Definition of Ecological Flow Using IHA and IARI as an Operative Procedure for Water Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area—The Agri River Basin
2.2. Advanced Integrated Hydrological Modeling (AIHM) for Water Resource Management
2.3. Methodology
- (1)
- Provide a quantitative measure of the deviation of the observed hydrological regime from the natural one that would occur in the absence of anthropogenic pressures;
- (2)
- Take into account the general and widespread scarcity and/or absence of data;
- (3)
- Be able to use all available hydrological information;
- (4)
- Use tools, methods, and results already available from the competent entities that carried out the hydrological and water balance in the water protection plans;
- (5)
- Be easy to implement and calculate with the usual calculation tools.
- (a)
- It is defined at successive levels of in-depth analysis;
- (b)
- It is defined primarily on the basis of the monthly average flow rates to take into account the effect of seasonality and to use the results of the water balance of the protection plans;
- (c)
- It is defined differently for river sections with or without flow measurement instrumentation;
- (d)
- It is derived from the IHA method, and the statistics used in the procedure can be easily calculated with the corresponding open-source software IHA.
- 0 ≤ IARI ≤ 0.05 excellent
- 0.05 < IARI ≤ 0.15 good
- IARI > 0.15 poor
- 1.
- Phase 0—preliminary analysis: An analysis of the basin-scale pressures shall be carried out in order to identify the detectable conditions in the considered section by selecting one of the following conditions:
- No or negligible pressure on the hydrological regime—it can be assumed that it is unchanged;
- Significant or non-negligible pressures leading to impacts that cannot be assessed a priori—a necessary assessment must be made on an objective basis.
- 2.
- Phase 1—calculation of the index: If in Phase 0, the identified conditions show an impact on the hydrological regime due to pressure, the quantitative assessment of the alteration is carried out through the calculation of the IARI index.
- 3.
- Phase 2—direct evaluation or consultation: This step is activated whenever the results obtained in Phase 1 reveal critical elements. In such a case, a detailed analysis essentially based on the qualified information given by experts is provided in order to explain the causes and to confirm the exposed criticalities.
3. Results and Discussion
3.1. Step 1: Collection of the Hydrological Data of the Agri River
3.2. Step 2: IHA Runs and IARI Computation for the Agri River
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Directive 2000/60/EC of The European Parliament and of the Council Establishing a Framework for the Community Action in the Field of Water Policy. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32000L0060 (accessed on 8 August 2021).
- O’Keeffe, J. Sustaining river ecosystems: Balancing use and protection. Prog. Phys. Geogr. 2009, 33, 339–357. [Google Scholar] [CrossRef]
- Arthington, A.H.; Bunn, S.E.; Pusey, B.J.; Bluhorn, D.R.; King, J.M.; Day, J.A.; Tharme, R.E.; O’Keefe, J.H. Development of a Holistic Approach for Assessing Environmental Flow Requirements of Riverine Ecosystems. In Proceedings of an International Seminar and Workshop on Water Allocation for the Environment; Pigram, J.J., Hooper, B.P., Eds.; The Centre for Water Policy Research: Armidale, Australia, 1992; pp. 69–76. [Google Scholar]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The Natural Flow Regime: A Paradigm for River Conservation and Restoration. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Bunn, S.E.; Arthington, A.H. Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A Method for Assessing Hydrologic Alteration Within Ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.D.; Baumgartner, J.V.; Wigington, R.; Braun, D.P. How Much Water Does a River Need? Freshw. Biol. 1997, 37, 231–249. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.D.; Mathews, R.; Harrison, D.L.; Wigington, R. Ecologically Sustainable Water Management: Managing River Flows for Ecological Integrity. Ecol. Appl. 2003, 13, 206–224. [Google Scholar] [CrossRef]
- Tharme, R.E. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 2003, 19, 397–441. [Google Scholar] [CrossRef]
- Poff, N.L.; Matthews, J.H. Environmental flows in the Anthropocence: Past progress and future prospects. Curr. Opin. Environ. Sustain. 2013, 5, 667–675. [Google Scholar] [CrossRef]
- Sisto, N.P. Environmental flows for rivers and economic compensation for irrigators. J. Environ. Manag. 2009, 90, 1236–1240. [Google Scholar] [CrossRef]
- Savalli, S.; Saganeiti, L.; Greco, M.; Murgante, B. Integrated Assessment of the Anthropic Pressure Level on Natural Water Bodies: The Case Study of the Noce River (Basilicata, Italy). Lect. Notes Comput. Sci. 2019, 11624, 269–278. [Google Scholar]
- Arbia, F.; Giuseppe, L.D.; Giampietro, R.; Greco, M.; Mauro, P.; Martino, G.; Montella, A.; Mussuto, G.; Napoli, E.; Smaldone, A. Assessment of the ecological potential of heavily modified water bodies in the Basilicata region, Italy: Case study of the Agri River basin. WIT Trans. Ecol. Environ. 2019, 234, 131–141. [Google Scholar] [CrossRef]
- Vietz, G.J.; Lintern, A.; Webb, J.A.; Straccione, D. River Bank Erosion and the Influence of Environmental Flow Management. Environ. Manag. 2018, 61, 454–468. [Google Scholar] [CrossRef]
- WFD-CIS. Guidance Document No 31: Ecological Flows in the Implementation of the Water Framework Directive; Publications Office of the European Union Eurostat: Luxembourg, 2015. [Google Scholar] [CrossRef]
- Acreman, M.; Dunbar, M.J. Defining environmental river flow requirements—A review. Hydrol. Earth Syst. Sci. 2004, 8, 861–876. [Google Scholar] [CrossRef]
- Black, A.R.; Rowan, J.S.; Duck, R.W.; Bragg, O.M.; Clelland, B.E. DHRAM: A method for classifying river flow regime alterations for the EC water framework directive. Aquat. Conserv. 2005, 15, 427–446. [Google Scholar] [CrossRef]
- Henriksen, J.A.; Heasley, J.; Kennen, J.G.; Niewsand, S. Users’ Manual for the Hydroecological Integrity Assessment Process Software (Including the New Jersey Assessment Tools); Open File Report 2006-1093; U.S. Geological Survey, Biological Resources Discipline: Reston, VA, USA, 2006. [Google Scholar]
- Kleynhans, C.J.; Louw, M.D.; Thirion, C.; Rossouw, N.J.; Rowntree, K. River Eco Classification: Manual for Eco Status Determination (Version 1). Joint Water Research Commission and Department of Water Affairs and Forestry Report WRC Report No. KV 168/05. Water Research Commission: Pretoria, South Africa. 2005. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.477.461&rep=rep1&type=pdf (accessed on 8 August 2021).
- Acreman, M.; Dunbar, M.; Hannaford, J.; Mountford, O.; Wood, P.; Holmes, N.; Cowx, I.; Noble, R.; Extence, C.; Aldrick, J. Developing environmental standards for abstractions from UK rivers to implement the EU water frame-work directive. J. Hydrol. Sci. 2008, 53, 1105–1120. [Google Scholar] [CrossRef] [Green Version]
- Operacz, A. Estimating the value of inviolable flow in surface water investments according to Kostrzewa method. Econ. Environ. 2015, 1, 100–109. [Google Scholar]
- Operacz, A.; Wałęga, A.; Cupak, A.; Tomaszewska, B. The comparison of environmental flow assessment—The barrier for investment in Poland or river protection? J. Clean. Prod. 2018, 193, 575–592. [Google Scholar] [CrossRef]
- Młyński, D.; Operacz, A.; Wałęga, A. Sensitivity of methods for calculating environmental flows based on hydrological characteristics of watercourses regarding the hydropower potential of rivers. J. Clean. Prod. 2020, 250, 119527. [Google Scholar] [CrossRef]
- Greco, M. Effect of bed roughness on 1-D entropy velocity distribution in open channel flow. Hydrol. Res. 2015, 46, 1–10. [Google Scholar] [CrossRef]
- Greco, M.; Moramarco, T. Influence of Bed Roughness and Cross-section Geometry on Medium and Maximum Velocity Ratio in Open-Channel Flow. J. Hydraul. Eng. 2016, 142, 06015015. [Google Scholar] [CrossRef]
- Efstratiadis, A.; Tegos, A.; Varveris, A.; Koutsoyiannis, D. Assessment of environmental flows under limited data availability: Case study of the Acheloos River, Greece. J. Hydrol. Sci. 2014, 59, 731–750. [Google Scholar] [CrossRef] [Green Version]
- Greco, M. Entropy-Based Approach for Rating Curve Assessment in Rough and Smooth Irrigation Ditches. J. Irrig. Drain. Eng. 2016, 142, 04015062. [Google Scholar] [CrossRef]
- Greco, M.; Martino, G. 1-D versus 2-D Entropy Velocity Law for Water Discharge Assessment in a Rough Ditch. Entropy 2018, 20, 638. [Google Scholar] [CrossRef]
- Bonakdari, H.; Gholami, A.; Mosavi, A.; Kazemian-Kale-Kale, A.; Ebtehaj, I.; Hossein Azimi, A. A Novel Comprehensive Evaluation Method for Estimating the Bank Profile Shape and Dimensions of Stable Channels Using the Maximum Entropy Principle. Entropy 2020, 22, 1218. [Google Scholar] [CrossRef]
- Farbod Abdolvandi, A.; Naghi Ziaei, A.; Moramarco, T.; Singh, V.P. New approach to computing mean velocity and discharge. Hydrol. Sci. J. 2021, 66, 347–353. [Google Scholar] [CrossRef]
- Bovee, K.D. General management concepts. The incremental method of assessing habitat potential for coolwater species, with management implications. Am. Fish. Soc. Spec. 1978, 11, 340–343. Available online: https://open.library.ubc.ca/media/download/pdf/24/1.0073833/2 (accessed on 8 August 2021).
- Stalnaker, C.; Lamb, B.; Henriksen, J.; Bovee, K.; Bartholow, J. The Instream Flow Incremental Methodology: A primer for IFIM. Biol. Sci. Rep. 1995, 29, 53. [Google Scholar]
- Capra, H.; Sabaton, C.; Gouraud, V.; Souchon, Y.; Lim, P. A population dynamics model and habitat simulation as a tool to predict brown trout demography in natural and bypassed stream reaches. River Res. Appl. 2003, 19, 551–568. [Google Scholar] [CrossRef]
- Booker, D.J.; Dunbar, M.J. Application of Physical HAbitat SIMulation (PHABSIM) modelling to modified urban river channels. River Res. Appl. 2004, 20, 167–183. [Google Scholar] [CrossRef]
- Killingtviet, Å.; Harby, A. Multipurpose planning with the river system simulator—A decision support system for water resources planning and operation. In Proceedings of the First International Symposium on Habitat Hydraulics, Trondheim, Norway, 18–20 August 1994; Norwegian Institute of Technology: Trondheim, Norway, 1994. [Google Scholar]
- Parasiewicz, P. MesoHABSIM: A concept for application of instream flow models in river restoration planning. Fisheries 2001, 26, 6–13. [Google Scholar] [CrossRef]
- Parasiewicz, P.; Rogers, J.; Vezza, P.; Gortazar, J.; Seager, T.; Pegg, M.; Wiśniewolski, W.; Comoglio, C. Applications of MesoHABSIM simulation model. In Ecohydraulics: An Integrated Approach; Maddock, I., Harby, A., Kemp, P., Woo, P., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2013; pp. 109–124. [Google Scholar] [CrossRef]
- Richter, B.D.; Warner, A.T.; Meyer, J.L.; Lutz, K. A Collaborative and Adaptive Process for Developing Environmental Flow Recommendations. River Res. Appl. 2006, 22, 297–318. [Google Scholar] [CrossRef]
- The Nature Conservancy (TNC). Conservation Gateway. “Environmental Flow Components”. 2011. Available online: https://www.conservationgateway.org/ConservationPractices/Freshwater/EnvironmentalFlows/MethodsandTools/EnvironmentalFlowComponents/Pages/environmental-flow-compon.aspx (accessed on 9 August 2021).
- ISPRA, 2011: “Implementazione Della Direttiva 2000/60/CE—Analisi E Valutazione Degli Aspetti Idromorfologici”. Available online: https://www.isprambiente.gov.it/contentfiles/00010100/10147-analisi-e-valutazione-degli-aspetti-idromorfologici-agosto-2011.pdf (accessed on 9 August 2021).
- Hydrologic Engineering Center. HEC-HMS User’s Manual Version 4.7. Selecting a Discretization Method. Retrieved 18 February 2021. Available online: https://www.hec.usace.army.mil/confluence/hmsdocs/hmsum/4.7/subbasin-elements/selecting-a-discretization-method (accessed on 9 August 2021).
- Greco, M.; Arbia, F.; Cantisani, A.; Giampietro, R.; Martino, G. Advanced Integrated Hydrological Modelling (AIHM) for Water Resource Balance, Management and Control at Catchment Scale. In Proceedings of the 20th EGU General Assembly, EGU2018, Vienna, Austria, 4–13 April 2018; p. 6742. [Google Scholar]
- Greco, M.; Martino, G.; Guariglia, A.; Trivigno, L.; Losurdo, A.; Sansanelli, V. Development of an Integrated SDSS for Coastal Risks Monitoring and Assessment. J. Coast. Zone Manag. 2017, 20, 446. [Google Scholar] [CrossRef] [Green Version]
- Greco, M.; Martino, G.; Guariglia, A.; Trivigno, L.; Sansanelli, V.; Losurdo, A.; Mussuto, G. Integrated SDSS for Environmental Risk Analysis in Sustainable Coastal Area Planning. In Computational Science and Its Applications—ICCSA 2018; Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 10964. [Google Scholar] [CrossRef]
- Savalli, S.; Saganeiti, L.; Greco, M.; Murgante, B. Integrated Assessment of the Anthropic Pressure Level on Natural Water Bodies: The Case Study of the Noce River (Basilicata, Italy). In Computational Science and Its Applications—ICCSA 2019; Misra, S., Gervasi, O., Murgante, B., Stankova, E., Korkhov, V., Torre, C., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11624. [Google Scholar]
- Belletti, B.; Rinaldi, M.; Buijse, A.D.; Gurnell, A.M.; Mosselman, E. A review of assessment methods for river hydromorphology. Environ. Earth Sci. 2015, 73, 2079–2100. [Google Scholar] [CrossRef]
- Munné, A.; Solà, C.; Pagés, J. HIDRI: Protocolo Para La Valoración de La Calidad Hidromorfológica de Los Ríos; Agencia Catalana de l’Aigua: Barcelona, Spain, 2006; p. 160. [Google Scholar]
- Shiau, J.T.; Wu, F.C. A histogram matching approach for assessment of flow regime alteration: Application to environmental flow optimization. River Res. Appl. 2008, 24, 914–928. [Google Scholar] [CrossRef]
- Martínez Santa-María, C.; Fernández Yuste, J.A. IAHRIS Índices deAlteración Hidrológica en Ríos. Manual de Referencia Metodológica.Versión 1. CEDEX (Centro de Estudios y Experimentaciòn De ObrasPùblicas). 2008. Available online: http://ambiental.cedex.es/sedah/descargas/MANUAL_USUARIO_IAHRIS_v2-2.pdf (accessed on 9 August 2021).
- The Nature Conservancy (TNC). Conservation Gateway. “Three-Level Hierarchy of Environmental Flow Methods”. 2011. Available online: https://www.conservationgateway.org/ConservationPractices/Freshwater/EnvironmentalFlows/MethodsandTools/HierarchyMethod/Pages/three-level-hierarchy-env.aspx (accessed on 9 August 2021).
- Hydrologic Engineering Center. HEC-HMS Hydrologic Modeling System. In User’s Manual. U.S.; Army Corps of Engineers: Davis, CA, USA, 1998; Available online: https://www.hec.usace.army.mil/software/hec-Hms/documentation/HEC-HMS_Users_Manual_4.0.pdf (accessed on 9 August 2021).
- Dotson, H.W. Watershed Modeling with HEC-HMS (Hydrologic Engineering Centers-Hydrologic Modeling System) Using Spatially Distributed Rainfall. In Coping with Flash Floods. NATO Science Series (Series 2. Environmental Security); Gruntfest, E., Handmer, J., Eds.; Springer: Dordrecht, The Netherlands, 2001; Volume 77. [Google Scholar]
Acronym | Method | Country | Reference |
---|---|---|---|
IHA | Indicators of Hydrologic Alteration | USA | Richter et al., (1996; 1997) [8,38] |
IARI | Indice di Alterazione del Regime Idrologico | Italy | Ispra (2011) [40] |
DHRAM | Dundee Hydrological Regime Alteration Method | Scotland | Black et al., (2005) [17] |
HIT | Hydrologic Index Tool | USA | Henriksen et al., (2006) [18] |
HAI | Hydrology Driver Assessment Index | South Africa | Kleynhans et al., (2005) 194] |
QM-HIDRI | HIDRI-Protocolo 3 | Spain | Munné et al., (2006) [47] |
HAI | Histogram Matching Approach | Taiwan | Shiau and Wu (2008) [48] |
IAHRIS | Indices de Alteracion Hidrologica en Rios | Spain | Martínez Santa-María et al., (2008) [49] |
Hydrological Group | Description |
---|---|
Group 1 | Monthly condition of the watercourse |
Group 2 | Minimum and maximum flow conditions at 3-7-30-90 days, zero flow days, and base flow rates |
Group 3 | Extreme conditions of the watercourse and the number of days with the same flow rate |
Group 4 | Frequency and duration of high and low impulse flows |
Group 5 | Frequency of variability of the flow rate |
Environmental Flow Component | Description |
Type 1 | Minimum flow rate: represents the dominant condition in most watercourses and represents the base flow |
Type 2 | Extreme drought: present during drought periods, with very low levels of flow if not completely zero, to which correspond conditions of particular criticality for some types of organisms and could be a source of life for other species |
Type 3 | High flow rate pulses: include any flow rate increase, such as significant rain periods, which are necessary and important for the relief of ecosystems at minimum flow rates |
Type 4 | Small floods: these promote the mobility of aquatic fauna usually confined to swamps, ponds, and shallow wetlands that usually correspond to poorly accessible habitats |
Type 5 | Major floods: correspond to a reorganization of the biological and physical structure of a stream |
Reference Cross Section | PR01—Pertusillo Reservoir | Monthly Water Discharge (mc/s) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
January | February | March | April | May | June | July | August | September | October | November | December | |
2001 | 8.43 | 7.54 | 6.99 | 7.24 | 4.17 | 2.39 | 2.42 | 1.20 | 2.71 | 4.78 | 2.97 | 7.18 |
2002 | 8.31 | 6.98 | 5.40 | 8.42 | 5.96 | 2.50 | 2.73 | 3.55 | 5.47 | 6.58 | 8.16 | 10.40 |
2003 | 10.05 | 6.19 | 7.51 | 5.15 | 4.11 | 2.60 | 3.38 | 1.06 | 2.48 | 5.16 | 8.69 | 8.55 |
2004 | 11.63 | 10.94 | 8.86 | 7.12 | 7.52 | 3.16 | 2.59 | 0.94 | 4.36 | 4.90 | 7.30 | 11.90 |
2005 | 6.24 | 4.93 | 11.08 | 3.70 | 4.35 | 1.89 | 2.09 | 2.82 | 3.81 | 5.61 | 11.71 | 16.04 |
2006 | 6.63 | 9.39 | 8.59 | 5.89 | 1.66 | 2.89 | 2.72 | 2.73 | 3.90 | 0.96 | 3.63 | 8.27 |
2007 | 4.12 | 10.19 | 6.54 | 5.32 | 5.22 | 3.30 | 0.23 | 0.40 | 1.73 | 5.28 | 6.75 | 5.85 |
2008 | 4.37 | 10.61 | 1.92 | 4.65 | 2.84 | 2.56 | 2.51 | 0.66 | 3.98 | 5.05 | 11.38 | 10.96 |
2009 | 20.01 | 18.39 | 7.78 | 15.23 | 6.46 | 1.74 | 2.23 | 2.90 | 3.55 | 6.03 | 8.02 | 11.40 |
2010 | 11.17 | 15.33 | 16.35 | 8.14 | 11.92 | 3.84 | 2.62 | 1.28 | 2.01 | 4.60 | 10.02 | 9.25 |
2011 | 6.03 | 15.41 | 5.18 | 5.58 | 7.10 | 2.70 | 1.21 | 1.48 | 3.09 | 4.16 | 5.38 | 8.47 |
2012 | 6.28 | 6.11 | 13.22 | 12.52 | 5.31 | 1.16 | 1.93 | 0.41 | 3.52 | 5.94 | 8.21 | 9.23 |
2013 | 17.38 | 17.12 | 14.90 | 4.39 | 5.81 | 4.27 | 2.29 | 2.53 | 2.53 | 5.23 | 6.27 | 13.94 |
2014 | 12.62 | 6.46 | 9.21 | 11.05 | 5.44 | 3.78 | 2.62 | 0.68 | 4.42 | 3.15 | 8.63 | 6.58 |
Reference Cross Section | PR01—Pertusillo Reservoir | Monthly Water Discharge (mc/s) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
January | February | March | April | May | June | July | August | September | October | November | December | |
1987 | 11.35 | 16.57 | 8.00 | 6.60 | 3.74 | 2.73 | 1.77 | 1.23 | 1.50 | 2.45 | 3.33 | 5.32 |
1988 | 8.10 | 9.17 | 13.71 | 6.17 | 3.55 | 2.27 | 1.26 | 0.55 | 1.90 | 2.19 | 7.43 | 9.87 |
1989 | 3.03 | 8.57 | 9.94 | 5.93 | 3.74 | 2.00 | 1.19 | 0.87 | 1.07 | 3.65 | 4.53 | 8.03 |
1990 | 3.26 | 3.39 | 3.10 | 13.30 | 3.90 | 1.43 | 0.48 | 0.42 | 0.73 | 2.26 | 4.70 | 21.52 |
1991 | 10.81 | 13.50 | 6.77 | 17.33 | 8.10 | 1.87 | 1.26 | 1.52 | 2.07 | 3.13 | 15.07 | 5.39 |
1992 | 5.26 | 4.03 | 3.39 | 5.80 | 3.07 | 1.77 | 1.00 | 0.39 | 0.67 | 2.68 | 5.87 | 7.23 |
1993 | 6.29 | 3.46 | 11.65 | 6.43 | 4.19 | 1.03 | 0.26 | 0.06 | 1.13 | 2.36 | 4.43 | 12.13 |
1994 | 15.00 | 18.43 | 6.58 | 10.27 | 7.16 | 0.70 | 1.42 | 0.61 | 0.63 | 2.39 | 4.00 | 3.74 |
1995 | 7.81 | 5.89 | 12.06 | 11.70 | 8.42 | 2.20 | 1.87 | 2.00 | 2.57 | 1.94 | 2.53 | 7.26 |
1996 | 6.71 | 15.41 | 16.94 | 13.83 | 7.61 | 3.20 | 1.48 | 0.61 | 2.83 | 9.55 | 19.30 | 20.84 |
1997 | 15.65 | 8.86 | 6.03 | 6.03 | 5.52 | 1.40 | 1.10 | 1.48 | 1.17 | 4.16 | 12.43 | 12.16 |
1998 | 9.65 | 15.82 | 6.42 | 7.07 | 8.71 | 1.90 | 0.58 | 1.61 | 3.33 | 6.26 | 5.30 | 10.29 |
1999 | 8.16 | 12.14 | 11.61 | 10.87 | 5.36 | 1.63 | 1.07 | 0.45 | 1.97 | 2.58 | 7.63 | 10.48 |
2000 | 5.52 | 8.79 | 6.39 | 6.13 | 2.84 | 0.97 | 0.23 | 0.03 | 1.27 | 3.52 | 4.10 | 8.68 |
2001 | 11.90 | 6.43 | 6.97 | 7.27 | 3.39 | 2.70 | 2.52 | 2.42 | 4.67 | 2.10 | 2.63 | 4.13 |
2002 | 5.71 | 4.36 | 4.00 | 7.23 | 3.13 | 1.37 | 2.90 | 1.55 | 2.77 | 3.42 | 8.33 | 7.94 |
2003 | 21.94 | 13.04 | 7.55 | 5.13 | 1.87 | 1.33 | 2.71 | 1.13 | 1.47 | 6.13 | 3.70 | 8.74 |
2004 | 9.10 | 10.83 | 9.65 | 9.73 | 10.39 | 3.93 | 1.23 | 1.00 | 2.13 | 2.61 | 6.23 | 9.26 |
2005 | 9.52 | 13.71 | 10.29 | 11.07 | 6.26 | 3.63 | 1.55 | 1.81 | 3.43 | 2.84 | 6.53 | 15.55 |
2006 | 14.35 | 13.86 | 12.65 | 9.57 | 4.84 | 3.13 | 3.13 | 2.36 | 2.67 | 2.23 | 2.03 | 5.87 |
2007 | 6.10 | 7.75 | 15.06 | 9.87 | 4.16 | 2.83 | 0.55 | 0.55 | 1.13 | 3.00 | 5.00 | 10.00 |
Jan | Feb | Mar | Apr | May | June | July | Aug | Sept | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|
Average Annual Discharge (m3/s) | |||||||||||
6.18 | 6.18 | 6.18 | 6.18 | 6.18 | 6.18 | 6.18 | 6.18 | 6.18 | 6.18 | 6.18 | 6.18 |
Average Monthly Discharge (m3/s) | |||||||||||
9.52 | 10.40 | 8.82 | 7.46 | 5.56 | 2.77 | 2.25 | 1.62 | 3.40 | 4.82 | 7.65 | 9.86 |
25th Percentile (m3/s) | |||||||||||
6.25 | 6.59 | 6.65 | 5.19 | 4.22 | 2.42 | 2.12 | 0.74 | 2.57 | 4.65 | 6.39 | 8.32 |
75th Percentile (m3/s) | |||||||||||
11.52 | 14.23 | 10.61 | 8.35 | 6.34 | 3.26 | 2.62 | 2.68 | 3.96 | 5.53 | 8.67 | 11.29 |
20th Percentile—Hydrological Eflow (m3/s) | |||||||||||
6.16 | 6.36 | 6.08 | 4.95 | 4.15 | 2.19 | 2.03 | 0.67 | 2.51 | 4.42 | 5.91 | 7.83 |
pj,k-20th Percentile | |||||||||||
0.02 | 0.03 | 0.14 | 0.08 | 0.03 | 0.27 | 0.19 | 0.04 | 0.05 | 0.25 | 0.21 | 0.16 |
IARI 0.12 |
Jan | Feb | Mar | Apr | May | June | July | Aug | Sept | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|
Average Observed Annual Discharge (m3/s) | |||||||||||
5.69 | 5.69 | 5.69 | 5.69 | 5.69 | 5.69 | 5.69 | 5.69 | 5.69 | 5.69 | 5.69 | 5.69 |
Average Observed Monthly Discharge (m3/s) | |||||||||||
8.87 | 10.19 | 8.99 | 8.92 | 5.24 | 2.10 | 1.41 | 1.08 | 1.96 | 3.40 | 6.43 | 9.73 |
Observed 25th Percentile (m3/s) | |||||||||||
6.10 | 6.43 | 6.42 | 6.17 | 3.55 | 1.40 | 1.00 | 0.55 | 1.13 | 2.36 | 4.00 | 7.23 |
Observed 75th Percentile (m3/s) | |||||||||||
11.35 | 13.71 | 11.65 | 10.87 | 7.16 | 2.73 | 1.77 | 1.55 | 2.67 | 3.52 | 7.43 | 10.48 |
Observed 20th Percentile—Hydrological Eflow (m3/s) | |||||||||||
5.71 | 5.89 | 6.39 | 6.13 | 3.39 | 1.37 | 0.58 | 0.45 | 1.13 | 2.26 | 3.70 | 5.87 |
pj,k-20th Percentile | |||||||||||
0.04 | 0.00 | 0.05 | 0.02 | 0.09 | 0.01 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 |
IARI 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, M.; Arbia, F.; Giampietro, R. Definition of Ecological Flow Using IHA and IARI as an Operative Procedure for Water Management. Environments 2021, 8, 77. https://doi.org/10.3390/environments8080077
Greco M, Arbia F, Giampietro R. Definition of Ecological Flow Using IHA and IARI as an Operative Procedure for Water Management. Environments. 2021; 8(8):77. https://doi.org/10.3390/environments8080077
Chicago/Turabian StyleGreco, Michele, Francesco Arbia, and Raffaele Giampietro. 2021. "Definition of Ecological Flow Using IHA and IARI as an Operative Procedure for Water Management" Environments 8, no. 8: 77. https://doi.org/10.3390/environments8080077
APA StyleGreco, M., Arbia, F., & Giampietro, R. (2021). Definition of Ecological Flow Using IHA and IARI as an Operative Procedure for Water Management. Environments, 8(8), 77. https://doi.org/10.3390/environments8080077