Influence of Biochar Derived Nitrogen on Cadmium Removal by Ryegrass in a Contaminated Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar Production and Characteristics
2.2. Soil Sampling and Analysis
2.3. Potting Experiment
2.4. Nitrogen and Cadmium Analysis in Ryegrass Shoots and Roots
2.5. Statistical Analysis
3. Results
3.1. Ryegrass Production, and Cadmium × Nitrogen Accumulation Relationship
3.2. Cadmium Bioavailability
3.3. Cadmium Transfer Factor
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, X.; Xu, H.; Lu, J.; Chen, Q.; Li, W.; Wu, L.; Tang, J.; Ma, L. The Immobilization of Soil Cadmium by the Combined Amendment of Bacteria and Hydroxyapatite. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jacquiod, S.; Cyriaque, V.; Riber, L.; Al-Soud, W.A.; Gillan, D.C.; Wattiez, R.; Sørensen, S.J. Long-term industrial metal contamination unexpectedly shaped diversity and activity response of sediment microbiome. J. Hazard. Mater. 2018, 344, 299–307. [Google Scholar] [CrossRef]
- Martínez-Sánchez, M.J.; Martínez-López, S.; Martínez-Martínez, L.B.; Pérez-Sirvent, C. Importance of the oral arsenic bioaccessibility factor for characterising the risk associated with soil ingestion in a mining-influenced zone. J. Environ. Manag. 2013, 116, 10–17. [Google Scholar] [CrossRef]
- Sinha, S.; Mishra, R.K.; Sinam, G.; Mallick, S.; Gupta, A.K. Comparative Evaluation of Metal Phytoremediation Potential of Trees, Grasses, and Flowering Plants from Tannery-Wastewater-Contaminated Soil in Relation with Physicochemical Properties. Soil Sediment Contam. Int. J. 2013, 22, 958–983. [Google Scholar] [CrossRef]
- He, M.; Shi, H.; Zhao, X.; Yu, Y.; Qu, B. Immobilization of Pb and Cd in Contaminated Soil Using Nano-Crystallite Hydroxyapatite. Procedia Environ. Sci. 2013, 18, 657–665. [Google Scholar] [CrossRef] [Green Version]
- Niu, L.; Yang, F.; Xu, C.; Yang, H.; Liu, W. Status of metal accumulation in farmland soils across China: From distribution to risk assessment. Environ. Pollut. 2013, 176, 55–62. [Google Scholar] [CrossRef]
- Neuberger, J.S.; Hu, S.C.; Drake, K.D.; Jim, R. Potential health impacts of heavy-metal exposure at the Tar Creek Superfund site, Ottawa County, Oklahoma. Environ. Geochem. Health 2008, 31, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.; Compton, H.; Basta, N. Field Test of In Situ Soil Amendments at the Tar Creek National Priorities List Superfund Site. J. Environ. Qual. 2007, 36, 1627–1634. [Google Scholar] [CrossRef] [PubMed]
- Beattie, R.E.; Henke, W.; Davis, C.; Mottaleb, M.A.; Campbell, J.H.; Mcaliley, L.R. Quantitative analysis of the extent of heavy-metal contamination in soils near Picher, Oklahoma, within the Tar Creek Superfund Site. Chemosphere 2017, 172, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Gouzie, D. Potential Remediation Methods and Their Applicability to the Tri-State Mining District, USA. In Proceedings of the GSA Annual Meeting, Indianapolis, IN, USA, 4–7 November 2018. [Google Scholar]
- Antonangelo, J.A.; Zhang, H. Heavy metal phytoavailability in a contaminated soil of northeastern Oklahoma as affected by biochar amendment. Environ. Sci. Pollut. Res. 2019, 26, 33582–33593. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Gao, L.; Chen, W.; Su, J.; Shen, Y. Urea application enhances cadmium uptake and accumulation in Italian ryegrass. Environ. Sci. Pollut. Res. 2020, 27, 34421–34433. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.P.; Singh, B.; Karwasra, S.P.S. Yield and uptake response of lettuce to cadmium as influenced by nitrogen application. Fertil. Res. 1988, 18, 49–56. [Google Scholar] [CrossRef]
- Zhang, R.-R.; Liu, Y.; Xue, W.-L.; Chen, R.-X.; Du, S.-T.; Jin, C.-W. Slow-release nitrogen fertilizers can improve yield and reduce Cd concentration in pakchoi (Brassica chinensis L.) grown in Cd-contaminated soil. Environ. Sci. Pollut. Res. 2016, 23, 25074–25083. [Google Scholar] [CrossRef]
- Wei, S.; Ji, D.; Twardowska, I.; Li, Y.; Zhu, J. Effect of different nitrogenous nutrients on the cadmium hyperaccumulation efficiency of Rorippa globosa (Turcz.) Thell. Environ. Sci. Pollut. Res. 2015, 22, 1999–2007. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, C.; Hu, P.; Luo, Y.; Wu, L.; Sale, P.; Tang, C. Influence of nitrogen form on the phytoextraction of cadmium by a newly discovered hyperaccumulator Carpobrotus rossii. Environ. Sci. Pollut. Res. 2016, 23, 1246–1253. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, M.; Deng, Y.; Zhong, F.; Xu, B.; Hu, L.; Wang, M.; Wang, G. Comparison of ammonium fertilizers, EDTA, and NTA on enhancing the uptake of cadmium by an energy plant, Napier grass (Pennisetum purpureum Schumach). J. Soils Sediments 2017, 17, 2786–2796. [Google Scholar] [CrossRef]
- Symanowicz, B.; Kalesa, S.; Jaremko, D.; Niedbała, M. Effect of nitrogen application and year on concentration of Cu, Zn, Ni, Cr, Pb and Cd in herbage of Galega orientalis Lam. Plant Soil Environ. 2016, 61, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Benyas, E.; Owens, J.; Seyedalikhani, S.; Robinson, B. Cadmium Uptake by Ryegrass and Ryegrass–Clover Mixtures under Different Liming Rates. J. Environ. Qual. 2018, 47, 1249–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Zhang, Q.; Hu, L.; Tang, J.; Xu, L.; Yang, X.; Yong, J.W.H.; Chen, X. Legumes Can Increase Cadmium Contamination in Neighboring Crops. PLoS ONE 2012, 7, e42944. [Google Scholar] [CrossRef] [Green Version]
- Malcolm, B.J.; Moir, J.L.; Cameron, K.C.; Di, H.J.; Edwards, G.R. Influence of plant growth and root architecture of Italian ryegrass (Lolium multiflorum) and tall fescue (Festuca arundinacea) on N recovery during winter. Grass Forage Sci. 2015, 70, 600–610. [Google Scholar] [CrossRef]
- Mongkhonsin, B.; Nakbanpote, W.; Meesungnoen, O.; Prasad, M.N.V. Adaptive and Tolerance Mechanisms in Herbaceous Plants Exposed to Cadmium. Cadmium Toxic. Toler. Plants 2019, 73–109. [Google Scholar]
- Han, S.; Li, X.; Amombo, E.; Fu, J.; Xie, Y. Cadmium Tolerance of Perennial Ryegrass Induced by Aspergillus aculeatus. Front. Microbiol. 2018, 9, 1579. [Google Scholar] [CrossRef] [PubMed]
- Antonangelo, J.A.; Zhang, H.; Sun, X.; Kumar, A. Physicochemical properties and morphology of biochars as affected by feedstock sources and pyrolysis temperatures. Biochar 2019, 1, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Church, C.; Spargo, J.; Fishel, S. Strong Acid Extraction Methods for “Total Phosphorus” in Soils: EPA Method 3050B and EPA Method 3051. Agric. Environ. Lett. 2017, 2, 160037. [Google Scholar] [CrossRef] [Green Version]
- Richards, J.R.; Schroder, J.L.; Zhang, H.; Basta, N.T.; Wang, Y.; Payton, M.E. Trace Elements in Benchmark Soils of Oklahoma. Soil Sci. Soc. Am. J. 2012, 76, 2031–2040. [Google Scholar] [CrossRef]
- Wu, J.; Song, Q.; Zhou, J.; Wu, Y.; Liu, X.; Liu, J.; Zhou, L.; Wu, Z.; Wu, W. Cadmium threshold for acidic and multi-metal contaminated soil according to Oryza sativa L. Cadmium accumulation: Influential factors and prediction model. Ecotoxicol. Environ. Saf. 2021, 208, 111420. [Google Scholar] [CrossRef]
- Jones, J.B.; Case, V.W. Sampling, Handling, and Analyzing Plant Tissue Samples. SSSA Book Ser. Soil Test. Plant Anal. 2018, 3, 389–427. [Google Scholar]
- Rigby, H.; Smith, S.R. The significance of cadmium entering the human food chain via livestock ingestion from the agricultural use of biosolids, with special reference to the UK. Environ. Int. 2020, 143, 105844. [Google Scholar] [CrossRef]
- Feng, D.; Huang, C.; Xu, W.; Qin, Y.; Li, Y.; Li, T.; Yang, M.; He, Z. Difference of Cadmium Bioaccumulation and Transportation in Two Ryegrass Varieties and the Correlation between Plant Cadmium Concentration and Soil Cadmium Chemical Forms. Wirel. Pers. Commun. 2020, 110, 291–307. [Google Scholar] [CrossRef]
- Jarvis, S.C.; Jones, L.H.P.; Hopper, M.J. Cadmium uptake from solution by plants and its transport from roots to shoots. Plant Soil 1976, 44, 179–191. [Google Scholar] [CrossRef]
- Huang, L.; Li, W.C.; Tam, N.F.Y.; Ye, Z. Effects of root morphology and anatomy on cadmium uptake and translocation in rice (Oryza sativa L.). J. Environ. Sci. 2019, 75, 296–306. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, X.; Zhao, Z.; He, Q.; Wang, S.; Zhu, Y.; Yan, Y.; Liu, X.; Sun, K.; Zhao, Y.; et al. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environ. Pollut. 2016, 218, 513–522. [Google Scholar] [CrossRef]
- Lu, K.; Yang, X.; Shen, J.; Robinson, B.; Huang, H.; Liu, D.; Bolan, N.; Pei, J.; Wang, H. Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric. Ecosyst. Environ. 2014, 191, 124–132. [Google Scholar] [CrossRef]
- Park, J.H.; Choppala, G.K.; Bolan, N.S.; Chung, J.W.; Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 2011, 348, 439–451. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Usman, A.R.; El-Naggar, A.H.; Aly, A.A.; Ibrahim, H.M.; Elmaghraby, S.; Al-Omran, A. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi J. Biol. Sci. 2015, 22, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Ye, X.; Geng, Z.; Zhou, H.; Guo, X.; Zhang, Y.; Zhao, H.; Wang, G. The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils. J. Hazard. Mater. 2016, 304, 40–48. [Google Scholar] [CrossRef]
- Mohamed, I.; Zhang, G.-S.; Li, Z.-G.; Liu, Y.; Chen, F.; Dai, K. Ecological restoration of an acidic Cd contaminated soil using bamboo biochar application. Ecol. Eng. 2015, 84, 67–76. [Google Scholar] [CrossRef]
- Karami, N.; Clemente, R.; Moreno-Jiménez, E.; Lepp, N.W.; Beesley, L. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 2011, 191, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Valdez-González, J.C.; López-Chuken, U.J.; Guzmán-Mar, J.L.; Flores-Banda, F.; Hernández-Ramírez, A.; Hinojosa-Reyes, L. Saline irrigation and Zn amendment effect on Cd phytoavailability to Swiss chard (Beta vulgaris L.) grown on a long-term amended agricultural soil: A human risk assessment. Environ. Sci. Pollut. Res. 2014, 21, 5909–5916. [Google Scholar] [CrossRef]
- Bauddh, K.; Singh, R.P. Effects of organic and inorganic amendments on bio-accumulation and partitioning of Cd in Brassica juncea and Ricinus communis. Ecol. Eng. 2015, 74, 93–100. [Google Scholar] [CrossRef]
- Yang, Y.; Xiong, J.; Chen, R.; Fu, G.; Chen, T.; Tao, L. Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa). Environ. Exp. Bot. 2016, 122, 141–149. [Google Scholar] [CrossRef]
- Jalloh, M.A.; Chen, J.; Zhen, F.; Zhang, G. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress. J. Hazard. Mater. 2009, 162, 1081–1085. [Google Scholar] [CrossRef]
- Luo, B.F.; Du, S.T.; Lu, K.X.; Liu, W.J.; Lin, X.Y.; Jin, C.W. Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants. J. Exp. Bot. 2012, 63, 3127–3136. [Google Scholar] [CrossRef]
- Hu, J.; Wu, S.; Wu, F.; Leung, H.M.; Lin, X.; Wong, M.H. Arbuscular mycorrhizal fungi enhance both absorption and stabilization of Cd by Alfred stonecrop (Sedum alfredii Hance) and perennial ryegrass (Lolium perenne L.) in a Cd-contaminated acidic soil. Chemosphere 2013, 93, 1359–1365. [Google Scholar] [CrossRef]
- Nogueirol, R.C.; Monteiro, F.A.; Junior, J.C.D.S.; Azevedo, R.A. NO3−/NH4+ proportions affect cadmium bioaccumulation and tolerance of tomato. Environ. Sci. Pollut. Res. 2018, 25, 13916–13928. [Google Scholar] [CrossRef] [PubMed]
- Gallego, S.M.; Pena, L.B.; Barcia, R.A.; Azpilicueta, C.E.; Iannone, M.F.; Rosales, E.P.; Zawoznik, M.S.; Groppa, M.D.; Benavides, M.P. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ. Exp. Bot. 2012, 83, 33–46. [Google Scholar] [CrossRef]
- Alves, L.R.; Monteiro, C.C.; Carvalho, R.F.; Ribeiro, P.C.; Tezotto, T.; Azevedo, R.A.; Gratão, P.L. Cadmium stress related to root-to-shoot communication depends on ethylene and auxin in tomato plants. Environ. Exp. Bot. 2017, 134, 102–115. [Google Scholar] [CrossRef] [Green Version]
- Lux, A.; Martinka, M.; Vaculik, M.; White, P.J. Root responses to cadmium in the rhizosphere: A review. J. Exp. Bot. 2010, 62, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Zhao, Z.; Wang, L.; Xiao, Y. Influences of rice straw biochar and organic manure on forage soybean nutrient and Cd uptake. Int. J. Phytoremediat. 2020, 23, 53–63. [Google Scholar] [CrossRef]
- Peco, J.D.; Campos, J.A.; Romero-Puertas, M.C.; Olmedilla, A.; Higueras, P.; Sandalio, M.L. Characterization of mechanisms involved in tolerance and accumulation of Cd in Biscutella auriculata L. Ecotoxicol. Environ. Saf. 2020, 201, 110784. [Google Scholar] [CrossRef]
Property | Unit | SGB | PLB |
---|---|---|---|
Ash | % | 4.4 | 45.9 |
TC | g kg−1 | 314 ± 13 | 278 ± 14 |
TN | g kg−1 | 7 ± 0 | 16 ± 1 |
P | g kg−1 | 2 ± 0.2 | 40 ± 0.8 |
K | g kg−1 | 4 ± 0.4 | 80 ± 0.6 |
Ca | g kg−1 | 8 ± 1 | 50 ± 2 |
Mg | g kg−1 | 3 ± 0 | 20 ± 0.1 |
S | g kg−1 | 0.4 ± 0.1 | 10 ± 0.6 |
Rate (%) | Shoots | |||||||||||
N (kg ha−1) | Cd (g ha−1) | |||||||||||
SGB | PLB | Mean | SGB | PLB | Mean | |||||||
0 | 221 | aA | 221 | cA | 221 | a | 30 | aA | 30 | aA | 30 | a |
0.5 | 113 | bB | 287 | aA | 200 | b | 15.2 | bB | 35.5 | aA | 25.4 | a |
1 | 99 | bB | 268 | bA | 183 | b | 14.3 | bB | 34.7 | aA | 24.5 | a |
2 | 72 | cB | 180 | dA | 126 | c | 10.6 | bB | 21.6 | bA | 16.1 | b |
4 | 19 | dB | 28 | eA | 24 | d | 2.3 | cA | 2.4 | cA | 2.3 | c |
Mean | 105 | B | 197 | A | 14.5 | B | 24.8 | A | ||||
R | p < 0.05 | p < 0.05 | ||||||||||
B | p < 0.05 | p < 0.05 | ||||||||||
R × B | p < 0.05 | p < 0.05 | ||||||||||
Rate (%) | Roots | |||||||||||
N (kg ha−1) | Cd (g ha−1) | |||||||||||
SGB | PLB | Mean | SGB | PLB | Mean | |||||||
0 | 4.95 | aA | 4.95 | cA | 4.95 | b | 45.9 | aA | 45.9 | cA | 45.9 | ab |
0.5 | 3.84 | bB | 8.29 | aA | 6.06 | a | 60.5 | aB | 90.6 | abA | 75.5 | a |
1 | 3.42 | bcB | 7.11 | bA | 5.27 | ab | 61.7 | aB | 109.7 | aA | 85.7 | a |
2 | 2.52 | cdB | 4.91 | cA | 3.71 | c | 40.9 | aA | 52.7 | bcA | 46.8 | ab |
4 | 2.04 | dA | 1.49 | dA | 1.76 | d | 36.7 | aA | 15.3 | cA | 26 | b |
Mean | 3.35 | B | 5.35 | A | 49.1 | B | 62.8 | A | ||||
R | p < 0.05 | p < 0.05 | ||||||||||
B | p < 0.05 | p < 0.05 | ||||||||||
R × B | p < 0.05 | p < 0.05 | ||||||||||
Rate (%) | Shoots + Roots | |||||||||||
N (kg ha−1) | Cd (g ha−1) | |||||||||||
SGB | PLB | Mean | SGB | PLB | Mean | |||||||
0 | 334 | aA | 334 | bA | 334 | a | 193.6 | aA | 193.6 | bA | 193.6 | bc |
0.5 | 180 | bB | 443 | aA | 312 | ab | 205.8 | aB | 343.7 | aA | 274.8 | ab |
1 | 157 | bB | 419 | aA | 288 | b | 208.4 | aB | 383.5 | aA | 296 | a |
2 | 114 | cB | 281 | cA | 198 | c | 142.1 | abB | 195.2 | bA | 168.6 | c |
4 | 43 | dA | 54 | dA | 48 | d | 75.6 | bA | 39.4 | cA | 57.5 | d |
Mean | 166 | B | 306 | A | 165.1 | B | 231.1 | A | ||||
R | p < 0.05 | p < 0.05 | ||||||||||
B | p < 0.05 | p < 0.05 | ||||||||||
R × B | p < 0.05 | p < 0.05 |
Factor | Shoots | Roots | Shoots + Roots |
---|---|---|---|
N accumulated (y-axis) | |||
Biochar | p = 0.9503 | p = 0.4765 | p = 0.5697 |
Yield | p < 0.0001 | p = 0.0005 | p < 0.0001 |
Biochar × Yield | p = 0.1767 | p = 0.2452 | p = 0.0731 |
Cd accumulated (y-axis) | |||
Biochar | p = 0.1051 | p = 0.4597 | p = 0.4012 |
Nitrogen | p < 0.0001 | p = 0.0003 | p < 0.0001 |
Biochar × Nitrogen | p = 0.8557 | p = 0.1298 | p = 0.0104 |
Treatment | Shoots | Roots | Shoots + Roots |
---|---|---|---|
Cd accumulation (y-axis) | |||
SGB | 0.60 * | 0.50 NS | 0.33 ** |
PLB | 0.69 ** | 0.36 NS | 0.47 NS |
SGB + PLB | 0.28 NS | 0.26 NS | 0.31 NS |
Rate (%) | Transfer Factor (TF) | |||||
---|---|---|---|---|---|---|
SGB | PLB | Mean | ||||
0 | 0.66 | aA | 0.66 | aA | 0.66 | a |
0.5 | 0.25 | bB | 0.4 | bA | 0.32 | b |
1 | 0.25 | bcB | 0.35 | bA | 0.3 | b |
2 | 0.28 | bB | 0.41 | bA | 0.35 | b |
4 | 0.06 | cA | 0.15 | cA | 0.11 | c |
Mean | 0.3 | B | 0.39 | A | ||
R | p < 0.05 | |||||
B | p < 0.05 | |||||
R × B | p = 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonangelo, J.; Zhang, H. Influence of Biochar Derived Nitrogen on Cadmium Removal by Ryegrass in a Contaminated Soil. Environments 2021, 8, 11. https://doi.org/10.3390/environments8020011
Antonangelo J, Zhang H. Influence of Biochar Derived Nitrogen on Cadmium Removal by Ryegrass in a Contaminated Soil. Environments. 2021; 8(2):11. https://doi.org/10.3390/environments8020011
Chicago/Turabian StyleAntonangelo, João, and Hailin Zhang. 2021. "Influence of Biochar Derived Nitrogen on Cadmium Removal by Ryegrass in a Contaminated Soil" Environments 8, no. 2: 11. https://doi.org/10.3390/environments8020011
APA StyleAntonangelo, J., & Zhang, H. (2021). Influence of Biochar Derived Nitrogen on Cadmium Removal by Ryegrass in a Contaminated Soil. Environments, 8(2), 11. https://doi.org/10.3390/environments8020011