Advances in Circular Bioeconomy Technologies: From Agricultural Wastewater to Value-Added Resources
Abstract
:1. Introduction
2. Value-Added Products from Agricultural Wastewater: Properties and Applications
2.1. Organic (Humic) Substances
2.2. Nitrogen- and Phosphorus-Based Nutrients
3. Recovery of Humic Substances from Agricultural Wastewater
3.1. Coagulation and Flocculation
3.2. Membrane Filtration
3.3. Exchange Adsorption
3.4. Limitations and Opportunities
4. Recovery of Nutrients from Agricultural Wastewater
4.1. Struvite Precipitation
4.2. Electrochemical Separation
4.3. Microalgae Uptake
5. Environmental Benefits for Deployment of Circular Technologies
6. Perspectives and Prospects
6.1. Development of Circular Technologies in Accordance with Green Chemistry Principles
6.2. Comprehensive Technology Evaluation: Integration for Innovation
6.3. Innovative Business Models for Green Circularity
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Filippis, G.; Piscitelli, P.; Castorini, I.F.; Raho, A.M.; Idolo, A.; Ungaro, N.; Lacarbonara, F.; Sgaramella, E.; Laghezza, V.; Chionna, D.; et al. Water Quality Assessment: A Quali-Quantitative Method for Evaluation of Environmental Pressures Potentially Impacting on Groundwater, Developed under the M.I.N.O.Re. Project. Int. J. Environ. Res. Public Health 2020, 17, 1385. [Google Scholar] [CrossRef] [Green Version]
- Bhutiani, R.; Kulkarni, D.B.; Khanna, D.R.; Gautam, A. Water Quality, Pollution Source Apportionment and Health Risk Assessment of Heavy Metals in Groundwater of an Industrial Area in North India. Expo. Health 2015, 8, 3–18. [Google Scholar] [CrossRef]
- Samer, M. Biological and chemical wastewater treatment processes. Wastewater Treat. Eng. 2015. [Google Scholar] [CrossRef] [Green Version]
- Gosch, L.; Liu, H.J.; Lennartz, B. Performance of a Woodchip Bioreactor for the Treatment of Nitrate-Laden Agricultural Drainage Water in Northeastern Germany. Environments 2020, 7, 71. [Google Scholar] [CrossRef]
- Serio, F.; Miglietta, P.P.; Lamastra, L.; Ficocelli, S.; Intini, F.; De Leo, F.; De Donno, A. Groundwater nitrate contamination and agricultural land use: A grey water footprint perspective in Southern Apulia Region (Italy). Sci. Total Environ. 2018, 645, 1425–1431. [Google Scholar] [CrossRef]
- Stegmann, P.; Londo, M.; Junginger, M. The circular bioeconomy: Its elements and role in European bioeconomy clusters. Resour. Conserv. Recycl. X 2020, 6, 100029. [Google Scholar] [CrossRef]
- Huang, W.; Zhao, Z.; Yuan, T.; Yu, Y.; Huang, W.; Lei, Z.; Zhang, Z. Enhanced dry anaerobic digestion of swine excreta after organic nitrogen being recovered as soluble proteins and amino acids using hydrothermal technology. Biomass. Bioenergy 2018, 108, 120–125. [Google Scholar] [CrossRef]
- Baral, K.R.; Arthur, E.; Olesen, J.E.; Petersen, S.O. Predicting nitrous oxide emissions from manure properties and soil moisture: An incubation experiment. Soil Biol. Biochem. 2016, 97, 112–120. [Google Scholar] [CrossRef]
- Laureni, M.; Palatsi, J.; Llovera, M.; Bonmati, A. Influence of pig slurry characteristics on ammonia stripping efficiencies and quality of the recovered ammonium-sulfate solution. J. Chem. Technol. Biotechnol. 2013, 88, 1654–1662. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Zhou, M.H.; Martinez-Huitle, C.A. Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment. Appl. Catal. B Environ. 2018, 235, 103–129. [Google Scholar] [CrossRef]
- Li, X.; Guo, J.B.; Dong, R.J.; Ahring, B.K.; Zhang, W.Q. Properties of plant nutrient: Comparison of two nutrient recovery techniques using liquid fraction of digestate from anaerobic digester treating pig manure. Sci. Total Environ. 2016, 544, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.; Silkina, A.; Fuentes-Grunewald, C.; Wood, E.E.; Ndovela, V.L.S.; Oatley-Radcliffe, D.L.; Lovitt, R.W.; Llewellyn, C.A. Valorising nutrient-rich digestate: Dilution, settlement and membrane filtration processing for optimisation as a waste-based media for microalgal cultivation. Waste Manag. 2020, 118, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Tejido-Nunez, Y.; Aymerich, E.; Sancho, L.; Refardt, D. Treatment of aquaculture effluent with Chlorella vulgaris and Tetradesmus obliquus: The effect of pretreatment on microalgae growth and nutrient removal efficiency. Ecol. Eng. 2019, 136, 1–9. [Google Scholar] [CrossRef]
- Huang, X.F.; Ye, G.Y.; Yi, N.K.; Lu, L.J.; Zhang, L.; Yang, L.Y.; Xiao, L.; Liu, J. Effect of plant physiological characteristics on the removal of conventional and emerging pollutants from aquaculture wastewater by constructed wetlands. Ecol. Eng. 2019, 135, 45–53. [Google Scholar] [CrossRef]
- Marquez, E.E.; Zarazua, G.M.S.; Bueno, J.D.P. Prospects for the Use of Electrooxidation and Electrocoagulation Techniques for Membrane Filtration of Irrigation Water. Environ. Process. Int. J. 2020, 7, 391–420. [Google Scholar] [CrossRef]
- Islam, M.A.; Morton, D.W.; Johnson, B.B.; Angove, M.J. Adsorption of humic and fulvic acids onto a range of adsorbents in aqueous systems, and their effect on the adsorption of other species: A review. Sep. Purif. Technol. 2020, 247, 19. [Google Scholar] [CrossRef]
- Cui, X.; Choo, K.-H. Natural Organic Matter Removal and Fouling Control in Low-Pressure Membrane Filtration for Water Treatment. Environ. Eng. Res. 2014, 19, 1–8. [Google Scholar] [CrossRef]
- Aziz, H.A. Trends on Natural Organic Matter in Drinking Water Sources and its Treatment. 2014. Available online: https://www.researchgate.net/publication/275601642_Trends_on_Natural_Organic_Matter_in_Drinking_Water_Sources_and_its_Treatment/figures?lo=1 (accessed on 15 July 2020).
- Britannica. Humic Acid. Available online: https://www.britannica.com/science/humic-acid (accessed on 8 July 2020).
- PubChem. Fulvic Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Fulvic-acid (accessed on 15 July 2020).
- Britannica. Aromatic Acid. Available online: https://www.britannica.com/science/aromatic-acid (accessed on 8 July 2020).
- Libretexts. Names of Formulas of Organic Compounds. 2019. Available online: https://chem.libretexts.org/Bookshelves/General_Chemistry/Map%3A_General_Chemistry_(Petrucci_et_al.)/03%3A_Chemical_Compounds/3.7%3A__Names_of_Formulas_of_Organic_Compounds (accessed on 15 July 2020).
- Libretexts. Aldehydes and Ketones: Structure and Names. 2019. Available online: https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Book%3A_The_Basics_of_GOB_Chemistry_(Ball_et_al.)/14%3A_Organic_Compounds_of_Oxygen/14.09_Aldehydes_and_Ketones%3A_Structure_and_Names (accessed on 15 July 2020).
- Brown, W.H.; March, J. Aldehyde. 2018. Available online: https://www.britannica.com/science/aldehyde (accessed on 18 July 2020).
- Britannica, E. Proteins. Available online: http://abyss.uoregon.edu/~js/glossary/proteins.html (accessed on 18 July 2020).
- Xu, L.; He, Z.; Zhang, H.; Wu, S.; Dong, C.; Fang, Z. Production of aromatic amines via catalytic co-pyrolysis of lignin and phenol-formaldehyde resins with ammonia over commercial HZSM-5 zeolites. Bioresour. Technol. 2020, 320, 124252. [Google Scholar] [CrossRef]
- Helmenstine, A.M. What is the Chemical Formula of Sugar? 2019. Available online: https://www.thoughtco.com/chemical-formula-of-sugar-604003 (accessed on 18 July 2020).
- Wilson, N.K. Alpha Hydroxy Acids. Skin Aging Handbook. 2009. Available online: https://www.sciencedirect.com/topics/neuroscience/hydroxy-acids (accessed on 18 July 2020).
- Infoplease. The Chemistry of Biology: Carbohydrates. 2016. Available online: https://www.infoplease.com/math-science/chemistry/the-chemistry-of-biology-carbohydrates (accessed on 20 July 2020).
- EDinformatics. 1999. Available online: https://www.edinformatics.com/math_science/what_are_polysaccharides.htm (accessed on 20 July 2020).
- PubChem. Purine. 2005. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Purine (accessed on 20 July 2020).
- PubChem. Pyrimidine. 2004. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine (accessed on 20 July 2020).
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Peña-Méndez, E.M.; Havel, J.; Patočka, J. Humic substances—Compounds of still unknown structure: Applications in agriculture, industry, environment, and biomedicine. J. Appl. Biomed. 2005, 3, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Laird, D.A. Triazine Soil Interactions. The Triazine Herbicides. 2008. Available online: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/humic-acid (accessed on 20 July 2020).
- Hamad, M.M.; Tantawy, M.F.A. Effect of different Humic Acids Sources on the Plant Growth, Calcium and Iron Utilization by Sorghum. Egypt. J. Soil Sci. 2018, 58, 291–307. [Google Scholar]
- Rose, M.T.; Patti, A.F.; Little, K.R.; Brown, A.L.; Jackson, W.R.; Cavagnaro, T.R. A Meta-Analysis and Review of Plant-Growth Response to Humic Substances; Elsevier: Amsterdam, The Netherlands, 2014; pp. 37–89. [Google Scholar]
- Nikbakht, A.; Kafi, M.; Babalar, M.; Xia, Y.P.; Luo, A.; Etemadi, N.A. Effect of Humic Acid on Plant Growth, Nutrient Uptake, and Postharvest Life of Gerbera. J. Plant Nutr. 2008, 31, 2155–2167. [Google Scholar] [CrossRef]
- Cornel, P.; Schaum, C. Phosphorus recovery from wastewater: Needs, technologies and costs. Water Sci. Technol. 2009, 59, 1069–1076. [Google Scholar] [CrossRef]
- Johnson, D.B. The Evolution, Current Status, and Future Prospects of Using Biotechnologies in the Mineral Extraction and Metal Recovery Sectors. Minerals 2018, 8, 343. [Google Scholar] [CrossRef] [Green Version]
- Jarvenin, G. Precipitation and Crystallization Processes. 2009. Available online: http://www.cresp.org/NuclearChemCourse/monographs/09_Jarvinen_FuelCycleSep%20CrystPrec12-08fin_3_2_09.pdf (accessed on 20 July 2020).
- Cedric Damour, M.B.; Boillereaux, L.; Grondin-Perez, B.; Chabriat, J.-P. Energy Efficiency Improvement of an Industrial Crystallization Process Using Linearizing Control. J. Cryst. Process Technol. 2011, 2, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Ohtake, H. Phosphorus recovery and reuse from wastewater. 2018. Available online: https://iwa-network.org/phosphorus-recovery-and-reuse-from-wastewater/ (accessed on 22 July 2020).
- Zafar-ul-Hye, M.; Naeem, M.; Danish, S.; Fahad, S.; Datta, R.; Abbas, M.; Rahi, A.A.; Brtnicky, M.; Holatko, J.; Tarar, Z.H.; et al. Alleviation of Cadmium Adverse Effects by Improving Nutrients Uptake in Bitter Gourd through Cadmium Tolerant Rhizobacteria. Environments 2020, 7, 54. [Google Scholar] [CrossRef]
- Van der Hoek, J.; Duijff, R.; Reinstra, O. Nitrogen Recovery from Wastewater: Possibilities, Competition with Other Resources, and Adaptation Pathways. Sustainability 2018, 10, 4605. [Google Scholar] [CrossRef] [Green Version]
- Novak, J.M.; Sigua, G.C.; Ducey, T.F.; Watts, D.W.; Stone, K.C. Designer Biochars Impact on Corn Grain Yields, Biomass Production, and Fertility Properties of a Highly-Weathered Ultisol. Environments 2019, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.Y.; Snyder, S.W.; Lin, Y.J.; Chiang, P.C. Electrokinetic desalination of brackish water and associated challenges in the water and energy nexus. Environ. Sci. Water Res. Technol. 2018, 4, 613–638. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Jin, Y.; Zou, S.; Li, C. Recovery of sludge humic acids with alkaline pretreatment and its impact on subsequent anaerobic digestion. J. Chem. Technol. Biotechnol. 2014, 89, 707–713. [Google Scholar] [CrossRef]
- Kliaugaitė, D.; Yasadi, K.; Euverink, G.-j.; Bijmans, M.F.M.; Racys, V. Electrochemical removal and recovery of humic-like substances from wastewater. Sep. Purif. Technol. 2013, 108, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Barrera-Díaz, C.E.; Balderas-Hernández, P.; Bilyeu, B. Electrocoagulation: Fundamentals and Prospectives Electrochemical Water and Wastewater Treatment. 2018. Available online: https://www.sciencedirect.com/topics/engineering/chemical-coagulation (accessed on 20 July 2020).
- Rios, G.B.; Almeraya, F.; Herrera, M.T.A. Electrode Passivation in the Electrocoagulation Process. Port. Electrochim. Acta 2005, 23, 17–34. [Google Scholar] [CrossRef]
- Twort, A.C.; Ratnayaka, D.D.; Brandt, M.J. (Eds.) Storage, Clarification and Filtration of Water. In Water Supply; Butterworth-Heinemann: London, UK, 2000; p. 267-XVII. [Google Scholar]
- Brandt, M.J.; Johnson, K.M.; Elphinston, A.J.; Ratnayaka, D.D. Storage, Clarification and Chemical Treatment. In Twort’s Water Supply; Butterworth-Heinemann: Oxford, UK, 2017; pp. 323–366. [Google Scholar]
- Prisciandaro, M.; Salladini, A.; Barba, D. Membrane filtration of surface water for the removal of humic substances. Chem. Eng. Trans. Ser. 2008, 14, 437–442. [Google Scholar]
- Kumar, M.; Gholamvand, Z.; Morrissey, A.; Nolan, K.; Ulbricht, M.; Lawler, J. Preparation and characterization of low fouling novel hybrid ultrafiltration membranes based on the blends of GO−TiO2 nanocomposite and polysulfone for humic acid removal. J. Membr. Sci. 2016, 506, 38–49. [Google Scholar] [CrossRef]
- Teow, Y.H. Characterization and Performance Evaluation of Ultrafiltration Membrane for Humic Acid Removal. Indian J. Sci. Technol. 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Theobald, D. What is Ultrafiltration and What Are Ultrafiltration Processes in Wastewater? 2015. Available online: https://www.watertechonline.com/what-is-ultrafiltration-and-what-are-ultrafiltration-processes-in-wastewater/ (accessed on 20 July 2020).
- Zhu, R.C.; Diaz, A.J.; Shen, Y.; Qi, F.; Chang, X.M.; Durkin, D.P.; Sun, Y.X.; Solares, S.D.; Shuai, D.M. Mechanism of humic acid fouling in a photocatalytic membrane system. J. Membr. Sci. 2018, 563, 531–540. [Google Scholar] [CrossRef]
- Conidi, C.; Macedonio, F.; Argurio, P.; Cassano, A.; Drioli, E. Performance of Reverse Osmosis Membranes in the Treatment of Flue-Gas Desulfurization (FGD) Wastewaters. Environments 2018, 5, 71. [Google Scholar] [CrossRef] [Green Version]
- Lenntech, Micro filtration System (MFS). Available online: https://www.lenntech.com/microfiltration.htm (accessed on 20 July 2020).
- PureAqua. Ultrafiltration UF Systems. Available online: https://www.pureaqua.com/ultrafiltration-uf-systems/ (accessed on 20 July 2020).
- MRWA, Membrane Filtration. Minnesota Rural Water Association. Available online: https://pdf4pro.com/amp/view/membrane-filtration-mrwa-56d3d8.html (accessed on 11 July 2020).
- EMIS. Adsorption Techniques. 2010. Available online: https://emis.vito.be/en/techniekfiche/adsorption-techniques (accessed on 12 July 2020).
- Samco. Reverse Osmosis vs Nanofiltration Membrane Process: What Is the Difference? 2017. Available online: https://www.samcotech.com/reverse-osmosis-vs-nanofiltration-membrane-process-what-is-the-difference/ (accessed on 20 July 2020).
- Pan, S.Y.; Haddad, A.Z.; Kumar, A.; Wang, S.W. Brackish water desalination using reverse osmosis and capacitive deionization at the water-energy nexus. Water Res. 2020, 183, 116064. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Shang, W.J.; Wang, D.X.; Wu, L.; Tu, C.H. Characterization and applications of nanofiltration membranes: State of the art. Desalination 2009, 236, 316–326. [Google Scholar] [CrossRef]
- Khanzada, N.K.; Khan, S.J.; Davies, P.A. Performance evaluation of reverse osmosis (RO) pre-treatment technologies for in-land brackish water treatment. Desalination 2017, 406, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Sakarinen, E. Humic acid Removal by Chemical Coagulation, Electrocoagulation and Ultrafiltration. In Plastics Technology; Arcada University of Applied Sciences: Helsinki, Finland, 2016. [Google Scholar]
- Watanabe, Y.; Kimura, K.; Yamamura, H.; Yonekawa, H.; Suzuki, T. Mechanism and Control of Membrane Fouling in Water Purification. In Proceedings of the 8th International Symposium on Water Supply Technology, Kobe, Japan, 10–12 June 2009. [Google Scholar]
- Gao, K.; Li, T.; Liu, J.X.; Dong, B.Z.; Chu, H.Q. Ultrafiltration membrane fouling performance by mixtures with micromolecular and macromolecular organics. Environ. Sci. Water Res. Technol. 2019, 5, 277–286. [Google Scholar] [CrossRef]
- Dhawan, G.K. Solutions to Membrane Fouling. 2007. Available online: http://www.watertreatmentguide.com/membrane_fouling_solutions.htm (accessed on 12 July 2020).
- Yigit, Z.; Inan, H. A Study of the Photocatalytic Oxidation of Humic Acid on Anatase and Mixed-phase Anatase–Rutile TiO2 Nanoparticles. Waterairsoil Pollut. Focus 2009, 9, 237–243. [Google Scholar] [CrossRef]
- Nageeb, M. Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater. In Organic Pollutants—Monitoring, Risk and Treatment; Intech: London, UK, 2013; pp. 167–194. [Google Scholar]
- Cornelissen, E. Recovering Salt and Humic Acids in Drinking Water Production. 2015. Available online: https://kwrwater.nl/en/actueel/recovering-salt-humic-acids-drinking-water-production/ (accessed on 13 July 2020).
- Sector, D.W. Royal HaskoningDHV and Vitens Start Worldwide Marketing of Technology to Recover Humic Acid at Drinking Water Plants. 2015. Available online: https://www.dutchwatersector.com/news/royal-haskoningdhv-and-vitens-start-worldwide-marketing-of-technology-to-recover-humic-acid-at (accessed on 13 July 2020).
- Nissinen, T.K.; Miettinen, I.T.; Martikainen, P.J.; Vartiainen, T. Molecular size distribution of natural organic matter in raw and drinking waters. Chemosphere 2001, 45, 865–873. [Google Scholar] [CrossRef]
- De Melo, B.A.; Motta, F.L.; Santana, M.H. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 62, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Malcolm, R.L.; Maccarthy, P. Limitations in the use of commercial humic acids in water and soil research. Environ. Sci. Technol. 1986, 20, 904–911. [Google Scholar] [CrossRef] [PubMed]
- Wypych, G. Photophysics. Handbook of Material Weathering, Fifth edition. 2013. Available online: https://www.sciencedirect.com/topics/engineering/beer-lambert-law (accessed on 20 July 2020).
- EcoCatalysts. 2018. Available online: https://www.ecocatalysts.com.au/humic-acids-just-how-important-are-they/ (accessed on 15 July 2020).
- Li, B.; Boiarkina, I.; Yu, W.; Huang, H.M.; Munir, T.; Wang, G.Q.; Young, B.R. Phosphorous recovery through struvite crystallization: Challenges for future design. Sci. Total Environ. 2019, 648, 1244–1256. [Google Scholar] [CrossRef] [PubMed]
- Kofina, A.N.; Koutsoukos, P.G. Spontaneous precipitation of struvite from synthetic wastewater solutions. Cryst. Growth Des. 2005, 5, 489–496. [Google Scholar] [CrossRef]
- Li, Z.; Ren, X.; Zuo, J.; Liu, Y.; Duan, E.; Yang, J.; Chen, P.; Wang, Y. Struvite precipitation for ammonia nitrogen removal in 7-aminocephalosporanic acid wastewater. Molecules 2012, 17, 2126–2139. [Google Scholar] [CrossRef]
- Le Corre, K.S.; Hobbs, E.V.-J.P.; Parsons, S.A. Phosphorus recovery from wastewater by strucite crystallisation: A review. Crit. Rev. Environ. Sci. Technol. 2009, 396, 433–477. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, S.; Nawaz, T.; Beaudry, J. Nitrogen and Phosphorus Recovery from Wastewater. Curr. Pollut. Rep. 2015, 1, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S. Evaluating Water Quality to Prevent Future Disasters. Separation Science and Technology. 2019. Available online: https://www.sciencedirect.com/topics/chemical-engineering/precipitation-chemical (accessed on 16 July 2020).
- Tsoutsos, T. Modelling hydrolysis and fermentation processes in lignocelluloses-to-bioalcohol production. Bioalcohol Production. 2010. Available online: https://www.sciencedirect.com/topics/engineering/dilute-acid-hydrolysis (accessed on 16 July 2020).
- Cheng, W. Carbon Fluxes in the Rhizosphere. 2007. Available online: https://www.sciencedirect.com/topics/earth-and-planetary-sciences/assimilation-efficiency (accessed on 17 July 2020).
- Laridi, R.; Auclair, J.C.; Benmoussa, H. Laboratory and pilot-scale phosphate and ammonium removal by controlled struvite precipitation following coagulation and flocculation of swine wastewater. Environ. Technol. 2005, 26, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Senthil Kumar, P.; Saravanan, A. Sustainable Wastewater Treatments in Textile Sector. In Sustainable Fibres and Textiles; Elsevier: Amsterdam, The Netherlands, 2017; pp. 323–346. [Google Scholar]
- Ghyselbrecht, K.; Monballiu, A.; Somers, M.H.; Sigurnjak, I.; Meers, E.; Appels, L.; Meesschaert, B. Stripping and scrubbing of ammonium using common fractionating columns to prove ammonium inhibition during anaerobic digestion. Int. J. Energy Environ. Eng. 2018, 9, 447–455. [Google Scholar] [CrossRef] [Green Version]
- Couper, J.R.; Penney, W.R.; Fair, J.R.; Walas, S.M. (Eds.) Chapter 15—Adsorption and Ion Exchange. In Chemical Process Equipment, 2nd ed.; Gulf Professional Publishing: Burlington, NJ, USA, 2005; pp. 523–554. [Google Scholar]
- Ghimire, U.; Jang, M.; Jung, S.P.; Park, D.; Park, S.J.; Yu, H.; Oh, S.E. Electrochemical Removal of Ammonium Nitrogen and COD of Domestic Wastewater using Platinum Coated Titanium as an Anode Electrode. Energies 2019, 12, 883. [Google Scholar] [CrossRef] [Green Version]
- Duran Moreno, A.; Frontana-Uribe, R.M.; Zamora, R.R. Electro-fenton as a feasible advanced treatment process to produce reclaimed water. Water Sci. Technol. 2004, 50, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghanbari, F.; Moradi, M. A comparative study of electrocoagulation, electrochemical Fenton, electro-Fenton and peroxi-coagulation for decolorization of real textile wastewater: Electrical energy consumption and biodegradability improvement. J. Environ. Chem. Eng. 2015, 3, 499–506. [Google Scholar] [CrossRef]
- Sillanpää, M.E.T.; Shestakova, M. Electrochemical Water Treatment Methods: Fundamentals, Methods and Full Scale Applications; Butterworth-Heinemann, an Imprint of Elsevier: Oxford, UK, 2017. [Google Scholar]
- Pan, S.Y.; Snyder, S.W.; Ma, H.W.; Lin, Y.J.; Chiang, P.C. Development of a Resin Wafer Electrodeionization Process for Impaired Water Desalination with High Energy Efficiency and Productivity. ACS Sustain. Chem. Eng. 2017, 5, 2942–2948. [Google Scholar] [CrossRef]
- Dykstra, J.E.; van der Wal, S.P.A.; Biesheuvel, P.M. Energy consumption in capcitive deionization—Constant current versus constant voltage operation. Water Res. 2018, 143, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Deshmukh, A.; Epsztein, R.; Patel, S.K.; Owoseni, O.M.; Walker, W.S.; Elimelech, M. Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination 2019, 455, 100–114. [Google Scholar] [CrossRef]
- Ishii, S.; Suzuki, S.; Norden-Krichmar, T.M.; Wu, A.; Yamanaka, Y.; Nealson, K.H.; Bretschger, O. Identifying the microbial communities and operational conditions for optimized wastewater treatment in microbial fuel cells. Water Res 2013, 47, 7120–7130. [Google Scholar] [CrossRef]
- Chopra, A.; Sharma, A.K.; Kumar, V. Overview of Electrolytic treatment: An alternative technology for purification of wastewater. Arch. Appl. Sci. Res. 2011, 3, 1–5. [Google Scholar]
- Zhang, F.; Li, J.; He, Z. A new method for nutrients removal and recovery from wastewater using a bioelectrochemical system. Bioresour. Technol. 2014, 166, 630–634. [Google Scholar] [CrossRef]
- Madhurya Ray, C.B. Microalgae: A Way Forward Approach towards Wastewater Treatment and BioFuel Production. 2019. Available online: https://www.sciencedirect.com/topics/neuroscience/microalgae (accessed on 17 July 2020).
- Acién Fernández, F.G.; Gómez-Serrano, C.; Fernández-Sevilla, J.M. Recovery of Nutrients from Wastewaters Using Microalgae. Front. Sustain. Food Syst. 2018, 2, 59. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Liu, Q.; Fang, F.; Luo, R.; Lu, Q.; Zhou, W.; Huo, S.; Cheng, P.; Liu, J.; Addy, M.; et al. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresour. Technol. 2019, 291, 121934. [Google Scholar] [CrossRef] [PubMed]
- Farhad Asgharyan, M.K.N.; Bagher Anvaripour, I.D. The Effect of Different Electrodes on Humic Acid Removal by Electrocoagulation. 2018. Available online: http://ijogst.put.ac.ir/article_65739.html (accessed on 18 July 2020).
- Junying Liu, Y.S.; Ruan, R.; Liu, Y. Removal of humic acid from composted hog waste by the white-rot fungus, Phanerochaete chrysosporium. Water Sci. Technol. 2015, 72, 92–98. [Google Scholar]
- Wang, X.L.; Xiong, J.B.; He, Z.L. Activated dolomite phosphate rock fertilizers to reduce leaching of phosphorus and trace metals as compared to superphosphate. J. Environ. Manag. 2020, 255, 109872. [Google Scholar] [CrossRef]
- Gupta, D.K.; Chatterjee, S.; Datta, S.; Veer, V.; Walther, C. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere 2014, 108, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Amann, A.; Zoboli, O.; Krampe, J.; Rechberger, H.; Zessner, M.; Egle, L. Environmental impacts of phosphorus recovery from municipal wastewater. Resour. Conserv. Recycl. 2018, 130, 127–139. [Google Scholar] [CrossRef]
- Perera, M.K.; Englehardt, J.D.; Dvorak, A.C. Technologies for Recovering Nutrients from Wastewater: A Critical Review. Environ. Eng. Sci. 2019, 36, 511–529. [Google Scholar] [CrossRef]
- Chen, T.L.; Kim, H.; Pan, S.Y.; Tseng, P.C.; Lin, Y.P.; Chiang, P.C. Implementation of green chemistry principles in circular economy system towards sustainable development goals: Challenges and perspectives. Sci. Total Environ. 2020, 716, 136998. [Google Scholar] [CrossRef]
- Rashid, S.S.; Liu, Y.Q.; Zhang, C. Upgrading a large and centralised municipal wastewater treatment plant with sequencing batch reactor technology for integrated nutrient removal and phosphorus recovery: Environmental and economic life cycle performance. Sci. Total Environ. 2020, 749, 141465. [Google Scholar] [CrossRef]
- Demestichas, K.; Daskalakis, E. Information and Communication Technology Solutions for the Circular Economy. Sustainability 2020, 12, 7272. [Google Scholar] [CrossRef]
- Ciulli, F.; Kolk, A.; Boe-Lillegraven, S. Circularity Brokers: Digital Platform Organizations and Waste Recovery in Food Supply Chains. J. Bus. Ethics 2020, 167, 299–331. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, D.; Droste, N.; Allen, B.; Kettunen, M.; Lahtinen, K.; Korhonen, J.; Leskinen, P.; Matthies, B.D.; Toppinen, A. Green, circular, bio economy: A comparative analysis of sustainability avenues. J. Clean. Prod. 2017, 168, 716–734. [Google Scholar] [CrossRef]
- Kalmykova, Y.; Sadagopan, M.; Rosado, L. Circular economy—From review of theories and practices to development of implementation tools. Resour. Conserv. Recycl. 2018, 135, 190–201. [Google Scholar] [CrossRef]
- Chen, L.H.; Hung, P.Y.; Ma, H.W. Integrating circular business models and development tools in the circular economy transition process: A firm-level framework. Bus. Strategy Environ. 2020, 29, 1887–1898. [Google Scholar] [CrossRef]
- Lopez, F.J.D.; Bastein, T.; Tukker, A. Business Model Innovation for Resource-efficiency, Circularity and Cleaner Production: What 143 Cases Tell Us. Ecol. Econ. 2019, 155, 20–35. [Google Scholar] [CrossRef]
Parameter | Husbandry Wastewater (Manure Slurry) | Liquid Digestate from Anaerobic Digestion | Aquaculture Wastewater | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | Unit | Raw Swine Excreta | Pig Slurry/Cattle Slurry | Pig Slurry | Pig Manure Hydrolysate | Co-Digested With Cattle and Pig Slurry b | Pig Manure | Pig Slurry | Kitchen Food Waste | Aquaculture Wastewater | Aquaculture Wastewater | |
Basis | pH | - | 6.91 | 7.68/7.81 | 7.61–7.66 | 7.3 | 7.99 | 7.5 | 8.11–8.75 | 8.0 | 7.5 | - |
EC | mS/cm | - | 10.26/6.11 | - | - | 7.47 | - | - | - | - | - | |
DO | mg/L | - | - | - | - | - | - | - | - | - | 2.45 | |
Organics | COD | mg/L | - | - | 3625–77,886 | 52690 | - | 5585 | 9095–14943 | - | 38.4 | 66.6 |
TS | % | 25.02 | - | 0.54–5.19 | 8.29 | - | 1.93 | 1.13–1.48 | - | - | - | |
VS | % | 20.06 | 1.95/6.14 | 0.3–3.5 | 6.36 | 4.36 | 0.39 | 0.64–0.75 | - | - | - | |
TSS | % | - | - | - | 5.89 | - | - | - | - | - | - | |
TOC | % | - | 0.97/2.34 | - | - | 1.84 | - | - | - | - | - | |
VFA | mg/L | ~8500 | - | AA: 0–1845 PA:0–406 BA:0–26 VA:0–27 | 9540 | - | - | AA: 0–2000 PA: 0–3782 BA: 0–5266 VA: 0–1035 | - | - | - | |
Nutrients | C/N ratio | - | 16.76 | - | - | - | - | - | - | - | - | - |
TN | mg/g | 4.67 | 3.31/2.97 | - | - | 3.45 | - | - | - | 0.153 c | 0.004 | |
TAN | mg/g | 4.67 | 2.54/1.35 | - | - | 1.82 | 1.36 | - | - | - | - | |
NH4+-N | mg/L | - | - | 993–6708 | 3410 | - | - | 1858–3013 | 4016 | - | 2.35 | |
Soluble phosphorus (P) | mg/L | - | - | 2.3–57.0 | 580 | - | 53.3 | 0–82.4 | 665 | 16.1 | 0.23 d | |
Metals | Zn | mg/kg | - | - | - | - | - | - | - | 32.9 | - | - |
Cu | mg/kg | - | - | - | - | - | - | - | 1.6 | - | - | |
K | mg/L | - | - | 614–5780 | 3320 | - | - | 0–2269 | 2015 | 195.1 | - | |
Ca | mg/L | - | - | 43–686 | 1060 | - | - | 0–37 | 6756 | 168.9 | - | |
Mg | mg/L | - | - | 21–76 | 530 | - | 84.6 | 0–12 | 113.7 | 39.6 | - | |
Na | mg/L | - | - | 160–1460 | 690 | - | - | 0–720 | 1150 | 246.4 | - | |
Reference | [7] | [8] | [9] | [10] | [8] | [11] | [9] | [12] | [13] | [14] |
Category | Type | Chemical Group | Chemical/General Formula | Molecular Weight (g/mol) | Polarity/Hydrophobicity | Reference |
---|---|---|---|---|---|---|
Humic Substances | Acids | Humic Acid | C187H186O89N9S1 | 4015.55 | Polar/Hydrophilic | [18,19] |
Fulvic Acid | C14H12O8 | 308.24 | Amphiphilic | [20] | ||
Aromatic Acid | CnH2n+1COOH | - | Polar/Hydrophilic | [21] | ||
Neutral | Hydrocarbons | CxHx (many different types) | - | Non-polar/Hydrophobic | [22] | |
Ethers | R–O–R′ | - | Non-polar/Hydrophobic | [23] | ||
Aldehydes | CnH2n+1 | - | Non-polar/Hydrophobic | [24] | ||
Bases | Proteins | RCH(NH2)COOH | - | Polar/Hydrophilic | [25] | |
Aromatic Amines | CnH2n−476y | - | Non-polar/Hydrophobic | [26] | ||
Non-humic Substances | Acids | Sugars | C12H22O11 | 342.3 | Polar/Hydrophilic | [27] |
Hydroxy Acids | RCH(OH)COOH | - | Polar/Hydrophilic | [28] | ||
Carbohydrates | (CH2O)x | - | Polar/Hydrophilic | [29] | ||
Neutral | Polysaccharides | Cx(H2O)y | - | Non-polar/Hydrophobic | [30] | |
Ketones | RC(=O)R’ | - | Polar/Hydrophilic | [23] | ||
Aldehydes | CnH2n+1 | - | Polar/Hydrophilic | [24] | ||
Bases | Amino Acids | RCH(NH2)COOH | - | Polar/Hydrophilic | [25] | |
Purines | C5H4N4 | 120.11 | Non-polar/Hydrophobic | [31] | ||
Pyrimidines | C4H4N2 | 80.09 | Non-polar/Hydrophobic | [32] |
Membrane | Removal Target | Pressure (bar) | Pore Size (microns) | Operation Cost (USD) | Types of Rejected Materials | Reference |
---|---|---|---|---|---|---|
Microfiltration (MF) | Humic Acid | <4 | 0.1 | 0.5–1 million | Particles, Algae, Bacteria, Protozoa | [60] |
Ultrafiltration (UF) | Humic Acid | 2–10 | 0.01 | 10 million | Colloids, Viruses | [61,62] |
Nanofiltration (NF) | Humic Acid | 5–30 | 0.001 | 2–4 million | Dissolved organics, Divalent ions (Mg2+, Ca2+) | [63,64] |
Reverse Osmosis (RO) | Humic Acid | 10–100 | Non-porous | 15 million | Monovalent Species (Na+, Cl−) | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehta, N.; Shah, K.J.; Lin, Y.-I.; Sun, Y.; Pan, S.-Y. Advances in Circular Bioeconomy Technologies: From Agricultural Wastewater to Value-Added Resources. Environments 2021, 8, 20. https://doi.org/10.3390/environments8030020
Mehta N, Shah KJ, Lin Y-I, Sun Y, Pan S-Y. Advances in Circular Bioeconomy Technologies: From Agricultural Wastewater to Value-Added Resources. Environments. 2021; 8(3):20. https://doi.org/10.3390/environments8030020
Chicago/Turabian StyleMehta, Nidhi, Kinjal J Shah, Yu-I Lin, Yongjun Sun, and Shu-Yuan Pan. 2021. "Advances in Circular Bioeconomy Technologies: From Agricultural Wastewater to Value-Added Resources" Environments 8, no. 3: 20. https://doi.org/10.3390/environments8030020
APA StyleMehta, N., Shah, K. J., Lin, Y. -I., Sun, Y., & Pan, S. -Y. (2021). Advances in Circular Bioeconomy Technologies: From Agricultural Wastewater to Value-Added Resources. Environments, 8(3), 20. https://doi.org/10.3390/environments8030020