Tritium: Doses and Responses of Aquatic Living Organisms (Model Experiments)
Abstract
:1. Introduction
- (a)
- Nuclear weapons tests;
- (b)
- MCC aerosol releases;
- (c)
- Water discharge from reactor cooling systems;
- (d)
- Tritium migrating from open reservoirs of sedimentation tanks at the MCP industrial site;
- (e)
- Tritium migrating from the subsurface horizons of the Severny landfill sites. It is known that up to 330,000 Bq·L−1 of tritium has been pumped into the subsurface horizons of the landfill site over many years.
2. Effects of Tritium on Living Organisms
3. Effects of Tritium on Marine Bacteria
4. Effects of Tritium on Aquatic Plants
5. Studying the Effect of Tritium on the Physiological Functions of the Submerged Aquatic Plant Elodea canadensis
6. Effects on the Development of Phytophagous Freshwater Prussian carp
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belovodsky, L.F.; Gayevoy, V.K.; Grishmanovsky, V.I. Tritium; Energoatomizdat: Moscow, Russia, 1985; p. 212. (In Russian) [Google Scholar]
- Eyrolle, F.; Ducros, L.; Le Dizès, S.; Beaugelin-Seiller, K.; Charmasson, S.; Boyer, P.; Cossonnet, C. An updated review on tritium in the environment. J. Environ. Radioact. 2018, 181, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Galeriu, D.; Melintescu, A. Tritium. In Radionuclides in the Environment, 1st ed.; Atwood, D.A., Ed.; John Wiley & Sons Ltd.: West Sussex, UK, 2010; pp. 47–64. [Google Scholar] [CrossRef]
- Chae, J.-S.; Kim, G. Dispersion and removal characteristics of tritium originated from nuclear power plants in the atmosphere. J. Environ. Radioact. 2018, 192, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Quisenberry, D.R. Environmental aspects of tritium. Environ. Pollut. 1979, 20, 33–43. [Google Scholar] [CrossRef]
- Mikhailova, V.N. Nuclear Tests of the USSR; Russian Federal Nuclear Center-All-Russian Research Institute of Experimental Physics: Serov, Russia, 1997; p. 302. [Google Scholar]
- Weinberg, A.M. The future of nuclear energy. Phys. Today 1981, 34, 48–56. [Google Scholar] [CrossRef]
- Garbinsky, L.; Psenicka, L. Vyuzitie monitorov rádioaktivity v zivotnom prostredi. Zb. 4-Vcd. Konf. SVST:Tvorba a jchr. Zivot, Prostred., Bratislava, 1979. Zvaz. 1. Bratislava. 1979; 260.
- Pilmer, D.F.; Denovan, J.T. Comprasion of predicted and measured radoinuclide concentrations in marine animals near an operating PWR. Trans. Am. Nucl. Soc. 1973, 17, 29–30. [Google Scholar]
- Kozlov, F.A.; Alekseev, B.A. Influence of technological parameters on the transport of tritium in nuclear power plants with fast reactors with sodium coolant. At. Energy 1990, 68, 94–98. [Google Scholar] [CrossRef]
- Babenko, A.G.; Mekhedov, B.N.; Podporinova, J.I.E.; Popov, S.B.; Shalin, A.I. Discharges and emissions of tritium from VVER-1000 of the 5th unit of NoVo Voronezh NPP. At. Energy 1990, 68, 285–287. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, T.; Yang, L.; Meng, D.; Song, D. Monitoring and management of tritium from the nuclear power plant effluent. IOP Conf. Ser. Earth Environ. Sci. 2018, 108, 042057. [Google Scholar] [CrossRef]
- Phillips, J.E.; Easterly, C.T. Sources of tritium. Nucl. Saf. 1981, 22, 612–626. [Google Scholar]
- Vakulovsky, S.M.; Vorontsov, A.I.; Katrich, I.Y.; Koloskov, I.A.; Rovinskij, F.Y.; Roslyj, E.I. Tritium in atmospheric precipitation, rivers and seas washing the territory of the Soviet Union. At. Energy 1978, 44, 432–441. [Google Scholar]
- Kulikov, N.V.; Rech, T.A.; Trapeznikov, A.B.; Chebotina, M.Y. Tritium in the region of the Beloyarsk NPP in the Urals. In Ecology of the Regions of Nuclear Power Plants; Science: Moscow Russia, 1996; pp. 251–263. (In Russian) [Google Scholar]
- Larin, V. The tritium problem at the MAYAK plant. Energy 2002, 6, 44–49. [Google Scholar]
- Gudkov, D.I. Tritium in the water of the Dnieper and its reservoirs. Gidrobiol. Zhurnal 1995, 31, 95–102. (In Russian) [Google Scholar]
- Gudkov, D.I. Dynamics of the tritium content in the floodplain water bodies of the r. Pripyat and the cooling pond of the Chernobyl nuclear power plant. Radiat. Biol. Radioecol. 1999, 39, 605–608. (In Russian) [Google Scholar]
- Nosov, A.V.; Martynova, A.M.; Shabanov, A.F.; Savitsky, Y.V.; Shishlov, A.E.; Revenko, Y.A. Study of the removal of tritium by watercourses from the territory of the Krasnoyarsk Mining and Chemical Combine. At. Energy 2001, 90, 77–80. [Google Scholar] [CrossRef]
- Bondareva, L. Tritium in the freshwater ecosystem of the Yenisei River: Behavior, accumulation, and transformation. In Tritium: Advance in Research and Application; Jankovic, M.M., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2018; pp. 47–98. [Google Scholar]
- Balukova, V.D.; Egorov, N.N.; Kaymin, E.P.; Kosareva, I.M.; Kostin, P.P.; Kurochkin, V.M.; Mikerin, E.I.; Nosukhin, A.V.; Pimenov, M.K.; Rybalchenko, A.I. Deep Burial of Liquid Radioactive Waste; IzdAT: Moscow, Russia, 1994; p. 256. (In Russian) [Google Scholar]
- Demin, S.N. Tritium problem–hygienic aspects. In Tritium Is Dangerous; AtomIzdat: Chelyabinsk, Russia, 2001; pp. 13–21. (In Russian) [Google Scholar]
- Schell, W.R.; Sause, G.; Payne, B.R. World distribution of environmental tritium. In Proceedings of the Symposium on Physical Behavior of Radioactive Contaminants in the Atmosphere, Vienna, Austria, 12–16 November 1973; pp. 375–396. [Google Scholar]
- IRSN. Radionuclide Fact Sheet: Tritium and the Environment. Available online: https://www.irsn.fr/EN/Research/publications-documentation/radionuclides-sheets/environment/Pages/Tritium-environment.aspx (accessed on 25 November 2021).
- McCubbin, D.; Leonard, K.; Bailey, T.; Williams, J.; Tossell, P. Incorporation of organic tritium (3H) by marine organisms and sediment in the Severn estuary. Bristol channel (UK). Mar. Pollut. Bull. 2001, 42, 852–863. [Google Scholar] [CrossRef]
- Melintescu, A.; Galeriu, D. Dynamic model for tritium transfer in an aquatic food chain. Radiat. Environ. Biophys. 2011, 50, 459–473. [Google Scholar] [CrossRef]
- Boyer, C.; Vichot, L.; Fromm, M.; Losset, Y.; Tatin-Froux, F.; Guétat, P.; Badot, P.M. Tritium in plants: A review of current knowledge. Environ. Exp. Bot. 2009, 67, 34–51. [Google Scholar] [CrossRef]
- Devine, T.L. Incorporation of tritium from water into tissue components of the booklouse, Liposcelis bostrychophilus. J. Insect Physiol. 1977, 23, 1315–1321. [Google Scholar] [CrossRef]
- Bogen, D.C.; Welford, G.A. Fallout tritium distribution in the environment. Health Phys. 1976, 30, 203–208. [Google Scholar] [CrossRef]
- Hill, R.L.; Johnson, J.R. Metabolism and dosimetry of tritium. Health Phys. 1993, 65, 628–647. [Google Scholar] [CrossRef]
- Belot, Y.; Caput, C.; Gauthier, D. Distribution of the organically bound tritium in vegetation exposed to fall-out. Radiat. Prot. Dosim. 1986, 16, 111–113. [Google Scholar] [CrossRef]
- Hisamatsu, S.; Takizawa, Y.; Katsumata, T.; Itoh, M.; Ueno, K.; Sakanoue, M. Further study on fallout 3H ingestion in Akita, Japan. Health Phys. 1989, 57, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.M. Environmental tritium in trees. In Proceedings of the Symposium on Behaviour of Tritium in the Environment, San Francisco, CA, USA, 16–20 October 1978; pp. 405–417. [Google Scholar]
- Baumgartner, F.; Kim, M. Tritium/protium fractionation near and inside DNA. J. Radioanal. Nucl. Chem. 2000, 243, 295–298. [Google Scholar] [CrossRef]
- Baumgartner, F.; Kardinal, C.; Mullen, G. Distribution of tritium between water and exchangeable hydrogen bridges of biomolecules. J. Radioanal. Nucl. Chem. 2001, 249, 513–517. [Google Scholar] [CrossRef]
- Abbas, M.; Adil, M.; Ehtisham-Ul-Haque, S.; Munir, B.; Yameen, M.; Ghaffar, A.; Shar, G.A.; Tahir, M.A.; Iqbal, M. Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. Sci. Total Environ. 2018, 626, 1295–1309. [Google Scholar] [CrossRef]
- Bulich, A.A.; Isenberg, D.L. Use of the luminescent bacterial system for the rapid assessment of aquatic toxicity. ISA Trans. 1981, 20, 29–33. [Google Scholar]
- Girotti, S.; Ferri, E.N.; Fumo, M.G.; Maiolini, E. Monitoring of environmental pollutants by bioluminescent bacteria. Anal. Chim. Acta. 2008, 608, 2–29. [Google Scholar] [CrossRef]
- Yamauchi, M.; Sakuma, S. Development of bioassay system for evaluation of materials for personal protective equipment (PPE) against toxic effects of ionizing radiations. Ind. Health 2017, 55, 580–583. [Google Scholar] [CrossRef] [Green Version]
- Kratasyuk, V.; Esimbekova, E. Applications of luminous bacteria enzymes in toxicology. Comb. Chem. High Throughput Screen. 2015, 18, 952–959. [Google Scholar] [CrossRef] [Green Version]
- Vasilenko, I.Y.; Vasilenko, O.I. Radiation risk when exposed to small doses is negligible. At. Energy Bull. 2001, 12, 34–37. (In Russian) [Google Scholar]
- Rozhko, T.V.; Guseynov, O.A.; Guseynova, V.E.; Bondar, A.A.; Devyatlovskaya, A.N.; Kudryasheva, N.S. Is bacterial luminescence response to low-dose radiation associated with mutagenicity? J. Environ. Radioact. 2017, 177, 261–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandrova, M.; Rozhko, T.; Vydryakova, G.; Kudryasheva, N. Effect of americium-241 on luminous bacteria. Role of peroxides. J. Environ. Radioact. 2011, 102, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Selivanova, M.A.; Mogilnaya, O.A.; Badun, G.A.; Vydryakova, G.A.; Kuznetsov, A.M.; Kudryasheva, N.S. Effect of tritium on luminous marine bacteria and enzyme reactions. J. Environ. Radioact. 2013, 120, 19–25. [Google Scholar] [CrossRef]
- Kudryasheva, N.S.; Rozhko, T.V. Effect of low-dose ionizing radiation on luminous marine bacteria: Radiation hormesis and toxicity. J. Environ. Radioact. 2015, 142, 68–77. [Google Scholar] [CrossRef]
- Selivanova, M.A.; Rozhko, T.V.; Devyatlovskaya, A.N.; Kudryasheva, N.S. Comparison of chronic low-dose effects of alpha-and beta-emitting radionuclides on marine bacteria. Cent. Eur. J. Biol. 2014, 9, 951–959. [Google Scholar] [CrossRef]
- Kudryasheva, N.S.; Kovel, E.S. Monitoring of low-intensity exposures via luminescent bioassays of different complexity: Cells, enzyme reactions, and fluorescent proteins. Int. J. Mol. Sci. 2019, 20, 4451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozhko, T.V.; Nemtseva, E.V.; Gardt, M.V.; Raikov, A.V.; Lisitsa, A.E.; Badun, G.A.; Kudryasheva, N.S. Enzymatic responses to low-intensity radiation of tritium. Int. J. Mol. Sci. 2020, 21, 8464. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, J. Sipping from a poisoned chalice. Science 2003, 302, 376–379. [Google Scholar] [CrossRef]
- Calabrese, E.J. Hormesis: A revolution in toxicology, risk assessment and medicine. EMBO Rep. 2004, 5 (Suppl. 1), S37–S40. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, E.J. Hormesis: Path and progression to significance. Int. J. Mol. Sci. 2018, 19, 2871. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, E.J. Hormetic mechanisms. Crit. Rev. Toxicol. 2013, 43, 580–606. [Google Scholar] [CrossRef]
- Calabrese, E.J. Hormesis: A fundamental concept in biology. Microb. Cell 2014, 1, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Agathokleous, E.; Calabrese, E.J. A global environmental health perspective and optimisation of stress. Sci. Total Environ. 2020, 704, 135263. [Google Scholar] [CrossRef]
- Luckey, T.D. Hormesis with Ionizing Radiation, 1st ed.; CRC Press: Boca Raton, FL, USA, 1980; p. 225. [Google Scholar] [CrossRef]
- Jargin, S.V. Hormesis and radiation safety norms: Comments for an update. Hum. Exp. Toxicol. 2018, 37, 1233–1243. [Google Scholar] [CrossRef]
- Shibamoto, Y.; Nakamura, H. Overview of biological, epidemiological, and clinical evidence of radiation hormesis. Int. J. Mol. Sci. 2018, 19, 2387. [Google Scholar] [CrossRef] [Green Version]
- Rozhko, T.V.; Nogovitsyna, E.I.; Badun, G.A.; Lukyanchuk, A.N.; Kudryasheva, N.S. Reactive Oxygen Species and low-dose effects of tritium on bacterial cells. J. Environ. Radioact. 2019, 208–209, 106035. [Google Scholar] [CrossRef] [Green Version]
- Rozhko, T.V.; Badun, G.A.; Razzhivina, I.A.; Guseynov, O.A.; Guseynova, V.E.; Kudryasheva, N.S. On mechanism of biological activation by tritium. J. Environ. Radioact. 2016, 157, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Min, J.; Lee, C.W.; Gu, M.B. Gamma-radiation dose-rate effects on DNA damage and toxicity in bacterial cells. Radiat. Environ. Biophys. 2003, 42, 189–192. [Google Scholar] [CrossRef]
- Burlakova, E.B.; Konradov, A.A.; Maltseva, E.X. Effect of extremely weak chemical and physical stimuli on biological systems. Biophysics 2004, 49, 522–534. [Google Scholar]
- Kurvet, I.; Ivask, A.; Bondarenko, O.; Sihtmäe, M.; Kahru, A. LuxCDABE--transformed constitutively bioluminescent Escherichia coli for toxicity screening: Comparison with naturally luminous Vibrio fischeri. Sensors 2011, 11, 7865–7878. [Google Scholar] [CrossRef] [Green Version]
- Ray, P.D.; Huang, B.-W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012, 24, 981–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; He, C. Regulation of plant reactive oxygen species (ROS) in stress responses: Learning from AtRBOHD. Plant Cell Rep. 2016, 35, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Nemtseva, E.V.; Kudryasheva, N. The mechanism of electronic excitation in bacterial bioluminescent reaction. Russ. Chem. Rev. 2007, 76, 91–100. [Google Scholar] [CrossRef]
- Lee, J.; Muller, F.; Visser, A.J.W.G. The sensitized bioluminescence mechanism of bacterial luciferase. Photochem. Photobiol. 2019, 95, 679–704. [Google Scholar] [CrossRef] [Green Version]
- Rees, J.F.; Thompson, E.M. Photophores: The analysis of bioluminescent systems. In Biochemistry and Molecular Biology of Fishes; Hochachka, P.W., Mommsen, T.P., Eds.; Elsevier: New York, NY, USA, 1994; Volume 3, pp. 215–229. [Google Scholar]
- Kadhim, M.A.; Moore, S.R.; Goodwin, E.H. Interrelationships amongst radiation-induced genomic instability, bystander effects, and the adaptive response. Mutat. Res. 2004, 568, 21–32. [Google Scholar] [CrossRef]
- Bala, M.; Kumar, R.; Kumar, A. Modification in the expression of Mre11/Rad50/Nbs1 complex in low dose irradiated human lymphocytes. Dose Response 2009, 7, 193–207. [Google Scholar] [CrossRef]
- Rithidech, K.N.; Scott, B.R. Evidence for radiation hormesis after In Vitro exposure of human lymphocytes to low doses of ionizing radiation. Dose Response 2008, 6, 252–271. [Google Scholar] [CrossRef] [Green Version]
- Jaeschke, B.C.; Bradshaw, C. Bioaccumulation of tritiated water in phytoplankton and trophic transfer of organically bound tritium to the blue mussel, Mytilus Edulis. J. Environ. Radioact. 2013, 115, 28–33. [Google Scholar] [CrossRef]
- Jackson, D.A.; Hassan, A.B.; Errington, R.J.; Cook, P.R. Visualization of focal sites of transcription within human nuclei. EMBO J. 1993, 12, 1059–1065. [Google Scholar] [CrossRef]
- Rozhko, T.; Kolesnik, O.; Badun, G.; Stom, D.; Kudryasheva, N. Humic substances mitigate the impact of tritium on luminous marine bacteria. Involvement of Reactive Oxygen Species. Int. J. Mol. Sci. 2020, 21, 6783. [Google Scholar] [CrossRef]
- Bondareva, L.; Kudryasheva, N. Direct and indirect detoxification effects of humic substances. Agronomy 2021, 11, 198. [Google Scholar] [CrossRef]
- Yehia, M.R.; Sushko, E.S.; Smolyarova, T.E.; Shabanov, A.V.; Badun, G.A.; Kudryasheva, N.S. Adaptation of a bacterial bioluminescent assay to monitor bioeffects of gold nanoparticles. Bioengineering 2022, 9, 61. [Google Scholar] [CrossRef]
- Bartlit, J.R. The Tritium Systems Test Assembly at the Los Alamos National Laboratory, Los Alamos National Security; DOE: Los Alamos, NM, USA, 1990; p. 21. [Google Scholar]
- Bondareva, L.G.; Subbotin, M.A. Processes of assimilation of tritium by aquatic plants Elodea canadensis and Lemna minor. Radiation biology. Radioecology 2016, 56, 440–446. (In Russian) [Google Scholar]
- Bondareva, L.; Schultz, M.K. Investigation of the tritium content in surface water, bottom sediments (zoobenthos), macrophytes, and fish in the mid-stream region of the Yenisei River (Siberia, Russia). Environ. Sci. Pollut. Res. 2015, 22, 18127–18136. [Google Scholar] [CrossRef]
- Zotina, T.A.; Gaevsky, N.A.; Radionova, E.A. Evaluation of the toxicity of heavy metals for the aquatic plant Elodea canadensis. J. Sib. Fed. University. Biol. 2009, 2, 226–236. (In Russian) [Google Scholar]
- Aidarkhanov, A.O.; Lukashenko, S.N.; Lyakhova, O.N.; Subbotin, S.B.; Yakovenko, Y.Y.; Genova, S.V.; Aidarkhanova, A.K. Mechanisms for surface contamination of soils and bottom sediments in the Shagan River zone within former Semipalatinsk Nuclear Test Site. J. Environ. Radioact. 2013, 124, 163–170. [Google Scholar] [CrossRef]
- Küpper, H.; Küpper, F.; Spiller, M. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J. Exp. Bot. 1996, 47, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Drinovec, L.; Drobne, D.; Jerman, I.; Zrimec, A. Delayed fluorescence of Lemna minor: A biomarker of the effects of copper, cadmium, and zinc. Bull. Environ. Contam. Toxicol. 2004, 72, 896–902. [Google Scholar] [CrossRef]
- Berden-Zrimec, M.; Drinovec, L.; Zrimec, A.; Tišler, T. Delayed fluorescence in algal growth inhibition tests. Cent. Eur. J. Biol. 2007, 2, 169–181. [Google Scholar] [CrossRef]
- Witztum, A.; Posner, H.B.; Gower, R.A. Phototactic chloroplast displacement in the photosynthetic mutant, Lemna paucicostata strain 1073. Ann. Bot. 1979, 44, 1–5. [Google Scholar] [CrossRef]
- IAEA. Environmental Isotope Data: World Survey of Isotope Concentration in Precipitation 426 IAEA (1972–1975); IAEA: Vienna, Austria, 1979; Volume 5, p. 198. [Google Scholar]
- IAEA–International Atomic Energy Agency. Effects of Ionizing Radiation on Plants and Animals at Levels Implied by Current Radiation Protection Standards. Available online: https://www.iaea.org/publications/1436/effects-of-ionizing-radiation-on-plants-and-animals-at-levels-implied-by-current-radiation-protection-standards (accessed on 25 November 2021).
- ICRP Publication 136: Dose Coefficients for Non-Human Biota Environmentally Exposed to Radiation. Available online: https://www.icrp.org/publication.asp?id=ICRP%20Publication%20136 (accessed on 25 November 2021).
- Little, M.P.; Tawn, E.J.; Tzoulaki, I.; Wakeford, R.; Hildebrandt, G.; Paris, F.; Tapio, S.; Elliott, P. A systematic review of epidemiological associations between low and moderate doses of ionizing radiation and late cardiovascular effects, and their possible mechanisms. Radiat. Res. 2008, 169, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Bondareva, L.G. Study of the Accumulation of Tritium in Some Aquatic Organisms: Eggs and Fish (Carassius gibelio), Aquatic Plants Ceratophyllum and Lemna. Radiat. Biol. Radioecol. 2020, 60, 71–81. (In Russian) [Google Scholar]
- Privezentsev, Y.A.; Vlasov, V.A. Fish Farming; Mir: Moscow, Russia, 2004; p. 456. (In Russian) [Google Scholar]
- Sabaneev, L.P. Living and Catching Freshwater Fish, 7th ed.; Urozhai Kiev: Kiev, Ukraine, 1994. (In Russian) [Google Scholar]
- Park, J.W.; Lanier, T.C. Processing of surimi and surimi seafood. In Marine and Freshwater Products Handbook; Martin, R.E., Ed.; CRC Press: Boca Raton, FL, USA, 2000; pp. 417–443. [Google Scholar]
- Kim, S.B.; Bredlaw, M.; Rousselle, H.; Stuart, M. Distribution of organically bound tritium (OBT) activity concentrations in aquatic biota from western Canada. J. Environ. Radioact. 2019, 208, 105997. [Google Scholar] [CrossRef]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Source, Effects and Risks of Ionizing Radiation. UNSCEAR 2016 Report. Available online: https://www.unscear.org/unscear/en/publications/2017.html (accessed on 1 December 2020).
- Nayak, S.R.; D’Souza, R.S.; Purushotham, M.M.; Seraje, B.; Blangat, D.N.; Mana, R.P.; Naregundi, K. Determination of Organically Bound Tritium (OBT) Concentration in Fish by Thermal Oxidation and Liquid Scintillation Counting Method. Health Phys. 2021, 120, 1–8. [Google Scholar] [CrossRef]
- Kim, S.B.; Bredlaw, M.; Rousselle, H.; Bond, M.; Stuart, M.J. Determination of the baseline tritium concentrations (HTO, TFWT and OBT) in soil and plants in Ontario, Canada. Environ. Radioact. 2022, 243, 106810. [Google Scholar] [CrossRef] [PubMed]
- Okada, S.; Momoshima, N. Overview of tritium: Characteristics, sources, and problems. Health Phys. 1993, 65, 595–609. [Google Scholar] [CrossRef]
- Attix, F.H. Introduction to Radiological Physics and Radiation Dosimetry; Wiley: New York, NY, USA, 1986; p. 607. [Google Scholar]
- Saha, G.B. Radiation Biology. In Physics and Radiobiology of Nuclear Medicine; Springer: New York, NY USA, 1993; pp. 138–157. [Google Scholar] [CrossRef]
- NCRP. Report No. 109–Effects of Ionizing Radiation on Aquatic Organisms. 1991. Available online: https://ncrponline.org/shop/reports/report-no-109-effects-of-ionizing-radiation-on-aquatic-organisms-1991/ (accessed on 25 November 2021).
Plants | Average Length, cm | Average Weight, g | Tritium Concentration, Bq·kg−1 (% of Tritium Accumulated in the Biomass) | |
---|---|---|---|---|
TFWT | OBT | |||
Initial | 8.0 ± 0.5 | 0.59 ± 0.3 | 5.5 ± 1.1 (97 ± 1) | 0.20 ± 0.05 (3 ± 1) |
Following exposure | 15 ± 1 | 0.75 ± 0.9 | 141 ± 2 (85 ± 1) | 23 ± 2 (15 ± 1) |
Light/Dark, Hours | 24/0 | 18/6 | 16/8 | 12/12 | 6/18 | 0/24 |
---|---|---|---|---|---|---|
OBT, % | 3 | 6 | 9 | 15 | 35 | 22 |
Tritium Concentration, Bq·L−1 | Initial Eggs, Units | Dead Eggs, Units (%) | Eggs with Abnormal Development, Units (%) |
---|---|---|---|
Water from the Yenisei River | |||
control | 3500 ± 150 | 280 ± 20 (9) | 250 ± 15 (7) |
500 ± 10 | 7600 ± 200 | 850 ± 15 (11) | 750 ± 20 (10) |
5000 ± 18 | 3500 ± 100 | 700 ± 10 (20) | 1100 ±100 (30) |
50,000 ± 57 | 4400 ± 200 | 950 ± 30 (20) | 1400 ± 50 (30) |
Water from Atomic Lake | |||
5600 ± 28 | 5800 ± 250 | 3900 ± 200 (67) | 1500 ± 170 (26) |
System | Age of Fish, Days | Units | Length, mm | |
---|---|---|---|---|
Average (Difference in Relation to Control, %) | Range, mm | |||
Control 50,000 Bq·L−1 | 35 | 800 1050 | 17 ± 1 18 ± 1 (1.1%) | 16.8–17.4 17.6–18.1 |
Control 50,000 Bq·L−1 | 76 | 500 500 | 28.3 ± 2.8 28.4 ± 2.4 (0.4%) | 27.8–28.9 28.0–28.9 |
Control 50,000 Bq·L−1 | 125 | 206 203 | 65.7 ± 6.6 70.6 ± 6.7 (9.7%) | 65.0–67.0 69.6–77.5 |
Control 50,000 Bq·L−1 | 150 | 75 97 | 80.3 ± 8.6 81.7 ± 7.9 (2.2%) | 88.3–92.2 70.1–93.3 |
Control 50,000 Bq·L−1 | 35 | 800 1050 | 17 ± 1 18 ± 1 (1.1%) | 16.8–17.4 17.6–18.1 |
Parameters | Initial | 250 Days | 550 Days |
---|---|---|---|
Mass, g | 120 ± 17 | 500 ± 55 | 800 ± 110 |
Length, cm | 17 ± 3 | 35 ± 5 | 60 ± 6 |
Organ | 250 Days | 550 Days |
---|---|---|
Gills | 1.0 ± 0.1 | <MDA |
Bones + head | <MDA | <MDA |
Skin + fins + scale | 2.0 ± 0.4 | <MDA |
Liver | 6.0 ± 0.4 | 4.4 ± 0.6 |
Intestine with contents | 8.0 ± 0.6 | 2.8 ± 1.0 |
Stomach with contents | 9.0 ± 1.0 | 3.2 ± 1.0 |
Muscle tissue | 74.0 ± 3.0 | 33.0 ± 4.0 |
Types of Irradiation | Eggs | Fish | ||
---|---|---|---|---|
µGy·hour−1 | µGy·25 Days−1 | µGy·hour−1 | µGy·550−1 | |
Internal | 5.36∙10−7 | 3.2∙10−4 | 1.89∙10−6 | 2.50∙10−2 |
External | 4.82∙10−6 | 2.9∙10−3 | 2.36∙10−10 | 3.12∙10−7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bondareva, L.; Kudryasheva, N.; Tananaev, I. Tritium: Doses and Responses of Aquatic Living Organisms (Model Experiments). Environments 2022, 9, 51. https://doi.org/10.3390/environments9040051
Bondareva L, Kudryasheva N, Tananaev I. Tritium: Doses and Responses of Aquatic Living Organisms (Model Experiments). Environments. 2022; 9(4):51. https://doi.org/10.3390/environments9040051
Chicago/Turabian StyleBondareva, Lydia, Nadezhda Kudryasheva, and Ivan Tananaev. 2022. "Tritium: Doses and Responses of Aquatic Living Organisms (Model Experiments)" Environments 9, no. 4: 51. https://doi.org/10.3390/environments9040051
APA StyleBondareva, L., Kudryasheva, N., & Tananaev, I. (2022). Tritium: Doses and Responses of Aquatic Living Organisms (Model Experiments). Environments, 9(4), 51. https://doi.org/10.3390/environments9040051