The Impact of COVID-19 Lockdown Strategies on Oxidative Properties of Ambient PM10 in the Metropolitan Area of Milan, Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Periods
2.2. Meteorological and Air Quality Data Collection
2.3. Chemical Characterization
2.4. Assessment of the PM Oxidative Potential
2.5. Statistical Analysis
3. Results
3.1. PM10 Oxidative Potential
3.2. Contribution of PM10 Chemical Components on Oxidative Potential
3.3. Impact of Lockdown Restrictions on Air Quality
3.4. Impact of Lockdown Restrictions on PM Oxidative Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balasubramaniam, D.; Kanmanipappa, C.; Shankarlal, B.; Saravanan, M. Assessing the impact of lockdown in US, Italy and France. What are the changes in air quality? Energy Sources, Part A Recover. Util. Environ. Eff. 2020, 1–11. [Google Scholar] [CrossRef]
- Keshtkar, M.; Heidari, H.; Moazzeni, N.; Azadi, H. Analysis of changes in air pollution quality and impact of COVID-19 on environmental health in Iran: Application of interpolation models and spatial autocorrelation. Environ. Sci. Pollut. Res. 2022, 29, 38505–38526. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world. Environ. Pollut. 2020, 266, 115042. [Google Scholar] [CrossRef] [PubMed]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xud, X.; Paoletti, E.; DiéguezRodriguez, J.J.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect effects of COVID-19 on the environment. Sci. Total Environ. 2020, 728, 138813. [Google Scholar] [CrossRef]
- Gope, S.; Dawn, S.; Shree Das, S. Effect of COVID-19 pandemic on air quality: A study based on Air Quality Index. Environ. Sci. Pollut. Res. 2021, 28, 35564–35583. [Google Scholar] [CrossRef]
- Altuwayjiri, A.; Soleimanian, E.; Moroni, S.; Palomba, P.; Borgini, A.; De Marco, C.; Ruprecht, A.A.; Sioutas, C. The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient PM2.5 in the metropolitan area of Milan, Italy. Sci. Total Environ. 2021, 758, 143582. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Carnevale Miino, M. Lockdown for COVID-2019 in Milan: What are the effects on air quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef]
- Gualtieri, G.; Brilli, L.; Carotenuto, F.; Vagnoli, C.; Zaldei, A.; Gioli, B. Quantifying road traffic impact on air quality in urban areas: A COVID-19-induced lockdown analysis in Italy. Environ. Pollut. 2020, 267, 115682. [Google Scholar] [CrossRef]
- Pala, D.; Casella, V.; Larizza, C.; Malovini, A.; Bellazzi, R. Impact of COVID-19 lockdown on PM concentrations in an Italian Northern City: A year-by-year assessment. PLoS ONE 2022, 17, e0263265. [Google Scholar] [CrossRef]
- Romano, S.; Catanzaro, V.; Paladini, F. Impacts of the COVID-19 lockdown measures on the 2020 columnar and surface air pollution parameters over south-eastern Italy. Atmosphere 2021, 12, 1366. [Google Scholar] [CrossRef]
- Vultaggio, M.; Varrica, D.; Alaimo, M.G. Impact on air quality of the COVID-19 lockdown in the urban area of palermo (Italy). Int. J. Environ. Res. Public Health 2020, 17, 7375. [Google Scholar] [CrossRef]
- Winkler, A.; Amoroso, A.; Di Giosa, A.; Marchegiani, G. The effect of COVID-19 lockdown on airborne particulate matter in Rome, Italy: A magnetic point of view. Environ. Pollut. 2021, 291, 118191. [Google Scholar] [CrossRef] [PubMed]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci. Total Environ. 2020, 738, 139825. [Google Scholar] [CrossRef] [PubMed]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between ground levels of ozone (O3) and nitrogen dioxide (NO2) with coronavirus (COVID-19) in Milan, Italy. Sci. Total Environ. 2020, 740, 140005. [Google Scholar] [CrossRef]
- Daher, N.; Ruprecht, A.; Invernizzi, G.; De Marco, J.C.; Miller-Schulze, J.; Bae Heo, J.; Shafer, M.M.; Shelton, B.R.; Schauer, J.J.; Sioutas, C. Characterization, sources and redox activity of fine and coarse particulate matter in Milan, Italy. Atmos. Environ. 2012, 49, 130–141. [Google Scholar] [CrossRef]
- Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020, 261, 114465. [Google Scholar] [CrossRef] [PubMed]
- Lotrecchiano, N.; Trucillo, P.; Barletta, D.; Poletto, M.; Sofia, D. Air pollution analysis during the lockdown on the city of Milan. Processes 2021, 9, 1692. [Google Scholar] [CrossRef]
- Hakimzadeh, M.; Soleimanian, E.; Mousavi, A.; Borgini, A.; De Marco, C.; Ruprecht, A.A.; Sioutas, C. The impact of biomass burning on the oxidative potential of PM 2.5 in the metropolitan area of Milan. Atmos. Environ. 2020, 224, 117328. [Google Scholar] [CrossRef]
- Perrone, M.G.; Zhou, J.; Malandrino, M.; Sangiorgi, G.; Rizzi, C.; Ferrero, L.; Dommen, J.; Bolzacchini, E. PM chemical composition and oxidative potential of the soluble fraction of particles at two sites in the urban area of Milan, Northern Italy. Atmos. Environ. 2016, 128, 104–113. [Google Scholar] [CrossRef]
- Putaud, J.P.; Pozzoli, L.; Pisoni, E.; Martins Dos Santos, S.; Lagler, F.; Lanzani, G.; Dal Santo, U.; Colette, A. Impacts of the COVID-19 lockdown on air pollution at regional and urban background sites in northern Italy. Atmos. Chem. Phys. 2021, 21, 7597–7609. [Google Scholar] [CrossRef]
- Ainur, D.; Chen, Q.; Wang, Y.; Li, H.; Lin, H.; Ma, X.; Xu, X. Pollution characteristics and sources of environmentally persistent free radicals and oxidation potential in fine particulate matter related to city lockdown (CLD) in Xi’an, China. Environ. Res. 2022, 210, 112899. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yanhao Zhang, Y.; Cao, G.; Song, Y.; Zhang, J.; Li, R.; Zhao, L.; Dong, C.; Cai, Z. Influence of COVID-19 lockdown on the variation of organic aerosols: Insight into its molecular composition and oxidative potential. Environ. Res. 2022, 206, 112597. [Google Scholar] [CrossRef] [PubMed]
- Øvrevik, J. Oxidative potential versus biological effects: A review on the relevance of cell-free/abiotic assays as predictors of toxicity from airborne particulate matter. Int. J. Mol. Sci. 2019, 20, 4772. [Google Scholar] [CrossRef] [Green Version]
- Pietrogrande, M.C.; Russo, M.; Zagatti, E. Review of PM Oxidative Potential Measured with Acellular Assays in Urban and Rural Sites across Italy. Atmosphere 2019, 10, 626. [Google Scholar] [CrossRef] [Green Version]
- Crobeddu, B.; Baudrimont, I.; Deweird, J.; Sciare, J.; Badel, A.; Camproux, A.C.; Bui, L.C.; Baeza Squiban, A. Lung Antioxidant Depletion: A Predictive Indicator of Cellular Stress Induced by Ambient Fine Particles. Environ. Sci. Technol. 2020, 54, 2360–2369. [Google Scholar] [CrossRef]
- Leni, Z.; Künzi, L.; Geiser, M. Air pollution causing oxidative stress. Curr. Opin. Toxicol. 2020, 20–21, 1–8. [Google Scholar] [CrossRef]
- Daellenbach, K.R.; Uzu, G.; Jiang, J.; Cassagnes, L.E.; Leni, Z.; Vlachou, A.; Stefenelli, G.; Canonaco, F.; Weber, S.; Segers, A.; et al. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 2020, 587, 414–419. [Google Scholar] [CrossRef]
- Molina, C.; Toro, A.R.; Manzano, C.A.; Canepari, S.; Massimi, L.; Leiva-Guzm, M.A. Airborne Aerosols and Human Healt: Leapfrogging from Mass Concentration to Oxidative Potential. Atmosphere 2020, 11, 917. [Google Scholar] [CrossRef]
- Cervellati, F.; Benedusi, M.; Manarini, F.; Woodby, B.; Russo, M.; Valacchi, G.; Pietrogrande, M.C. Proinflammatory properties and oxidative effects of atmospheric particle components in human keratinocytes. Chemosphere 2020, 240, 124746. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Demaria, G.; Colombi, C.; Cuccia, E.; Dal Santo, U. Seasonal and Spatial Variations of PM10 and PM2.5 Oxidative Potential in Five Urban and Rural Sites across Lombardia Region, Italy. Int. J. Environ. Res. Public Health 2022, 19, 7778. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Fang, T.; Verma, V.; Zeng, L.; Weber, R.J. A method for measuring total aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and comparisons between an urban and roadside site of water-soluble and total OP. Atmos. Meas. Tech. 2017, 10, 2821–2835. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Sabbir Ahmed, C.M.; Canchola, A.; Chen, J.Y.; Lin, Y.H. Use of dithiothreitol assay to evaluate the oxidative potential of atmospheric aerosols. Atmosphere 2019, 10, 571. [Google Scholar] [CrossRef] [Green Version]
- Molina, C.; Andrade, C.; Manzano, C.A.; Toro, A.R.; Verma, V.; Leiva-Guzmán, M.A. Dithiothreitol-based oxidative potential for airborne particulate matter: An estimation of the associated uncertainty Environ. Sci. Pollut. Res. 2020, 27, 29672–29680. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Yu, J.Z. Assessment of interactions between transition metals and atmospheric organics: Ascorbic acid depletion and hydroxyl radical formation in organic-metal mixtures. Environ. Sci. Technol. 2020, 54, 1431–1442. [Google Scholar] [CrossRef]
- Shen, J.; Griffiths, P.T.; Campbell, S.J.; Utinger, B.; Kalberer, M.; Paulson, S.E. Ascorbate oxidation by iron, copper and reactive oxygen species: Review, model development, and derivation of key rate constants. Sci. Rep. 2021, 11, 7417. [Google Scholar] [CrossRef]
- Rao, L.; Zhang, L.; Wang, X.; Xie, T.; Zhou, S.; Lu, S.; Liu, X.; Lu, H.; Xiao, K.; Wang, W.; et al. Oxidative potential induced by ambient particulate matters with acellular assays: A review. Processes 2020, 8, 1410. [Google Scholar] [CrossRef]
- Perrone, M.R.; Bertoli, I.; Romano, S.; Russo, M.; Rispoli, G.; Pietrogrande, M.C. PM2.5 and PM10 oxidative potential at a Central Mediterranean Site: Contrasts between dithiothreitol- and ascorbic acid-measured values in relation with particle size and chemical composition. Atmos. Environ. 2019, 210, 143–155. [Google Scholar] [CrossRef]
- ARPA Lombardia: Database of Air Pollutants. Available online: https://www.arpalombardia.it/Pages/Aria/Inquinanti.aspx (accessed on 19 September 2022).
- Visentin, M.; Pagnoni, A.; Sarti, E.; Pietrogrande, M.C. Urban PM2.5 oxidative potential: Importance of chemical species and comparison of two spectrophotometric cell-free assays. Environ. Pollut. 2016, 219, 72–79. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Bacco, D.; Demaria, G.; Russo, M.; Scotto, F.; Trentini, A. Polycyclic aromatic hydrocarbons and their oxygenated derivatives in urban aerosol: Levels, chemical profiles, and contribution to PM2.5 oxidative potential. Environ. Sci. Pollut. Res. 2022, 29, 54391–54406. [Google Scholar] [CrossRef]
- Donzelli, G.; Cioni, L.; Cancellieri, M.; Morales, A.L.; Suárez-Varela, M.M.M. The effect of the COVID-19 lockdown on air quality in three italian medium-sized cities. Atmosphere 2020, 11, 1118. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Bacco, D.; Ferrari, S.; Ricciardelli, I.; Scotto, F.; Trentini, A.; Visentin, M. Characteristics and major sources of carbonaceous aerosols in PM2.5 in Emilia Romagna Region (Northern Italy) from four-year observations. Sci. Total Environ. 2016, 553, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Marcazzan, G.M.; Vaccaro, S.; Valli, G.; Vecchi, R. Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmos. Environ. 2001, 35, 4639–4650. [Google Scholar] [CrossRef]
- Fang, T.; Lakey, P.S.J.; Weber, R.J.; Shiraiwa, M. Oxidative Potential of Particulate Matter and Generation of Reactive Oxygen Species in Epithelial Lining Fluid. Environ. Sci. Technol. 2019, 53, 12784–12792. [Google Scholar] [CrossRef] [PubMed]
- Velali, E.; Papachristou, E.; Pantazaki, A.; Choli-Papadopoulou, T.; Planou, S.; Kouras, A.; Manoli, E.; Besis, A.; Voutsa, D.; Samara, C. Redox activity and in vitro bioactivity of the water-soluble fraction of urban particulate matter in relation to particle size and chemical composition. Environ. Pollut. 2016, 208, 774–786. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Bertoli, I.; Clauser, G.; Dalpiaz, C.; Dell’Anna, R.; Lazzeri, P.; Walter Lenzi, W.; Mara Russo, M. Chemical composition and oxidative potential of atmospheric particles heavily impacted by residential wood burning in the alpine region of northern Italy. Atmos. Environ. 2021, 253, 118360. [Google Scholar] [CrossRef]
- Calas, A.; Uzu, G.; Besombes, J.L.; Martins, J.M.F.; Redaelli, M.; Weber, S.; Charron, A.; Albinet, A.; Chevrier, F.; Brulfert, G.; et al. Seasonal variations and chemical predictors of oxidative potential (OP) of particulate matter (PM) for seven urban French sites. Atmosphere 2019, 10, 698. [Google Scholar] [CrossRef] [Green Version]
- Crobeddu, B.; Baudrimont, I.; Deweirdt, J.; Sciare, J.; Badel, A.; Camproux, A.C.; Bui, L.C.; Baeza-Squiban, A. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ. Pollut. 2017, 230, 125–133. [Google Scholar] [CrossRef]
- Calas, A.; Uzu, G.; Kelly, F.; Houdier, S.; Martins, J.M.F.; Thomas, F.; Molton, F.; Charron, A.; Dunster, C.; Oliete, A.; et al. Comparison between five acellular oxidative potential measurement assays performed with detailed chemistry on PM10 samples from the city of Chamonix (France). Atmos. Chem. Phys. 2018, 18, 7863–7875. [Google Scholar] [CrossRef] [Green Version]
- Kajino, M.; Hagino, H.; Fujitani, Y.; Morikawa, T.; Fukui, T.; Onishi, K.; Okuda, T.; Igarash, Y. Simulation of the transition metal-based cumulative oxidative potential in East Asia and its emission sources in Japan. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Godri, K.J.; Harriso, R.M.; Evans, T.; Baker, T.; Dunster, C.; Mudway, I.S.; Kelly, F.J. Increased oxidative burden associated with traffic component of ambient particulate matter at roadside and Urban background schools sites in London. PLoS ONE 2011, 6, e21961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, S.; Uzu, G.; Favez, O.; Borlaza, L.J.S.; Calas, A.; Salameh, D.; Chevrier, F.; Allard, J.; Besombes, J.L.; Albinet, A.; et al. Source apportionment of atmospheric PM10 oxidative potential: Synthesis of 15 year-round urban datasets in France. Atmos. Chem. Phys. 2021, 21, 11353–11378. [Google Scholar] [CrossRef]
- Bates, J.T.; Fang, T.; Verma, V.; Zeng, L.; Weber, R.J.; Tolbert, P.E.; Abrams, J.Y.; Sarnat, S.E.; Klein, M.; Mulholland, J.A.; et al. Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects. Environ. Sci. Technol. 2019, 53, 4003–4019. [Google Scholar] [CrossRef] [PubMed]
- Meroni, A.; Pirovano, G.; Gilardoni, S.; Lonati, G.; Colombi, C.; Gianelle, V.; Paglione, M.; Poluzzi, V.; Riva, G.M.; Toppetti, A. Investigating the role of chemical and physical processes on organic aerosol modelling with CAMx in the Po Valley during a winter episode. Atmos. Environ. 2017, 171, 126–142. [Google Scholar] [CrossRef]
- Diapouli, E.; Manousakas, M.I.; Vratolis, S.; Vasilatou, V.; Pateraki, S.; Bairachtari, K.A.; Querol, X.; Amato, F.; Alastuey, A.; Karanasiou, A.A.; et al. AIRUSE-LIFE +: Estimation of natural source contributions to urban ambient air PM10 and PM2.5 concentrations in southern Europe—Implications to compliance with limit values. Atmos. Chem. Phys. 2017, 7, 3673–3685. [Google Scholar] [CrossRef] [Green Version]
- Paraskevopoulou, D.; Bougiatioti, A.; Stavroulas, I.; Fang, T.; Lianou, M.; Liakakou, E.; Gerasopoulos, E.; Weber, R.; Nenes, A.; Mihalopoulos, N. Yearlong variability of oxidative potential of particulate matter in an urban Mediterranean environment. Atmos. Environ. 2019, 206, 183–196. [Google Scholar] [CrossRef]
- Massimi, L.; Ristorini, M.; Simonetti, G.; Frezzini, M.A.; Astolfi, M.L.; Canepari, S. Spatial mapping and size distribution of oxidative potential of particulate matter released by spatially disaggregated sources. Environ. Pollut. 2020, 266. [Google Scholar] [CrossRef]
- Borlaza, L.J.; Weber, S.; Marsal, A.; Uzu, G.; Jacob, V.; Besombe, J.L.; Chatain, M.; Conil, S.; Jaffrezo, J.L. Nine-year trends of PM10 sources and oxidative potential in a rural background site in France. Atmos. Chem. Phys. 2022, 22, 8701–8723. [Google Scholar] [CrossRef]
Total 2 January–18 May | PreL 2 2 January–25 February | PL1 26 February–24 March | FL 25 March–4 May | PL2 5–18 May | |
---|---|---|---|---|---|
OPVAA (nmol min−1m−3) | 1.38 ± 2.09 | 2.96 * ± 2.98 | 0.37 ± 0.06 | 0.49 ± 0.35 | 0.58 ± 0.34 |
OPVDTT (nmol min−1m−3) | 0.23 ± 0.16 | 0.39 * ± 0.15 | 0.16 ± 0.06 | 0.14 ± 0.07 | 0.10 ± 0.04 |
OPmAA (nmol min−1µg−1) | 0.040 ± 0.048 | 0.061 ± 0.066 | 0.01 ± 0.01 | 0.03 ± 0.03 | 0.04 ± 0.02 |
OPmDTT (nmol min−1µg−1) | 0.007 ± 0.002 | 0.007 ± 0.002 | 0.01 ± 0.00 | 0.01 ± 0.004 | 0.01 ± 0.00 |
PM10 (µg m−3) | 35.7 ± 21.92 | 56.39 * ± 20.02 | 27.36 ± 9.96 | 21.93 ± 9.75 | 15.87 ± 3.94 |
PM2.5 (µg m−3) | 26.26 ± 17.43 | 42.63 * ± 16.47 | 19.96 ± 8.23 | 14.92 ± 7.31 | 12.00 ± 3.03 |
NO2 (µg m−3) | 35.23 ± 19.30 | 53.57 ± 11.95 | 32.95 ± 10.96 | 16.52 ± 8.99 | 13.27 ± 4.84 |
BC (µg m−3) | 2.76 ± 2.40 | 5.17 ± 2.24 | 1.68 ± 0.72 | 0.91 ± 0.50 | 0.70 ± 0.26 |
Temperature (°C) | 10.23 ± 5.42 | 5.61 ± 2.85 | 9.08 ± 2.60 | 14.00 ± 4.01 | 19.26 ± 2.23 |
Cl− (µg m−3) | 0.065 ± 0.46 | 0.66 ± 0.45 | BLQ | BLQ | BLQ |
NO2− (µg m−3) | BLQ | 0.04 ± 0.01 | BLQ | BLQ | BLQ |
NO3− (µg m−3) | 9.20 ± 8.38 | 15.84 * ± 8.43 | 8.49 ± 4.92 | 4.02 ± 4.31 | 1.75 ± 1.25 |
SO42− (µg m−3) | 2.29 ± 1.20 | 2.60 ± 1.36 | 1.67 ± 0.99 | 2.54 ± 1.15 | 1.68 ± 0.43 |
Na+ (µg m−3) | 0.43 ± 0.27 | 0.50 ± 0.30 | 0.35 ± 0.30 | 0.31 ± 0.22 | 1.68 ± 0.43 |
NH4+ (µg m−3) | 2.86 ± 2.31 | 4.74 * ± 2.37 | 2.51 ± 1.43 | 1.55 ± 1.33 | 0.74 ± 0.36 |
K+ (µg m−3) | 0.30 ± 0.23 | 0.48 * ± 0.24 | 0.17 ± 0.06 | 0.16 ± 0.07 | 0.13 ± 0.07 |
Mg2+ (µg m−3) | 0.09 ± 0.04 | 0.09 ± 0.03 | 0.10 ± 0.04 | 0.11 ± 0.05 | 0.08 ± 0.02 |
Ca2+ (µg m−3) | 0.62 ± 0.35 | 0.81 ± 0.38 | 0.58 ± 0.36 | 0.49 ± 0.26 | 0.42 ± 0.14 |
OC (µg m−3) | 6.87 ± 4.50 | 11.10 * ± 4.56 | 5.18 ± 1.62 | 4.23 ± 1.59 | 2.99 ± 0.65 |
EC (µg m−3) | 0.79 ± 0.74 | 1.47 * ± 0.83 | 0.52 ± 0.20 | 0.32 ± 0.13 | 0.28 ± 0.11 |
Manni (µg m−3) | BLQ | 0.03 ± 0.01 | BLQ | BLQ | BLQ |
Levo (µg m−3) | 0.62 ± 0.67 | 1.07 * ± 0.72 | 0.27 ± 0.13 | 0.13 ± 0.08 | 0.04 ± 0.01 |
Manno (µg m−3) | 0.10 ± 0.08 | 0.11 * ± 0.08 | 0.04 ± 0.01 | BLQ | BLQ |
Gala (µg m−3) | 0.06 ± 0.04 | 0.07 ± 0.05 | 0.06 ± 0.05 | 0.03 ± 0.02 | BLQ |
ƩPAHs (ng m−3) | 1.75 ± 1.45 | 2.82 * ± 2.22 | BLQ | BLQ | BLQ |
S (µg m−3) | 0.93 ± 0.42 | 1.04 ± 0.47 | 0.74 ± 0.40 | 0.95 ± 0.39 | 0.35 ± 0.22 |
Cl (µg m−3) | 0.61 ± 0.62 | 1.14 * ± 0.51 | 0.30 ± 0.47 | 0.22 ± 0.33 | 0.22 ± 0.37 |
Al (µg m−3) | 0.35 ± 0.21 | 0.33 ± 0.15 | 0.29 ± 0.15 | 0.41 ± 0.21 | 0.34 ± 0.21 |
Si (µg m−3) | 1.04 ± 0.55 | 1.16 ± 0.51 | 0.90 ± 0.44 | 1.08 ± 0.66 | 0.86 ± 0.45 |
K (µg m−3) | 0.46 ± 0.29 | 0.74 * ± 0.31 | 0.34 ± 0.12 | 0.29 ± 0.12 | 0.23 ± 0.08 |
Ca (µg m−3) | 0.85 ± 0.50 | 1.13 ± 0.53 | 0.81 ± 0.44 | 0.62 ± 0.37 | 0.60 ± 0.29 |
Ti (µg m−3) | 0.04 ± 0.02 | 0.04 ± 0.02 | 0.030 ± 0.013 | 0.034 ± 0.020 | 0.031 ± 0.015 |
V (µg m−3) | 0.001 ± 0.001 | BLQ | BLQ | 0.001 ± 0.000 | 0.001 ± 0.000 |
Cr (µg m−3) | 0.010 ± 0.008 | 0.02 * ± 0.01 | 0.01 ± 0.004 | 0.001 ± 0.000 | 0.005 ± 0.001 |
Mn (µg m−3) | 0.019 ± 0.008 | 0.03 * ± 0.01 | 0.01 ± 0.007 | 0.011 ± 0.006 | 0.011 ± 0.005 |
Fe (µg m−3) | 1.42 ± 0.99 | 2.47 * ± 0.83 | 1.13 ± 0.50 | 0.72 ± 0.42 | 0.69 ± 0.24 |
Ni (µg m−3) | 0.005 ± 0.003 | 0.01 ± 0.00 | 0.001 ± 0.001 | 0.002 ± 0.001 | 0.002 ± 0.001 |
Cu (µg m−3) | 0.053 ± 0.057 | 0.11 * ± 0.05 | 0.040 ± 0.027 | 0.010 ± 0.006 | 0.014 ± 0.005 |
Zn (µg m−3) | 0.074 ± 0.05 | 0.13 * ± 0.05 | 0.060 ± 0.039 | 0.031 ± 0.022 | 0.038 ± 0.038 |
Br (µg m−3) | 0.012 ± 0.018 | 0.020 ± 0.03 | 0.010 ± 0.004 | 0.008 ± 0.004 | 0.006 ± 0.002 |
Pb (µg m−3) | 0.030 ± 0.021 | 0.05 * ± 0.02 | 0.02 ± 0.01 | 0.015 ± 0.009 | 0.014 ± 0.005 |
OPVAA | OPVDTT | NO2 | BC | |
---|---|---|---|---|
OPvAA(nmol min−1m−3) | 1 | 0.50 | 0.47 | 0.58 |
OPvDTT(nmol min−1m−3) | 0.50 | 1 | 0.82 | 0.88 |
PM10 (µg m−3) | 0.49 | 0.83 | 0.77 | 0.89 |
Cl− (µg m−3) | 0.50 | 0.44 | 0.34 | 0.39 |
NO3− (µg m−3) | 0.25 | 0.66 | 0.70 | 0.69 |
SO42−(µg m−3) | 0.05 | 0.16 | 0.02 | 0.09 |
Na+ (µg m−3) | 0.06 | 0.08 | 0.24 | 0.13 |
NH4+ (µg m−3) | 0.27 | 0.67 | 0.68 | 0.73 |
K+ (µg m−3) | 0.56 | 0.87 | 0.70 | 0.91 |
Mg2+ (µg m−3) | 0.01 | 0.04 | −0.25 | −0.12 |
Ca2+ (µg m−3) | 0.39 | 0.44 | 0.21 | 0.17 |
OC (µg m−3) | 0.59 | 0.86 | 0.81 | 0.97 |
EC (µg m−3) | 0.67 | 0.79 | 0.79 | 0.91 |
Levo (µg m−3) | 0.55 | 0.85 | 0.71 | 0.90 |
Manno (µg m−3) | 0.37 | 0.78 | 0.55 | 0.81 |
ƩPAHs | 0.29 | 0.59 | 0.27 | 0.76 |
S (µg m−3) | 0.07 | 0.23 | 0.07 | 0.11 |
Cl (µg m−3) | 0.50 | 0.65 | 0.56 | 0.55 |
Al (µg m−3) | −0.05 | −0.02 | −0.02 | 0.05 |
Si (µg m−3) | 0.11 | 0.17 | 0.20 | 0.21 |
K (µg m−3) | 0.49 | 0.85 | 0.60 | 0.67 |
Ca (µg m−3) | 0.25 | 0.37 | 0.48 | 0.42 |
Ti (µg m−3) | 0.22 | 0.34 | 0.31 | 0.34 |
V (µg m−3) | −0.11 | −0.11 | −0.12 | −0.06 |
Cr (µg m−3) | 0.58 | 0.72 | 0.70 | 0.74 |
Mn (µg m−3) | 0.50 | 0.69 | 0.80 | 0.74 |
Fe (µg m−3) | 0.55 | 0.73 | 0.86 | 0.80 |
Ni (µg m−3) | 0.51 | 0.58 | 0.56 | 0.62 |
Cu (µg m−3) | 0.60 | 0.74 | 0.80 | 0.83 |
Zn (µg m−3) | 0.41 | 0.67 | 0.79 | 0.77 |
Pb (µg m−3) | 0.55 | 0.70 | 0.84 | 0.77 |
PM2.5 (µg m−3) | 0.47 | 0.84 | 0.80 | 0.93 |
NO2 (µg m−3) | 0.47 | 0.82 | 1.00 | 0.84 |
BC (µg m−3) | 0.58 | 0.88 | 0.84 | 1.00 |
Mean Concentrations | ||||
---|---|---|---|---|
PreL | PL1 | FL | PL2 | |
PM10 (µg m−3) | 47.08 ± 20.36 | 32.37 ± 16.8 | 24.74 ± 11.86 | 15.73 ± 4.33 |
PM2.5 (µg m−3) | 36.07 ± 16.90 | 24.50 ± 7.48 | 16.62 ± 8.50 | 10.76 ± 2.69 |
NO2 (µg m−3) | 54.12 ± 14.91 | 46.15 ± 7.00 | 35.68 ± 12.80 | 24.16 ± 5.14 |
BC (µg m−3) | 4.37 ± 2.13 | 2.26 ± 4.53 | 1.51 ± 0.79 | 1.09 ± 0.33 |
Temperature (°C) | 4.61 ± 2.43 | 8.46 ± 5.92 | 14.12 ± 3.02 | 16.64 ± 2.30 |
% Variation | ||||
PreL | PL1 | FL1 | PL2 | |
PM10 (µg m−3) | 120 ± 20 | 85 ± 13 | 89 ± 11 | 101 ± 44 |
PM2.5 (µg m−3) | 116 ± 17 | 81 ± 8 | 90 ± 8 | 112 ± 3 |
NO2 (µg m−3) | 99 ± 13 | 71 ± 9 | 46 ± 11 | 55 ± 5 |
BC (µg m−3) | 118 ± 2 | 74 ± 3 | 60 ± 1 | 64 ± 0 |
Temperature (°C) | 122 ± 3 | 107 ± 4 | 99 ± 4 | 116 ± 2 |
Mean Concentrations | ||||
---|---|---|---|---|
15–30 April 2020 | 15–30 April 2019 | |||
MI_Pascal | MI_Pascal | MI_Senato | Brescia | |
OPAAV(nmo min−1 m−3) | 0.75 ± 0.33 | 1.41 ± 0.97 | 1.54 ± 0.87 | 1.18 ± 0.58 |
OPDTTV(nmol min−1 m−3) | 0.15 ± 0.05 | 0.21 ± 0.21 | 0.19 ± 0.18 | 0.18 ± 0.08 |
PM10 (µg m−3) | 17.79 ± 7.7 | 18.69 ± 7.4 | 23.45 ± 8.6 | 20.1 ± 7.8 |
OC (µg m−3) | 3.86 ± 1.78 | 4.99 ± 1.31 | 5.38 ± 1.35 | 4.86 ± 1.13 |
EC (µg m−3) | 0.24 ± 0.10 | 0.55 ± 0.25 | 0.60 ± 0.16 | 0.54 ± 0.12 |
Mn (µg m−3) | 0.008 ± 0.004 | 0.02 ± 0.002 | 0.013 ± 0.006 | |
Fe (µg m−3) | 0.52 ± 0.26 | 0.90 ± 0.21 | 0.73 ± 0.19 | |
Cu (µg m−3) | 0.008 ± 0.004 | 0.021 ± 0.008 | 0.019 ± 0.006 | |
Zn (µg m−3) | 0.038 ± 0.026 | 0.040 ± 0.014 | 0.052 ± 0.045 | |
NO2 (µg m−3) | 16.52 ± 8.99 | 33.04 ± 8.03 | ||
BC (µg m−3) | 0.91 ± 0.50 | 1.29 ± 0.48 | ||
Temp (°C) | 14.93 ± 3.95 | 14.07 ± 3.00 | ||
% 2020 vs. 2019 Variations | ||||
OPAAV(nmol min−1 m−3) | 53 | 49 | 64 | |
OPDTTV(nmol min−1 m−3) | 70 | 78 | 82 | |
PM10(µg m−3) | 95 | 76 | 88 | |
OC (µg m−3) | 77 | 72 | 79 | |
EC (µg m−3) | 44 | 41 | 46 | |
Mn (µg m−3) | 46 | 62 | ||
Fe (µg m−3) | 58 | 71 | ||
Cu (µg m−3) | 40 | 43 | ||
Zn (µg m−3) | 72 | 83 | ||
NO2 (µg m−3) | 50 | |||
BC (µg m−3) | 71 | |||
Temp (°C) | 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrogrande, M.C.; Colombi, C.; Cuccia, E.; Dal Santo, U.; Romanato, L. The Impact of COVID-19 Lockdown Strategies on Oxidative Properties of Ambient PM10 in the Metropolitan Area of Milan, Italy. Environments 2022, 9, 145. https://doi.org/10.3390/environments9110145
Pietrogrande MC, Colombi C, Cuccia E, Dal Santo U, Romanato L. The Impact of COVID-19 Lockdown Strategies on Oxidative Properties of Ambient PM10 in the Metropolitan Area of Milan, Italy. Environments. 2022; 9(11):145. https://doi.org/10.3390/environments9110145
Chicago/Turabian StylePietrogrande, Maria Chiara, Cristina Colombi, Eleonora Cuccia, Umberto Dal Santo, and Luisa Romanato. 2022. "The Impact of COVID-19 Lockdown Strategies on Oxidative Properties of Ambient PM10 in the Metropolitan Area of Milan, Italy" Environments 9, no. 11: 145. https://doi.org/10.3390/environments9110145
APA StylePietrogrande, M. C., Colombi, C., Cuccia, E., Dal Santo, U., & Romanato, L. (2022). The Impact of COVID-19 Lockdown Strategies on Oxidative Properties of Ambient PM10 in the Metropolitan Area of Milan, Italy. Environments, 9(11), 145. https://doi.org/10.3390/environments9110145