Incorporating Industrial and Climatic Covariates into Analyses of Fish Health Indicators Measured in a Stream in Canada’s Oil Sands Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Analysis of Data
2.2.1. Conventional Statistics and Regression Diagnostics
2.2.2. Elastic Net Regularized Regressions
2.2.3. Retrospective and Prospective Model Predictions
3. Results and Discussion
3.1. Analyses without Environmental or Industrial Covariates
3.2. Site-Specific Analyses with Covariates
3.2.1. Which EN Models Performed the Best?
3.2.2. Are Large Differences Apparent When Environmental and Industrial Covariates Are Included?
3.2.3. Variables Selected by Elastic Net Regularized Regression
Influence of Environmental Variation
Influence of Industrial Activity
Influence of ‘Mixture’ Variables
3.2.4. Predicting Exceedances of Critical Effect Sizes
Potential Effects of Industrial Activity
Potential Effects of Future Changes in Air Temperature and Stream Discharge
3.3. Challenges with the Analytical Approach
3.4. Future Work
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Quadroni, S. Monitoring and Management of Inland Waters. Environments 2022, 9, 48. [Google Scholar] [CrossRef]
- Hornbach, D.J. Multi-Year Monitoring of Ecosystem Metabolism in Two Branches of a Cold-Water Stream. Environments 2021, 8, 19. [Google Scholar] [CrossRef]
- Quadroni, S.; Espa, P.; Zaccara, S.; Crosa, G.; Bettinetti, R.; Mastore, M.; Brivio, M.F. Monitoring and Management of Inland Waters: Insights from the Most Inhabited Italian Region. Environments 2022, 9, 27. [Google Scholar] [CrossRef]
- Antognazza, C.M.; Vanetti, I.; de Santis, V.; Bellani, A.; di Francesco, M.; Puzzi, C.M.; Casoni, A.G.; Zaccara, S. Genetic Investigation of Four Beluga Sturgeon (Huso Huso, L.) Broodstocks for Its Reintroduction in the Po River Basin. Environments 2021, 8, 25. [Google Scholar] [CrossRef]
- Roberts, D.R.; Hazewinkel, R.O.; Arciszewski, T.J.; Beausoleil, D.; Davidson, C.J.; Horb, E.C.; Sayanda, D.; Wentworth, G.R.; Wyatt, F.; Dubé, M.G. An Integrated Knowledge Synthesis of Regional Ambient Monitoring in Canada’s Oil Sands. Integr. Environ. Assess. Manag. 2022, 18, 428–441. [Google Scholar] [CrossRef]
- RAMP (Regional Aquatics Monitoring Program). Regional Aquatics Monitoring in Support of the Joint Oil Sands Monitoring Plan Final 2015 Program Report. 2016. Available online: http://www.ramp-alberta.org/ramp/results/report.aspx (accessed on 6 June 2022).
- McMaster, M.E.; Tetreault, G.R.; Clark, T.; Bennett, J.; Cunningham, J.; Ussery, E.J.; Evans, M. Baseline White Sucker Health and Reproductive Endpoints for Use in Assessment of Further Development in the Alberta Oil Sands. Int. J. Environ. Impacts Manag. Mitig. Recovery 2020, 3, 219–237. [Google Scholar] [CrossRef]
- Tetreault, G.R.; McMaster, M.E.; Dixon, D.G.; Parrott, J.L. Using Reproductive Endpoints in Small Forage Fish Species to Evaluate the Effects of Athabasca Oil Sands Activities. Environ. Toxicol. Chem. 2003, 22, 2775–2782. [Google Scholar] [CrossRef]
- Walker, S.L.; Hedley, K.; Porter, E. Pulp and Paper Environmental Effects Monitoring in Canada: An Overview. Water Qual. Res. J. Can. 2002, 37, 7–19. [Google Scholar] [CrossRef]
- Ribey, S.C.; Munkittrick, K.R.; McMaster, M.E.; Courtenay, S.; Langlois, C.; Munger, S.; Rosaasen, A.; Whitley, G. Development of a Monitoring Design for Examining Effects in Wild Fish Associated with Discharges from Metal Mines. Water Qual. Res. J. Can. 2002, 37, 229–249. [Google Scholar] [CrossRef]
- Ussery, E.J.; McMaster, M.E.; Servos, M.R.; Miller, D.H.; Munkittrick, K.R. A 30-Year Study of Impacts, Recovery, and Development of Critical Effect Sizes for Endocrine Disruption in White Sucker (Catostomus Commersonii) Exposed to Bleached-Kraft Pulp Mill Effluent at Jackfish Bay, Ontario, Canada. Front. Endocrinol. 2021, 12, 369. [Google Scholar] [CrossRef]
- Droppo, I.G.; di Cenzo, P.; Parrott, J.; Power, J. The Alberta Oil Sands Eroded Bitumen/Sediment Transitional Journey: Influence on Sediment Transport Dynamics, PAH Signatures and Toxicological Effect. Sci. Total Environ. 2019, 677, 718–731. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Davies, M.; Janzen, K.; Muir, D.; Hazewinkel, R.; Kirk, J.; De Boer, D. PAH Distributions in Sediments in the Oil Sands Monitoring Area and Western Lake Athabasca: Concentration, Composition and Diagnostic Ratios. Environ. Pollut. 2016, 213, 671–687. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.S.; McMaster, M.; Muir, D.C.G.; Parrott, J.; Tetreault, G.R.; Keating, J. Forage Fish and Polycyclic Aromatic Compounds in the Fort McMurray Oil Sands Area: Body Burden Comparisons with Environmental Distributions and Consumption Guidelines. Environ. Pollut. 2019, 255, 113135. [Google Scholar] [CrossRef] [PubMed]
- Headley, J.V.; Crosley, B.; Conly, F.M.; Quagraine, E.K. The Characterization and Distribution of Inorganic Chemicals in Tributary Waters of the Lower Athabasca River, Oilsands Region, Canada. J. Environ. Sci. Health-Part A Toxic/Hazard. Subst. Environ. Eng. 2005, 40, 1–27. [Google Scholar] [CrossRef]
- Culp, J.M.; Glozier, N.E.; Baird, D.J.; Wrona, F.J.; Brua, R.B.; Ritcey, A.L.; Peters, D.L.; Casey, R.; Choung, C.B.; Curry, C.J.; et al. Assessing Ecosystem Health in Benthic Macroinvertebrate Assemblages of the Athabasca River Main Stem, Tributaries and Peace-Athabasca Delta; Environment and Climate Change Canada: Edmonton, AB, Canada, 2018. Available online: https://open.alberta.ca/publications/9781460140314 (accessed on 6 June 2022).
- Pilote, M.; André, C.; Turcotte, P.; Gagné, F.; Gagnon, C. Metal Bioaccumulation and Biomarkers of Effects in Caged Mussels Exposed in the Athabasca Oil Sands Area. Sci. Total Environ. 2018, 610–611, 377–390. [Google Scholar] [CrossRef]
- Tetreault, G.R.; Bennett, C.J.; Clark, T.W.; Keith, H.; Parrott, J.L.; McMaster, M.E. Fish Performance Indicators Adjacent to Oil Sands Activity: Response in Performance Indicators of Slimy Sculpin in the Steepbank River, Alberta, Adjacent to Oil Sands Mining Activity. Environ. Toxicol. Chem. 2020, 39, 396–409. [Google Scholar] [CrossRef]
- Culp, J.M.; Droppo, I.G.; di Cenzo, P.; Alexander, A.C.; Baird, D.J.; Beltaos, S.; Bickerton, G.; Bonsal, B.; Brua, R.B.; Chambers, P.A.; et al. Ecological Effects and Causal Synthesis of Oil Sands Activity Impacts on River Ecosystems: Water Synthesis Review. Environ. Rev. 2021, 29, 315–327. [Google Scholar] [CrossRef]
- Arciszewski, T.J.; Hazewinkel, R.R.O.; Dubé, M.G. A Critical Review of the Ecological Status of Lakes and Rivers from Canada’s Oil Sands Region. Integr. Environ. Assess. Manag. 2022, 18, 361–387. [Google Scholar] [CrossRef]
- Chad, S.J.; Barbour, S.L.; McDonnell, J.J.; Gibson, J.J. Using Stable Isotopes to Track Hydrological Processes at an Oil Sands Mine, Alberta, Canada. J. Hydrol. Reg. Stud. 2022, 40, 101032. [Google Scholar] [CrossRef]
- Peters, D.L.; Watt, D.; Devito, K.; Monk, W.A.; Shrestha, R.R.; Baird, D.J. Changes in Geographical Runoff Generation in Regions Affected by Climate and Resource Development: A Case Study of the Athabasca River. J. Hydrol. Reg. Stud. 2022, 39, 100981. [Google Scholar] [CrossRef]
- Hein, F.J.; Cotterill, D.K. The Athabasca Oil Sands—A Regional Geological Perspective, Fort McMurray Area, Alberta, Canada. Nat. Resour. Res. 2006, 15, 85–102. [Google Scholar] [CrossRef]
- Suzanne, C.L. Effects of Natural and Anthropogenic Non-Point Source Disturbances on the Structure and Function of Tributary Ecosystems in the Athabasca Oil Sands Region. Master’s Thesis, University of Victoria, Victoria, BC, Canada, 2015. [Google Scholar]
- Droppo, I.G.; di Cenzo, P.; Power, J.; Jaskot, C.; Chambers, P.A.; Alexander, A.C.; Kirk, J.; Muir, D. Temporal and Spatial Trends in Riverine Suspended Sediment and Associated Polycyclic Aromatic Compounds (PAC) within the Athabasca Oil Sands Region. Sci. Total Environ. 2018, 626, 1382–1393. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, L.M.; Roy, J.W.; Rowland, S.J.; Bickerton, G.; DeSilva, A.; Headley, J.V.; Milestone, C.B.; Scarlett, A.G.; Brown, S.; Spencer, C.; et al. Advances in Distinguishing Groundwater Influenced by Oil Sands Process-Affected Water (OSPW) from Natural Bitumen-Influenced Groundwaters. Environ. Sci. Technol. 2020, 54, 1522–1532. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Shotyk, W.; Cuss, C.W.; Donner, M.W.; Fennell, J.; Javed, M.; Noernberg, T.; Poesch, M.; Pelletier, R.; Sinnatamby, N.; et al. Characterization of Naphthenic Acids and Other Dissolved Organics in Natural Water from the Athabasca Oil Sands Region, Canada. Environ. Sci. Technol. 2017, 51, 9524–9532. [Google Scholar] [CrossRef]
- Ross, M.S.; Pereira, A.D.S.; Fennell, J.; Davies, M.; Johnson, J.; Sliva, L.; Martin, J.W. Quantitative and Qualitative Analysis of Naphthenic Acids in Natural Waters Surrounding the Canadian Oil Sands Industry. Environ. Sci. Technol. 2012, 46, 12796–12805. [Google Scholar] [CrossRef]
- Roy, J.W.; Bickerton, G.; Frank, R.A.; Grapentine, L.; Hewitt, L.M. Assessing Risks of Shallow Riparian Groundwater Quality near an Oil Sands Tailings Pond. Groundwater 2016, 54, 545–558. [Google Scholar] [CrossRef]
- Fennell, J.; Arciszewski, T.J. Current Knowledge of Seepage from Oil Sands Tailings Ponds and Its Environmental Influence in Northeastern Alberta. Sci. Total Environ. 2019, 686, 968–985. [Google Scholar] [CrossRef]
- Gibson, J.J.; Yi, Y.; Birks, S.J. Isotope-Based Partitioning of Streamflow in the Oil Sands Region, Northern Alberta: Towards a Monitoring Strategy for Assessing Flow Sources and Water Quality Controls. J. Hydrol. Reg. Stud. 2016, 5, 131–148. [Google Scholar] [CrossRef] [Green Version]
- Arciszewski, T.J. A Re-Analysis and Review of Elemental and Polycyclic Aromatic Compound Deposition in Snow and Lake Sediments from Canada’s Oil Sands Region Integrating Industrial Performance and Climatic Variables. Sci. Total Environ. 2022, 820, 153254. [Google Scholar] [CrossRef]
- Horb, E.C.; Wentworth, G.R.; Makar, P.A.; Liggio, J.; Hayden, K.; Boutzis, E.I.; Beausoleil, D.L.; Hazewinkel, R.O.; Mahaffey, A.C.; Sayanda, D.; et al. A Decadal Synthesis of Atmospheric Emissions, Ambient Air Quality, and Deposition in the Oil Sands Region. Integr. Environ. Assess. Manag. 2022, 18, 333–360. [Google Scholar] [CrossRef]
- Mullan-Boudreau, G.; Belland, R.; Devito, K.; Noernberg, T.; Pelletier, R.; Shotyk, W. Sphagnum Moss as an Indicator of Contemporary Rates of Atmospheric Dust Deposition in the Athabasca Bituminous Sands Region. Environ. Sci. Technol. 2017, 51, 7422–7431. [Google Scholar] [CrossRef] [PubMed]
- Shotyk, W.; Bicalho, B.; Cuss, C.; Donner, M.; Grant-Weaver, I.; Javed, M.B.; Noernberg, T. Trace Elements in the Athabasca Bituminous Sands: A Geochemical Explanation for the Paucity of Environmental Contamination by Chalcophile Elements. Chem. Geol. 2021, 581, 120392. [Google Scholar] [CrossRef]
- Landis, M.S.; Studabaker, W.B.; Patrick Pancras, J.; Graney, J.R.; Puckett, K.; White, E.M.; Edgerton, E.S. Source Apportionment of an Epiphytic Lichen Biomonitor to Elucidate the Sources and Spatial Distribution of Polycyclic Aromatic Hydrocarbons in the Athabasca Oil Sands Region, Alberta, Canada. Sci. Total Environ. 2019, 654, 1241–1257. [Google Scholar] [CrossRef] [PubMed]
- Gopalapillai, Y.; Kirk, J.L.; Landis, M.S.; Muir, D.C.; Cooke, C.A.; Gleason, A.; Ho, A.; Kelly, E.; Schindler, D.; Wang, X.; et al. Source Analysis of Pollutant Elements in Winter Air Deposition in the Athabasca Oil Sands Region: A Temporal and Spatial Study. ACS Earth Space Chem. 2019, 3, 1656–1668. [Google Scholar] [CrossRef]
- Chibwe, L.; Muir, D.C.; Gopalapillai, Y.; Shang, D.; Kirk, J.L.; Manzano, C.A.; Atkinson, B.; Wang, X.; Teixeira, C. Long-Term Spatial and Temporal Trends, and Source Apportionment of Polycyclic Aromatic Compounds in the Athabasca Oil Sands Region. Environ. Pollut. 2021, 268, 115351. [Google Scholar] [CrossRef]
- Arciszewski, T.J. Exploring the Influence of Industrial and Climatic Variables on Communities of Benthic Macroinvertebrates Collected in Streams and Lakes in Canada’s Oil Sands Region. Environments 2021, 8, 123. [Google Scholar] [CrossRef]
- Ahad, J.M.E.; Pakdel, H.; Labarre, T.; Cooke, C.A.; Gammon, P.R.; Savard, M.M. Isotopic Analyses Fingerprint Sources of Polycyclic Aromatic Compound-Bearing Dust in Athabasca Oil Sands Region Snowpack. Environ. Sci. Technol. 2021, 55, 5887–5897. [Google Scholar] [CrossRef]
- Kurek, J.; Kirk, J.L.; Muir, D.C.; Wang, X.; Evans, M.S.; Smol, J.P. Legacy of a Half Century of Athabasca Oil Sands Development Recorded by Lake Ecosystems. Proc. Natl. Acad. Sci. USA 2013, 110, 1761–1766. [Google Scholar] [CrossRef] [Green Version]
- Renard, K.G.; Nichols, M.H.; Woolhiser, D.A.; Osborn, H.B. A Brief Background on the U.S. Department of Agriculture Agricultural Research Service Walnut Gulch Experimental Watershed. Water Resour. Res. 2008, 44, W05S02. [Google Scholar] [CrossRef] [Green Version]
- Spiers, G.A.; Dudas, M.J.; Turchenek, L.W. The Chemical and Mineralogical Composition of Soil Parent Materials in Northeast Alberta. Can. J. Soil Sci. 1989, 69, 721–737. [Google Scholar] [CrossRef]
- Akena, A.M. An Intensive Surface Water Quality Study of the Muskeg River Watershed-Vol I. 1979. Alberta Oil Sands Environmental Research Program. Available online: https://doi.org/10.7939/R3NT9F (accessed on 6 June 2022).
- Davidson, C.J.; Foster, K.R.; Tanna, R.N.R.N. Forest Health Effects Due to Atmospheric Deposition: Findings from Long-Term Forest Health Monitoring in the Athabasca Oil Sands Region. Sci. Total Environ. 2020, 699, 134277. [Google Scholar] [CrossRef] [PubMed]
- Shotyk, W.; Appleby, P.G.; Bicalho, B.; Davies, L.; Froese, D.; Grant-Weaver, I.; Krachler, M.; Magnan, G.; Mullan-Boudreau, G.; Noernberg, T.; et al. Peat Bogs in Northern Alberta, Canada Reveal Decades of Declining Atmospheric Pb Contamination. Geophys. Res. Lett. 2016, 43, 9964–9974. [Google Scholar] [CrossRef]
- Cooke, C.A.; Kirk, J.L.; Muir, D.C.G.; Wiklund, J.A.; Wang, X.; Gleason, A.; Evans, M.S. Spatial and Temporal Patterns in Trace Element Deposition to Lakes in the Athabasca Oil Sands Region (Alberta, Canada). Environ. Res. Lett. 2017, 12, 124001. [Google Scholar] [CrossRef]
- Wiklund, J.A.; Hall, R.I.; Wolfe, B.B.; Edwards, T.W.D.; Farwell, A.J.; Dixon, D.G. Has Alberta Oil Sands Development Increased Far-Field Delivery of Airborne Contaminants to the Peace-Athabasca Delta? Sci. Total Environ. 2012, 433, 379–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landis, M.S.; Studabaker, W.B.; Pancras, J.P.; Graney, J.R.; White, E.M.; Edgerton, E.S. Source Apportionment of Ambient Fine and Coarse Particulate Matter Polycyclic Aromatic Hydrocarbons at the Bertha Ganter-Fort McKay Community Site in the Oil Sands Region of Alberta, Canada. Sci. Total Environ. 2019, 666, 540–558. [Google Scholar] [CrossRef]
- Schwalb, A.N.; Alexander, A.C.; Paul, A.J.; Cottenie, K.; Rasmussen, J.B. Changes in Migratory Fish Communities and Their Health, Hydrology, and Water Chemistry in Rivers of the Athabasca Oil Sands Region: A Review of Historical and Current Data. Environ. Rev. 2015, 23, 133–150. [Google Scholar] [CrossRef] [Green Version]
- Alexander, A.C.; Chambers, P.A. Assessment of Seven Canadian Rivers in Relation to Stages in Oil Sands Industrial Development, 1972–2010. Environ. Rev. 2016, 24, 484–494. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shotyk, W.; Zaccone, C.; Noernberg, T.; Pelletier, R.; Bicalho, B.; Froese, D.G.; Davies, L.; Martin, J.W. Airborne Petcoke Dust Is a Major Source of Polycyclic Aromatic Hydrocarbons in the Athabasca Oil Sands Region. Environ. Sci. Technol. 2016, 50, 1711–1720. [Google Scholar] [CrossRef]
- McMillan, P.G.; Feng, Z.Z.; Deeth, L.E.; Arciszewski, T.J. Improving Monitoring of Fish Health in the Oil Sands Region Using Regularization Techniques and Water Quality Variables. Sci. Total Environ. 2022, 811, 152301. [Google Scholar] [CrossRef]
- Kilgour, B.W.; Munkittrick, K.R.; Hamilton, L.; Proulx, C.L.; Somers, K.M.; Arciszewski, T.J.; McMaster, M.E. Developing Triggers for Environmental Effects Monitoring Programs for Trout-Perch in the Lower Athabasca River (Canada). Environ. Toxicol. Chem. 2019, 38, 1890–1901. [Google Scholar] [CrossRef]
- Arciszewski, T.J.; McMaster, M.E. Potential Influence of Sewage Phosphorus and Wet and Dry Deposition Detected in Fish Collected in the Athabasca River North of Fort McMurray. Environments 2021, 8, 14. [Google Scholar] [CrossRef]
- Wynia, A.G.; Tetreault, G.R.; Clark, T.W.; Cunningham, J.L.; Ussery, E.J.; McMaster, M.E. Fish Assemblage Monitoring in Alberta’s Ells River: Baseline Fish and Habitat Variability Prior to Major Development. Glob. Ecol. Conserv. 2022, 34, e02007. [Google Scholar] [CrossRef]
- Anonymous. French Energy Giant Total Shelves the Joslyn Oil Sands Mine Indefinitely. Available online: https://www.oilsandsmagazine.com/news/french-energy-giant-total-shelves-joslyn-oilsands-mine-indefinitely (accessed on 23 April 2022).
- Anonymous. CNRL Files Application to Integrate Joslyn North into Horizon Mine Plan. Available online: https://www.oilsandsmagazine.com/news/2019/11/20/cnrl-files-application-to-integrate-joslyn-north-into-horizon-mine-plan?rq=joslynnorth (accessed on 21 September 2021).
- Barrett, T.J.; Munkittrick, K.R. Seasonal Reproductive Patterns and Recommended Sampling Times for Sentinel Fish Species Used in Environmental Effects Monitoring Programs in Canada. Environ. Rev. 2010, 18, 115–135. [Google Scholar] [CrossRef]
- Harrell, F.E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 3319194259. [Google Scholar]
- Arciszewski, T.J.; McMaster, M.E.; Munkittrick, K.R. Long-Term Studies of Fish Health before and after the Closure of a Bleached Kraft Pulp Mill in Northern Ontario, Canada. Environ. Toxicol. Chem. 2021, 40, 162–176. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and Variable Selection via the Elastic Net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.; Hastie, T.; Tibshirani, R.; Narasimhan, B.; Tay, K.; Simon, N.; Qian, J. Package ‘Glmnet’. CRAN R Repository 2021. Available online: https://cran.r-project.org/web/packages/glmnet/index.html (accessed on 2 April 2021).
- Alexander, A.C.; Levenstein, B.; Sanderson, L.A.; Blukacz-Richards, E.A.; Chambers, P.A. How Does Climate Variability Affect Water Quality Dynamics in Canada’s Oil Sands Region? Sci. Total Environ. 2020, 732, 139062. [Google Scholar] [CrossRef]
- AER ST39|Alberta Energy Regulator. Statistical Report 39. Available online: https://www.aer.ca/providing-information/data-and-reports/statistical-reports/st39 (accessed on 30 May 2021).
- AER ST53|Alberta Energy Regulator Statistical Report 53. Available online: https://www.aer.ca/providing-information/data-and-reports/statistical-reports/st53 (accessed on 30 May 2021).
- ABMI (Alberta Biodiveristy Monitoring Institute). ABMI—Wall-to-Wall Human Footprint Inventory. Available online: https://abmi.ca/home/data-analytics/da-top/da-product-overview/Human-Footprint-Products/HF-inventory.html (accessed on 3 February 2021).
- Burnham, K.P.; Anderson, D.R. Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Munkittrick, K.R.; Arens, C.J.; Lowell, R.B.; Kaminski, G.P. A Review of Potential Methods of Determining Critical Effect Size for Designing Environmental Monitoring Programs. Environ. Toxicol. Chem. 2009, 28, 1361–1371. [Google Scholar] [CrossRef]
- Eum, H.I.; Dibike, Y.; Prowse, T. Climate-Induced Alteration of Hydrologic Indicators in the Athabasca River Basin, Alberta, Canada. J. Hydrol. 2017, 544, 327–342. [Google Scholar] [CrossRef]
- Newton, B.W.; Farjad, B.; Orwin, J.F. Spatial and Temporal Shifts in Historic and Future Temperature and Precipitation Patterns Related to Snow Accumulation and Melt Regimes in Alberta, Canada. Water 2021, 13, 1013. [Google Scholar] [CrossRef]
- Arciszewski, T.J.; Munkittrick, K.R. Development of an Adaptive Monitoring Framework for Long-Term Programs: An Example Using Indicators of Fish Health. Integr. Environ. Assess. Manag. 2015, 11, 701–718. [Google Scholar] [CrossRef] [PubMed]
- Arciszewski, T.J.; Munkittrick, K.R.; Scrimgeour, G.J.; Dubé, M.G.; Wrona, F.J.; Hazewinkel, R.R. Using Adaptive Processes and Adverse Outcome Pathways to Develop Meaningful, Robust, and Actionable Environmental Monitoring Programs. Integr. Environ. Assess. Manag. 2017, 13, 877–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somers, K.M.; Kilgour, B.W.; Munkittrick, K.R.; Arciszewski, T.J. An Adaptive Environmental Effects Monitoring Framework for Assessing the Influences of Liquid Effluents on Benthos, Water, and Sediments in Aquatic Receiving Environments. Integr. Environ. Assess. Manag. 2018, 14, 552–566. [Google Scholar] [CrossRef] [PubMed]
- Tokarek, T.W.; Odame-Ankrah, C.A.; Huo, J.A.; McLaren, R.; Lee, A.K.Y.; Adam, M.G.; Willis, M.D.; Abbatt, J.P.D.; Mihele, C.; Darlington, A.; et al. Principal Component Analysis of Summertime Ground Site Measurements in the Athabasca Oil Sands with a Focus on Analytically Unresolved Intermediate-Volatility Organic Compounds. Atmos. Chem. Phys. 2018, 18, 17819–17841. [Google Scholar] [CrossRef] [Green Version]
- Moradi, M.; You, Y.; Hung, H.; Li, J.; Park, R.; Alexandrou, N.; Moussa, S.G.; Jantunen, L.; Robitaille, R.; Staebler, R.M. Fugitive Emissions of Polycyclic Aromatic Compounds from an Oil Sands Tailings Pond Based on Fugacity and Inverse Dispersion Flux Calculations. Environ. Pollut. 2021, 269, 116115. [Google Scholar] [CrossRef]
- Gordon, M.; Li, S.M.; Staebler, R.; Darlington, A.; Hayden, K.; O’Brien, J.; Wolde, M. Determining Air Pollutant Emission Rates Based on Mass Balance Using Airborne Measurement Data over the Alberta Oil Sands Operations. Atmos. Meas. Tech. 2015, 8, 3745–3765. [Google Scholar] [CrossRef] [Green Version]
- Mamun, A.A.; Celo, V.; Dabek-Zlotorzynska, E.; Charland, J.P.; Cheng, I.; Zhang, L. Characterization and Source Apportionment of Airborne Particulate Elements in the Athabasca Oil Sands Region. Sci. Total Environ. 2021, 788, 147748. [Google Scholar] [CrossRef]
- McNaughton, C.S.; Vandenberg, J.; Thiede, P. Reanalysis of Aerial Deposition of Metals and Polycyclic Aromatic Compounds to Snow in the Athabasca Oil Sands Region of Alberta Canada. Sci. Total Environ. 2019, 682, 692–708. [Google Scholar] [CrossRef]
- Liggio, J.; Li, S.M.; Hayden, K.; Taha, Y.M.; Stroud, C.; Darlington, A.; Drollette, B.D.; Gordon, M.; Lee, P.; Liu, P.; et al. Oil Sands Operations as a Large Source of Secondary Organic Aerosols. Nature 2016, 534, 91–94. [Google Scholar] [CrossRef]
- Manzano, C.A.; Muir, D.; Kirk, J.; Teixeira, C.; Siu, M.; Wang, X.; Charland, J.P.; Schindler, D.; Kelly, E.; Zhang, Y.F. Temporal Variation in the Deposition of Polycyclic Aromatic Compounds in Snow in the Athabasca Oil Sands Area of Alberta. Environ. Monit. Assess. 2016, 188, 10–1007. [Google Scholar] [CrossRef]
- Cheng, I.; Wen, D.; Zhang, L.; Wu, Z.; Qiu, X.; Yang, F.; Harner, T. Deposition Mapping of Polycyclic Aromatic Compounds in the Oil Sands Region of Alberta, Canada and Linkages to Ecosystem Impacts. Environ. Sci. Technol. 2018, 52, 12456–12464. [Google Scholar] [CrossRef] [PubMed]
- Kirk, J.L.; Muir, D.C.G.G.; Gleason, A.; Wang, X.; Lawson, G.; Frank, R.A.; Lehnherr, I.; Wrona, F. Atmospheric Deposition of Mercury and Methylmercury to Landscapes and Waterbodies of the Athabasca Oil Sands Region. Environ. Sci. Technol. 2014, 48, 7374–7383. [Google Scholar] [CrossRef] [PubMed]
- Wieder, R.K.; Vile, M.A.; Scott, K.D.; Albright, C.M.; Quinn, J.C.; Vitt, D.H. Bog Plant/Lichen Tissue Nitrogen and Sulfur Concentrations as Indicators of Emissions from Oil Sands Development in Alberta, Canada. Environ. Monit. Assess. 2021, 193, 208. [Google Scholar] [CrossRef] [PubMed]
- Wieder, R.K.; Vile, M.A.; Vitt, D.H.; Scott, K.D.; Xu, B.; Quinn, J.C.; Albright, C.M. Can Plant or Lichen Natural Abundance 15N Ratios Indicate the Influence of Oil Sands N Emissions on Bogs? J. Hydrol. Reg. Stud. 2022, 40, 101030. [Google Scholar] [CrossRef]
- Makar, P.A.; Akingunola, A.; Aherne, J.; Cole, A.S.; Aklilu, Y.A.; Zhang, J.; Wong, I.; Hayden, K.; Li, S.M.; Kirk, J.; et al. Estimates of Exceedances of Critical Loads for Acidifying Deposition in Alberta and Saskatchewan. Atmos. Chem. Phys. 2018, 18, 9897–9927. [Google Scholar] [CrossRef] [Green Version]
- Arciszewski, T.J.; Roberts, D.R.; Munkittrick, K.R.; Scrimgeour, G.J. Challenges and Benefits of Approaches Used to Integrate Regional Monitoring Programs. Front. Environ. Sci. 2021, 9, 256. [Google Scholar] [CrossRef]
- Wasiuta, V.; Kirk, J.L.; Chambers, P.A.; Alexander, A.C.; Wyatt, F.R.; Rooney, R.C.; Cooke, C.A. Accumulating Mercury and Methylmercury Burdens in Watersheds Impacted by Oil Sands Pollution. Environ. Sci. Technol. 2019, 53, 12856–12864. [Google Scholar] [CrossRef]
- Birks, S.J.; Cho, S.; Taylor, E.; Yi, Y.; Gibson, J.J. Characterizing the PAHs in Surface Waters and Snow in the Athabasca Region: Implications for Identifying Hydrological Pathways of Atmospheric Deposition. Sci. Total Environ. 2017, 603–604, 570–583. [Google Scholar] [CrossRef]
- Alexander, A.C.; Chambers, P.A.; Jeffries, D.S. Episodic Acidification of 5 Rivers in Canada’s Oil Sands during Snowmelt: A 25-Year Record. Sci. Total Environ. 2017, 599–600, 739–749. [Google Scholar] [CrossRef]
- Yi, Y.; Birks, S.J.; Cho, S.; Gibson, J.J. Characterization of Organic Composition in Snow and Surface Waters in the Athabasca Oil Sands Region, Using Ultrahigh Resolution Fourier Transform Mass Spectrometry. Sci. Total Environ. 2015, 518–519, 148–158. [Google Scholar] [CrossRef]
- Ghotbizadeh, M.; Cuss, C.W.; Grant-Weaver, I.; Markov, A.; Noernberg, T.; Ulrich, A.; Shotyk, W. Spatiotemporal Variations of Total and Dissolved Trace Elements and Their Distributions amongst Major Colloidal Forms along and across the Lower Athabasca River. J. Hydrol. Reg. Stud. 2022, 40, 101029. [Google Scholar] [CrossRef]
- Thomas, K.E.; Alexander, A.C.; Chambers, P.A. Contribution of Rain Events to Surface Water Loading in 3 Watersheds in Canada’s Alberta Oil Sands Region. J. Hydrol. Reg. Stud. 2022, 40, 101028. [Google Scholar] [CrossRef]
- Emmerton, C.A.; Cooke, C.A.; Hustins, S.; Silins, U.; Emelko, M.B.; Lewis, T.; Kruk, M.K.; Taube, N.; Zhu, D.; Jackson, B.; et al. Severe Western Canadian Wildfire Affects Water Quality Even at Large Basin Scales. Water Res. 2020, 183, 116071. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.J. Environmental Flows and Recruitment of Walleye (Sander Vitreus) in the Peace-Athabasca Delta. Can. J. Fish. Aquat. Sci. 2013, 70, 307–315. [Google Scholar] [CrossRef]
- Summers, J.C.; Kurek, J.; Kirk, J.L.; Muir, D.C.G.; Wang, X.; Wiklund, J.A.; Cooke, C.A.; Evans, M.S.; Smol, J.P. Recent Warming, Rather than Industrial Emissions of Bioavailable Nutrients, Is the Dominant Driver of Lake Primary Production Shifts across the Athabasca Oil Sands Region. PLoS ONE 2016, 11, e0153987. [Google Scholar] [CrossRef]
- Wnorowski, A.; Aklilu, Y.-A.; Harner, T.; Schuster, J.; Charland, J.P. Polycyclic Aromatic Compounds in Ambient Air in the Surface Minable Area of Athabasca Oil Sands in Alberta (Canada). Atmos. Environ. 2021, 244, 117897. [Google Scholar] [CrossRef]
- Gray, M.A.; Curry, A.R.; Munkittrick, K.R. Non-Lethal Sampling Methods for Assessing Environmental Impacts Using a Small-Bodied Sentinel Fish Species. Water Qual. Res. J. Can. 2002, 37, 195–211. [Google Scholar] [CrossRef]
- Arciszewski, T.J.; Kidd, K.A.; Munkittrick, K.R. Comparing Responses in the Performance of Sentinel Populations of Stoneflies (Plecoptera) and Slimy Sculpin (Cottus Cognatus) Exposed to Enriching Effluents. Ecotoxicol. Environ. Saf. 2011, 74, 1844–1854. [Google Scholar] [CrossRef]
- Anonymous. After a 5-Year Review, Provincial Regulators Approve Syncrude’s Plan to Extend Mildred Lake Operations. Available online: https://www.oilsandsmagazine.com/news/2019/7/23/after-a-5-year-review-alberta-regulators-approve-extension-of-mildred-lake-operations (accessed on 22 April 2022).
- Suncor Suncor Energy Inc. Coke Fired Boiler Replacement Project Project Description. 2017. Available online: https://www.suncor.com/en-ca/what-we-do/oil-sands/coke-boiler-replacement-project (accessed on 3 August 2021).
- Platt, J.R. Strong Inference: Certain Systematic Methods of Scientific Thinking May Produce Much More Rapid Progress than Others. Science 1964, 146, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Cash, K.J.; Culp, J.M.; Dubé, M.G.; Lowell, R.B.; Glozier, N.E.; Brua, R.B. Integrating Mesocosm Experiments with Field and Laboratory Studies to Generate Weight-of-Evidence Risk Assessments for Ecosystem Health. Aquat. Ecosyst. Health Manag. 2003, 6, 177–183. [Google Scholar] [CrossRef]
- Shipley, B. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference with R; Cambridge University Press: Cambridge, UK, 2016; ISBN 1107442591. [Google Scholar]
Site | Measure | ENV | IND | ENV+IND NL-NPF | ENV+IND NL-PF | ENV+IND UL-NPF | ENV+IND UL-PF |
---|---|---|---|---|---|---|---|
Upper | GW | AT1- | MRM-CB-FW | P2-75 | P2-75 | P2-75 | P2-75 |
AT3- | SBM-PG-FW | MRM-CB-FW | P3-RD | MRM-CB-FW | P3-RD | ||
SD3-x | MRM-DN-F | SBM-PG-FW | JD | MRM-NG-F | JD | ||
BW | BW | BW | BW | BW | BW | ||
LW | AT1- | MRM-CB-FW | P3-RD | P2-75 | P2-75 | P2-75 | |
AT3- | HM-PG-FW | SP-TP | P3-RD | P3-RD | P3-RD | ||
JD | SBM-PG-FW | MRM-CB-FW | SP-MP | SP-MP | SP-MP | ||
SD3-x | SML-PC-F | HM-PG-FW | SP-TP | SP-TP | SP-TP | ||
BW | MRM-NG-F | SBM-PG-FW | AT1- | MRM-CB-FW | AT1- | ||
SAN-CB-P | MRM-NG-F | JD | MRM-DN-FW | JD | |||
SBM-PG-P | SAN-CB-P | SD4-x | MRM-NG-F | SD4-x | |||
BW | JD | BW | JD | BW | |||
BW | BW | ||||||
BW | JD | HM-PG-FW | P3-RD | P3-RD | P3-RD | P3-RD | |
SD1- | MRM-OS-M | P4-RD | SP-MP | P4-RD | SP-MP | ||
SD2-x | SBM-OS-M | SP-MP | SP-TP | SP-MP | SP-TP | ||
SD2- | SAN-CB-P | SBM-OS-M | BL | SD3- | BL | ||
SD3-x | SBM-PG-P | SAN-CB-P | SD4-x | ||||
SD3- | BL | SBM-PG-P | BL | ||||
SD4-x | SD4-x | ||||||
BL | BL | ||||||
Lower | GW | AT2-x | SBM-PC-SP | P1-99 | P1-99 | P1-99 | P1-99 |
AT2- | SBM-CB-FW | P2-99 | P2-99 | P2-99 | P2-99 | ||
SD3- | KM-DN-FW | SBM-PC-SP | SAN-SC-F | SBM-PC-SP | SAN-SC-F | ||
WT1- | SBM-PG-F | SBM-CB-FW | AT2-x | SAN-NG-F | AT2-x | ||
BW | SAN-NG-F | SBM-PG-F | BW | SAN-SC-F | BW | ||
SML-NG-F | SAN-NG-F | SBM-PC-P | |||||
SAN-SC-F | SML-NG-F | BW | |||||
SBM-PC-P | SAN-SC-F | ||||||
SBM-CB-P | SBM-PC-P | ||||||
BW | WT1- | ||||||
BW | |||||||
LW | AT1-x | SBM-CB-FW | SBM-PC-F | MRM-CB-P | SML-PG-FW | MRM-CB-P | |
AT1- | SBM-PC-F | SML-PG-F | AT1-x | SBM-PC-F | AT1-x | ||
AT2-x | JPM-NG-F | SBM-NG-F | AT1- | HM-DN-F | AT1- | ||
AT2- | SBM-NG-F | SML-OS-M | AT2-x | JPM-NG-F | AT2-x | ||
WT1-x | SML-OS-M | JPM-CB-P | AT2- | JPM-CB-P | AT2- | ||
BW | JPM-CB-P | MRM-CB-P | BW | MRM-CB-P | BW | ||
MRM-CB-P | AT2-x | AT1-x | |||||
SML-PG-P | AT2- | AT1- | |||||
BW | BW | BW | |||||
BW | AT1-x | HM-DN-FW | WS1-x | WS1-x | WS1-x | WS1-x | |
AT3-x | KM-DN-F | WS2-x | WS2-x | WS2-x | WS2-x | ||
AT4-x | HM-OS-M | WS2- | WS2- | WS2- | WS2- | ||
AT4- | SFB-ST | WS3-x | WS3-x | WS3-x | WS3-x | ||
BL | BL | WS3- | WS3- | WS3- | WS3- | ||
WS4- | WS4- | WS4- | WS4- | ||||
WG3-99 | WG3-99 | WG3-99 | WG3-99 | ||||
WG4-75 | WG4-75 | WG4-75 | WG4-75 | ||||
BL | BL | BL | BL |
Site | Measure | ENV | IND | ENV+IND NL-NPF | ENV+IND NL-PF | ENV+IND UL-NPF | ENV+IND UL-PF |
---|---|---|---|---|---|---|---|
Upper | GW | BW | BW | BW | BW | BW | BW |
LW | AT1- | SML-PC-F | SP-RD | SP-RD | SP-RD | SP-RD | |
JD | MRM-OS-M | SML-PC-F | SD1-x | SD1-x | SD1-x | ||
SD1-x | SML-PC-P | SML-PC-P | SD4- | SD4- | SD4- | ||
SD4- | SML-SC-P | SML-SC-P | BW | BW | BW | ||
BW | BW | SD1-x | |||||
SD4- | |||||||
BW | |||||||
BW | AT1- | SML-PC-F | SP-RD | SP-RD | SP-RD | SP-RD | |
JD | MRM-OS-M | SML-PC-F | JD | MRM-NG-F | JD | ||
SD1-x | SML-PC-P | MRM-OS-M | SD1-x | MRM-OS-M | SD1-x | ||
BL | BL | JD | SD1- | JD | SD4-x | ||
SD1-x | SD2-x | SD1-x | SD4- | ||||
SD2-x | SD4- | SD2-x | BL | ||||
SD4-x | BL | SD4-x | |||||
SD4- | SD4- | ||||||
BL | BL | ||||||
Lower | GW | AT1- | SBM-CB-FW | SBM-CB-FW | P2-RD | P2-RD | P2-RD |
AT2- | SBM-DN-FW | SBM-DN-FW | MRM-DN-F | MRM-CB-FW | AT2- | ||
BW | MRM-DN-F | SBM-PG-FW | HM-PG-F | SBM-DN-FW | WT1- | ||
HM-PG-F | MRM-DN-F | AT2- | JPM-NG-F | BW | |||
JPM-NG-F | JPM-NG-F | BW | SAN-NG-F | ||||
SAN-NG-F | BW | KM-SC-F | |||||
BW | AT2- | ||||||
BW | |||||||
LW | AT1- | SBM-CB-FW | SBM-CB-FW | AT1- | SBM-PC-F | AT1- | |
AT2- | SBM-PC-F | SBM-PC-F | AT2- | JPM-NG-F | AT2- | ||
BW | JPM-NG-F | JPM-NG-F | BW | JPM-CB-P | BW | ||
SAN-NG-F | SAN-NG-F | AT2- | |||||
KM-SC-F | JPM-CB-P | BW | |||||
JPM-CB-P | AT2- | ||||||
BW | BW | ||||||
BW | AT3-x | KM-DN-F | WS2- | WS2- | WS2- | WS2- | |
BL | SFB-ST | WS4- | WS4- | WS4- | WS4- | ||
BL | P4-x | P4-x | P4-x | P4-x | |||
WG2-75 | WG2-75 | WG2-75 | WG2-75 | ||||
WG3-99 | WG3-99 | WG3-99 | WG3-99 | ||||
P3-TP | P3-TP | P3-TP | P3-TP | ||||
P4-TP | P4-TP | P4-TP | P4-TP | ||||
KM-DN-F | AT3-x | KM-DN-F | AT3-x | ||||
AT3-x | BL | AT3-x | BL | ||||
BL | BL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arciszewski, T.J.; Ussery, E.J.; McMaster, M.E. Incorporating Industrial and Climatic Covariates into Analyses of Fish Health Indicators Measured in a Stream in Canada’s Oil Sands Region. Environments 2022, 9, 73. https://doi.org/10.3390/environments9060073
Arciszewski TJ, Ussery EJ, McMaster ME. Incorporating Industrial and Climatic Covariates into Analyses of Fish Health Indicators Measured in a Stream in Canada’s Oil Sands Region. Environments. 2022; 9(6):73. https://doi.org/10.3390/environments9060073
Chicago/Turabian StyleArciszewski, Tim J., Erin J. Ussery, and Mark E. McMaster. 2022. "Incorporating Industrial and Climatic Covariates into Analyses of Fish Health Indicators Measured in a Stream in Canada’s Oil Sands Region" Environments 9, no. 6: 73. https://doi.org/10.3390/environments9060073
APA StyleArciszewski, T. J., Ussery, E. J., & McMaster, M. E. (2022). Incorporating Industrial and Climatic Covariates into Analyses of Fish Health Indicators Measured in a Stream in Canada’s Oil Sands Region. Environments, 9(6), 73. https://doi.org/10.3390/environments9060073