. 2021. Control Judicial de Los Algoritmos: Robots, Administración y Estado de Derecho. Revista de Jurisprudencia 1: 1–12. [Google Scholar]
- López-Chao, Vicente, Antonio Amado Lorenzo, and Jorge Martin-Gutiérrez. 2019. Architectural Indoor Analysis: A Holistic Approach to Understand the Relation of Higher Education Classrooms and Academic Performance. Sustainability 11: 6558. [Google Scholar] [CrossRef] [Green Version]
- Martínez, Miguel. 2006. La Investigación Cualitativa (Síntesis Conceptual). Revista de Investigación en Psicología 9: 123–46. [Google Scholar] [CrossRef]
- Menéndez Sebastián, Eva M. 2021. De la Función Consultiva Clásica a la Buena Administración. Evolución en el Estado Social y Democrático de Derecho. Madrid: Marcial Pons. [Google Scholar]
- Mergel, Ines, Noella Edelmann, and Nathalie Haug. 2019. Defining Digital Transformation: Results from Experts Interviews. Government Information Quarterly 39: 1–16. [Google Scholar] [CrossRef]
- Mesko, Bertalan. 2017. The Role of Artificial Intelligence in Precision Medicine. Expert Review of Precision Medicine and Drug Development 2: 239–41. [Google Scholar] [CrossRef]
- Miles, Matthew B. 1994. An Expanded Sourcebook Qualitative Data Analysis. London: SAGE Publications. [Google Scholar]
- Morley, Jessica, Luciano Floridi, Libby Kinsey, and Anat Elhalal. 2020. From What to How: An Initial Review of Publicly Available AI Ethics Tools, Methods and Research to Translate Principles into Practices. Science and Engineering Ethics 26: 2141–68. [Google Scholar] [CrossRef] [Green Version]
- Murphy, Kevin P. 2012. Machine Learning: A Probabilistic Perspective. Cambrige: The MIT Press. [Google Scholar]
- Navas Navarro, Susana. 2017. Derecho e IA Desde El Diseño. Aproximaciones. In IA. Tecnología, Derecho. Valencia: Tirant lo Blanch, pp. 23–72. [Google Scholar]
- Nikitas, Alexandros, Kalliopi Michalakopoulou, Eric Tchouamou Njoya, and Dimitris Karampatzakis. 2020. Artificial Intelligence, Transport and the Smart City: Definitions and Dimensions of a New Mobility Era. Sustainability 12: 2789. [Google Scholar] [CrossRef] [Green Version]
- Nishant, Rohit, Mike Kennedy, and Jacqueline Corbett. 2020. Artificial Intelligence for Sustainability: Challenges, Opportunities, and a Research Agenda. International Journal of Information Management 53: 102–4. [Google Scholar] [CrossRef]
- Noble, Safiya Umoja. 2018. Algorithms of Oppression: How Search Engines Reinforce Racism. New York: New York University Press. [Google Scholar]
- Nowicki, Marek, Łukasz Górski, and Piotr Bała. 2021. PCJ Java Library as a Solution to Integrate HPC, Big Data and Artificial Intelligence Workloads. Journal of Big Data 8: 62–75. [Google Scholar] [CrossRef]
- O’Neil, Cathy. 2016. Weapons of Math Destruction. How Big Data Increases Inequality and Threatens Democracy. New York: Crown Publishers. [Google Scholar]
- Piñar Mañas, Jose Luis. 2019. Inteligencia Artificial: Técnica, Ética y Derecho. Escritura Pública 118: 40–41. [Google Scholar]
- Ponce Solé, Juli. 2018. La Prevención de Riesgos de Mala Administración y Corrupción, La Inteligencia Artificial y El Derecho a Una Buena Administración. Revista Internacional de Transparencia e Integridad 6: 1–19. [Google Scholar]
- Ponce Solé, Juli. 2019. Inteligencia Artificial, Derecho Administrativo y Reserva de Humanidad: Algoritmos y Procedimiento Administrativo Debido Tecnológico. Revista General de Derecho Administrativo 50: 1–30. [Google Scholar]
- Qu, Sandy Q., and John Dumay. 2011. The Qualitative Research Interview. Qualitative Research in Accounting & Management 8: 238–64. [Google Scholar]
- Ragin, Charles C. 2009. Reflections on Casing and Case-Oriented Research. In The SAGE Handbook of Case-Based Methods. London: SAGE Publications, pp. 522–50. [Google Scholar]
- Raso, Filippo, Hannah Hiilligoss, Vivek Krishnamurthy, Christopher Bavitz, and Levin Yerin Kim. 2018. Artificial Intelligence & Human Rights: Opportunities & Risks. SSRN Electronic Journal 1: 1–63. [Google Scholar]
- Sarmiento, Daniel. 2008. El Soft Law Administrativo. Un Estudio de Los Efectos Jurídicos de Las Normas No Vinculantes de la Administración. Madrid: Thomsom-Civitas. [Google Scholar]
- Scheuerman, Morgan Klaus, Jacob M. Paul, and Jed R. Brubaker. 2019. How Computers See Gender. Proceedings of the ACM on Human-Computer Interaction 3: 1–33. [Google Scholar] [CrossRef] [Green Version]
- Silverman, David. 2013. Interpreting Qualitative Data. London: SAGE Publications. [Google Scholar]
- Sobrino-García, Itziar. 2021a. Desafíos y Limitaciones En La Contratación Pública: El Impacto de La Protección de Datos Tras Los Últimos Cambios Legislativos. Revista General de Derecho Administrativo 56: 1–30. [Google Scholar]
- Sobrino-García, Itziar. 2021b. Las Decisiones de Adecuación En Las Transferencias Internacionales de Datos. El Caso Del Flujo de Datos Entre La Unión Europea y Estados Unidos. Revista de Derecho Comunitario Europeo 25: 227–56. [Google Scholar] [CrossRef]
- Soriano Arnánz, Alba. 2021. Decisiones Automatizadas y Discriminación: Aproximación y Propuestas Generales. Revista General de Derecho Administrativo 56: 1–30. [Google Scholar]
- Sun, Tara Qian, and Rony Medaglia. 2019. Mapping the Challenges of Artificial Intelligence in the Public Sector: Evidence from Public Healthcare. Government Information Quarterly 36: 368–83. [Google Scholar] [CrossRef]
- Tegmark, Max. 2017. Life 3.0: Being Human in the Age of Artificial Intelligence. New York: Penguin Books. [Google Scholar]
- Thelwall, Mike. 2018. Gender Bias in Machine Learning for Sentiment Analysis. Online Information Review 42: 343–54. [Google Scholar] [CrossRef]
- Todolí Signes, Adrián. 2020. Retos Legales En El Uso Del Big Data En La Selección de Sujetos a Investigar Por La Inspección de Trabajo y de La Seguridad Social. Revista Galega de Administración Pública 59: 313–37. [Google Scholar] [CrossRef]
- Valcárcel Fernández, Patricia. 2019. La Colaboración Público-Privada En La LCSP. Algunas Experiencias En El Ámbito Local. In La Gestión de Los Servicios Públicos Locales En El Marco de La LCSP, La LRJSP y La LRSAL. Edited by J. M. Martínez Fernández. Madrid: Wolters Kluwer. [Google Scholar]
- Valero Torrijos, Julián. 2020. The Legal Guarantees of Artificial Intelligence in Administrative Activity: Reflections and Contributions from the Viewpoint of Spanish Administrative Law and Good Administration Requirements. European Review of Digital Administration & Law 1: 55–61. [Google Scholar]
- Valle-Cruz, David, Edgar Alejandro Ruvalcaba-Gomez, Rodrigo Sandoval-Almazan, and J. Ignacio Criado. 2019. A Review of Artificial Intelligence in Government and Its Potential from a Public Policy Perspective. Paper Presented at 20th Annual International Conference on Digital Government Research, Dubai, United Arab Emirates, June 18–20; pp. 91–99. [Google Scholar]
- Valle-Cruz, David, J. Ignacio Criado, Rodrigo Sandoval-Almazán, and Edgar A. Ruvalcaba-Gomez. 2020. Assessing the Public Policy-Cycle Framework in the Age of Artificial Intelligence: From Agenda-Setting to Policy Evaluation. Government Information Quarterly 37: 1–15. [Google Scholar] [CrossRef]
- Valles, Miguel S. 2009. Entrevistas Cualitativas. Madrid: Centro de Investigaciones Sociológicas. [Google Scholar]
- Van Roy, Vicent, Fiammetta Rossetti, Karine Perset, and Laura Galindo-Romero. 2021. AI Watch—National Strategies on Artificial Intelligence: A European Perspective, 2021th ed. JRC Working Papers No. JRC122684. Brussels: Publications Office of the European Union. [Google Scholar]
- Vesnic-Alujevic, Lucia, Susana Nascimento, and Alexandre Pólvora. 2020. Societal and Ethical Impacts of Artificial Intelligence: Critical Notes on European Policy Frameworks. Telecommunications Policy 44: 1–15. [Google Scholar] [CrossRef]
- Wachter, Sandra, and Brent Mittelstadt. 2019. A Right to Reasonable Inferences: Re-Thinking Data Protection Law in the Age of Big Data and AI. Columbia Business Law Review 2: 1–130. [Google Scholar]
- Wirtz, Bernd W., Jan C. Weyerer, and Carolin Geyer. 2019. Artificial Intelligence and the Public Sector—Applications and Challenges. International Journal of Public Administration 42: 596–615. [Google Scholar] [CrossRef]
- Zheng, Yongqing, Han Yu, Yuliang Shi, Kun Zhang, Shuai Zhen, Lizhen Cui, Cyril Leung, and Chunyan Miao. 2020. PIDS: An Intelligent Electric Power Management Platform. Proceedings of the AAAI Conference on Artificial Intelligence 34: 13220–27. [Google Scholar] [CrossRef]
- Zlotnik, Alexander. 2019. Inteligencia Artificial En Las Administraciones Públicas: Definiciones, Evaluación de Viabilidad de Proyectos y Áreas de Aplicación. Boletic 84: 25–32. [Google Scholar]
Semi-Structured Interview and Research Questions | ||
---|---|---|
Research Questions | Thematic Guidelines | Standard Questions |
Do we need a legal definition of AI? | Concept of AI and the trust of citizens | How do you define AI? Can we trust AI? How can AI improve the public sector? |
What are the risks associated with the AI uses in Spanish public administration? | Possible risks in the use of AI | What are the main risks for the public sector? What effects does AI have on privacy? Can AI technology lead to biases? |
Can current Spanish legal mechanisms solve them? | Compatibility with current legislation | How should AI procedures be regulated? How to update the legislation of artificial intelligence so that it is fairer and considers its risks? Do we have legal and administrative mechanisms to regulate AI? |
Analysis of the Interviews | |
---|---|
Phases | Explanation |
Phase 1 | During the first cycle of the data analysis the coding and categorisation of the information was applied. |
Phase 2 | To divide the information into categories, an analysis based on thematic criteria was followed, in which the text was reduced according to the criteria addressed. |
Phase 3 | In the third phase, we made a grouping that allowed us to generate a structure of the information. Next, we transferred this information into a text document to facilitate its visualisation and presentation. |
Phase 4 | Finally, we elaborated an assessment that allowed us to conclude the transmitted experiences, existing patterns, or generalisations in the investigated field. |
The Use of AI Technology in Spanish Public Administration | |
---|---|
Categories | Indicators |
Concept and design of the AI algorithms | autonomy, intelligence, human process, deep learning, machine learning, training |
Transparency and trust in AI algorithms | open or semi-open code, neutrality, human intervention |
Risks in the use of AI algorithms | biases (gender), privacy, opacity, algorithms’ legal status |
Legislative and administrative instruments | ethical principles, control mechanisms, audits, protocols, collegiate bodies, soft law |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobrino-García, I. Artificial Intelligence Risks and Challenges in the Spanish Public Administration: An Exploratory Analysis through Expert Judgements. Adm. Sci. 2021, 11, 102. https://doi.org/10.3390/admsci11030102
Sobrino-García I. Artificial Intelligence Risks and Challenges in the Spanish Public Administration: An Exploratory Analysis through Expert Judgements. Administrative Sciences. 2021; 11(3):102. https://doi.org/10.3390/admsci11030102
Chicago/Turabian StyleSobrino-García, Itziar. 2021. "Artificial Intelligence Risks and Challenges in the Spanish Public Administration: An Exploratory Analysis through Expert Judgements" Administrative Sciences 11, no. 3: 102. https://doi.org/10.3390/admsci11030102
APA StyleSobrino-García, I. (2021). Artificial Intelligence Risks and Challenges in the Spanish Public Administration: An Exploratory Analysis through Expert Judgements. Administrative Sciences, 11(3), 102. https://doi.org/10.3390/admsci11030102