Measuring Soil Metal Bioavailability in Roadside Soils of Different Ages
Abstract
:1. Introduction
2. Methods
2.1. Soil Sampling
2.2. Wheat Assay
2.3. Analysis of Metals in Soil
2.3.1. Total Metal Digestion
2.3.2. Metal CaCl2 Extraction
2.3.3. Analysis of Metals in Soil Digests and Extracts
2.3.4. Other Soil Analysis
2.4. Diffusive Gradients in Thin Films (DGT) Technique
DGT Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Soil Properties
3.2. Metal Concentrations in Soil, Wheat, DGT, CE, CSOL, CaCl2 Extractable Metals
3.3. Metal Aging and Dissociation Time in Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fairbrother, A.; Wenstel, R.; Sappington, K.; Wood, W. Framework for metals risk assessment. Ecotoxicol. Environ. Saf. 2007, 68, 145–227. [Google Scholar] [CrossRef] [PubMed]
- Naidu, R.; Juhasz, A.; Mallavarapu, M.; Smith, E.; Lombi, E.; Bolan, N.S.; Wong, M.H.; Harmsen, J. Chemical Bioavailability in the Terrestrial Environment-recent advances. J. Hazard. Mater. 2013, 261, 685–686. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, M.J.; Hamon, R.E.; McLaren, R.G.; Speir, T.W.; Rogers, S.L. A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Soil Res. 2000, 38, 1037–1086. [Google Scholar] [CrossRef]
- Naidu, R.; Bolan, N.S. Contaminant chemistry in soils: Key concepts and bioavailability. Dev. Soil Sci. 2008, 32, 9–37. [Google Scholar]
- Peijnenburg, W.J.; Zablotskaja, M.; Vijver, M.G. Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction. Ecotoxicol. Environ. Saf. 2007, 67, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Smart, M.; Zarcinas, G.; Stevens, B.; Barry, D.; Cockley, G.; McLaughlin, T. CSIRO Land and Water’s Methods Manual for ACIAR Project no. LWR1/1998/119; CSIRO Land and Water: Clayton, Australia, 2004. [Google Scholar]
- Harper, M.P.; Davison, W.; Zhang, H.; Tych, W. Kinetics of metal exchange between solids and solutions in sediments and soils interpreted from DGT measured fluxes. Geochim. Cosmochim. Acta 1998, 62, 2757–2770. [Google Scholar] [CrossRef]
- Ernstberger, H.; Davison, W.; Zhang, H.; Tye, A.; Young, S. Measurement and dynamic modeling of trace metal mobilization in soils using DGT and DIFS. Environ. Sci. Technol. 2002, 36, 349–354. [Google Scholar] [CrossRef]
- Ernstberger, H.; Zhang, H.; Tye, A.; Young, S.; Davison, W. Desorption kinetics of Cd, Zn, and Ni measured in soils by DGT. Environ. Sci. Technol. 2005, 39, 1591–1597. [Google Scholar] [CrossRef]
- Ivezić, V.; Almås, Å.R.; Singh, B.R. Predicting the solubility of Cd, Cu, Pb and Zn in uncontaminated Croatian soils under different land uses by applying established regression models. Geoderma 2012, 170, 89–95. [Google Scholar] [CrossRef]
- Zogaj, M.; Düring, R.A. Plant uptake of metals, transfer factors and prediction model for two contaminated regions of Kosovo. J. Plant Nutr. Soil Sci. 2016, 179, 630–640. [Google Scholar] [CrossRef]
- Zeng, S.; Li, J.; Wei, D.; Ma, Y. A new model integrating short-and long-term aging of copper added to soils. PLoS ONE 2017, 12, e0182944. [Google Scholar] [CrossRef] [Green Version]
- Anxiang, L.U.; Zhang, S.; Xiangyang, Q.; Wenyong, W.U.; Honglu, L.I.U. Aging effect on the mobility and bioavailability of copper in soil. J. Environ. Sci. 2009, 21, 173–178. [Google Scholar]
- Tagami, K.; Uchida, S. Aging effect on bioavailability of Mn, Co, Zn and Tc in Japanese agricultural soils under waterlogged conditions. Geoderma 1998, 84, 3–13. [Google Scholar] [CrossRef]
- Buekers, J. Fixation of Cadmium, Copper, Nickel and Zinc in Soil: Kinetics, Mechanisms and Its Effect on Metal Bioavailability. Ph.D. Thesis, Faculteit Bio-ingenieurswetenschappen, Katholieke Universiteit Lueven, Leuven, Belgium, 2007. [Google Scholar]
- López-García, P.; Moreira, D. Tracking microbial biodiversity through molecular and genomic ecology. Res. Microbiol. 2008, 159, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Lombi, E.; McLaughlin, M.J.; Oliver, I.W.; Nolan, A.L.; Oorts, K.; Smolders, E. Aging of nickel added to soils as predicted by soil pH and time. Chemosphere 2013, 92, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Lock, K.; Janssen, C. Ecotoxicity of chromium (III) to Eisenia fetida, Enchytraeus albidus, and Folsomia candida. Ecotoxicol. Environ. Saf. 2002, 51, 203–205. [Google Scholar] [CrossRef] [PubMed]
- Lock, K.; Janssen, C.R. Influence of Aging on Metal Availability in Soils, Reviews of Environmental Contamination and Toxicology; Springer: Berlin, Germany, 2003; pp. 1–21. [Google Scholar]
- De Silva, S.; Ball, A.S.; Huynh, T.; Reichman, S.M. Metal accumulation in roadside soil in Melbourne, Australia: Effect of road age, traffic density and vehicular speed. Environ. Pollut. 2016, 208, 102–109. [Google Scholar] [CrossRef]
- De Silva, S.; Ball, A.S.; Indrapala, D.V.; Reichman, S.M. Review of the interactions between vehicular emitted potentially toxic elements, roadside soils, and associated biota. Chemosphere 2020. [Google Scholar] [CrossRef]
- Isbell, R. The Australian Soil Classification; CSIRO Publishing: Clayton, Australia, 2016; pp. 11–41. [Google Scholar]
- Price, R.C.; Gray, C.M.; Frey, F.A. Strontium isotopic and trace element heterogeneity in the plains basalts of the Newer Volcanic Province, Victoria, Australia. Geochim. Cosmochim. Acta 1997, 61, 171–192. [Google Scholar] [CrossRef]
- Werkenthin, M.; Kluge, B.; Wessolek, G. Metals in European roadside soils and soil solution—A review. Environ. Pollut. 2014, 189, 98–110. [Google Scholar] [CrossRef]
- Reichman, S.M. Probing the plant growth-promoting and heavy metal tolerance characteristics of Bradyrhizobium japonicum CB1809. Eur. J. Soil Boil. 2014, 63, 7–13. [Google Scholar] [CrossRef]
- Houba, V.; Temminghoff, E.; Gaikhorst, G.; Van Vark, W. Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun. Soil Sci. Plant Anal. 2000, 31, 1299–1396. [Google Scholar] [CrossRef]
- Rayment, G.E.; Higginson, F.R. Australian Laboratory Handbook of Soil and Water Chemical Methods; Inkata Press: Melbourne, Australia, 1992. [Google Scholar]
- Zhang, H.; Davison, W.; Knight, B.; McGrath, S. In situ measurements of solution concentrations and fluxes of trace metals in soils using DGT. Environ. Sci. Technol. 1998, 32, 704–710. [Google Scholar] [CrossRef]
- Huynh, T.T.; Laidlaw, W.S.; Singh, B.; Zhang, H.; Baker, A.J. Effect of plants on the bioavailability of metals and other chemical properties of biosolids in a column study. Int. J. Phytoremediat. 2012, 14, 878–893. [Google Scholar] [CrossRef]
- van der Ent, A.; Echevarria, G.; Tibbett, M. Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology 2016, 26, 67–82. [Google Scholar] [CrossRef]
- Brümmer, G.W.; Gerth, J.; Herms, U. Heavy metal species, mobility and availability in soils. J. Plant Nutr. Soil Sci. 1986, 149, 382–398. [Google Scholar]
- Rodríguez-Flores, M.; Rodríguez-Castellón, E. Lead and cadmium levels in soil and plants near highways and their correlation with traffic density. Environ. Pollut. Ser. B Chem. Phys. 1982, 4, 281–290. [Google Scholar] [CrossRef]
- Zhang, H.; Lombi, E.; Smolders, E.; McGrath, S. Kinetics of Zn Release in Soils and Prediction of Zn Concentration in Plants Using Diffusive Gradients in Thin Films. Environ. Sci. Technol. 2004, 38, 3608–3613. [Google Scholar] [CrossRef]
- Menzies, N.W.; Donn, M.J.; Kopittke, P.M. Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environ. Pollut. 2007, 145, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Smolders, E.; Oorts, K.; Van Sprang, P.; Schoeters, I.; Janssen, C.R.; McGrath, S.P.; McLaughlin, M.J. Toxicity of trace metals in soil as affected by soil type and aging after contamination: Using calibrated bioavailability models to set ecological soil standards. Environ. Toxicol. Chem. Int. J. 2009, 28, 1633–1642. [Google Scholar] [CrossRef]
- Yao, Y.; Watanabe, T.; Yano, T.; Iseda, T.; Sakamoto, O.; Iwamoto, M.; Inoue, S. An innovative energy-saving in-flight melting technology and its application to glass production. Sci. Technol. Adv. Mater. 2008, 2, 025013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolan, A.L.; Zhang, H.; McLaughlin, M.J. Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques. J. Environ. Qual. 2005, 34, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Maricq, M.M.; Chase, R.E.; Xu, N.; Podsiadlik, D.H. The effects of the catalytic converter and fuel sulfur level on motor vehicle particulate matter emissions: Gasoline vehicles. Environ. Sci. Technol. 2002, 36, 276–282. [Google Scholar] [CrossRef]
- Maiz, I.; Esnaola, M.V.; Millan, E. Evaluation of heavy metal availability in contaminated soils by a short sequential extraction procedure. Sci. Total Environ. 1997, 206, 107–115. [Google Scholar] [CrossRef]
- Temminghoff, E.J.M.; Van der Zee, S.E.; de Haan, F.A.M. Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter. Environ. Sci. Technol. 1997, 31, 1109–1115. [Google Scholar] [CrossRef]
Site | pH | Pc (g/cm3) | TOC (C% dry Soil) | EC (mS/cm) | ECEC (meq/100 g) |
---|---|---|---|---|---|
Control | 5.2 ± <0.1 a | 1.6 ± <0.1 a | 1.8 ± 0.1 a | 48 ± 4 a | 8 ± 2 a |
New | 8.2 ± 0.1 b | 1.6 ± 0.3 a | 1.8 ± 0.4 a | 174 ± 37 b | 31 ± 3 a |
Medium | 6.2 ± 0.2 ab | 1.4 ± 0.4 a | 1.9 ± 0.5 a | 225 ± 39 b | 25 ± 3 a |
Old | 6.3 ± 0.5 ab | 1.6 ± <0.1 a | 3.5 ± 0.7 b | 162 ± 15 b | 22 ± 2 a |
Metal | Type | Total (mg/kg) | µg/L | Plant (mg/kg DW) | R | |||
---|---|---|---|---|---|---|---|---|
CaCl2 | CSOL | CE | CDGT | |||||
Cd | C | 0.05 ± 0.02 a | 0.22 ± 0.01 a | 0.004 ± <0.001 a | 0.02 ± 0.02 a | 0.002 ± 0.001 a | 0.02 ± 0.01 a | 0.41 ± 0.17 b |
N | 0.07 ± 0.02 ab | 0.10 ± <0.01 a | 0.011 ± <0.001 a | 0.02 ± 0.01 a | 0.002 ± 0.001 a | 0.04 ± 0.03 ab | 0.09 ± 0.05 a | |
M | 0.13 ± 0.01 b | 0.30 ± 0.032 a | 0.008 ± <0.001 a | 0.06 ± 0.02 a | 0.005 ± 0.000 a | 0.07 ± 0.01 b | 0.39 ± 0.09 b | |
O | 0.21 ± 0.02 b | 0.16 ± <0.01 a | 0.027 ± 0.010 a | 0.07 ± 0.02 a | 0.006 ± 0.002 a | 0.01 ± 0.00 a | 0.11 ± 0.05 a | |
Cu | C | 3.94 ± 0.45 a | 0.02 ± 0.01 a | 0.03 ± 0.006 a | 0.04 ± 0.01 a | 0.003 ± 0.001 a | 1.78 ± 0.00 a | 0.13 ± 0.01 a |
N | 7.80 ± 0.98 b | 0.08 ± 0.03 ab | 0.04 ± 0.006 a | 0.03 ± 0.01 a | 0.002 ± 0.001 a | 1.87 ± 0.36 a | 0.05 ± 0.01 a | |
M | 8.96 ± 1.16 b | 0.17 ± 0.12 b | 0.06 ± 0.02 a | 0.10 ± 0.03 b | 0.009 ± 0.003 ab | 2.36 ± 1.18 a | 0.14 ± 0.02 a | |
O | 8.65 ± 0.65 b | 0.06 ± 0.01 ab | 0.07 ± 0.02 a | 0.11 ± 0.05 b | 0.010 ± 0.004 b | 2.38 ± 1.00 a | 0.13 ± 0.02 a | |
Mn | C | 55 ± 12 a | 0.02 ± 0.01 a | 0.53 ± 0.11 a | 2.10 ± 0.07 a | 0.21 ± 0.01 a | 14.37 ± 9.79 a | 0.42 ± 0.08 a |
N | 599 ± 26 c | 0.01 ± 0.004 a | 0.21 ± 0.07 a | 1.29 ± 0.58 a | 0.12 ± 0.06 a | 52.88 ± 2.88 b | 0.53 ± 0.10 a | |
M | 323 ± 117 b | 0.03 ± 0.03 a | 0.37 ± 0.02 a | 2.28 ± 0.37 a | 0.20 ± 0.04 a | 71.50 ± 16.2 b | 0.53 ± 0.08 a | |
O | 171 ± 54 b | 0.06 ± 0.002 a | 0.80 ± 0.26 b | 3.32 ± 0.11 a | 0.27 ± 0.01 a | 59.84 ± 7.94 b | 0.54 ± 0.07 a | |
Ni | C | 4.3 ± 1.20 a | 0.14 ± 0.03 a | 0.016 ± 0.006 a | 0.069 ± 0.02 a | 0.006 ± 0.001 a | 2.70 ± 0.61 a | 0.25 ± 0.06 a |
N | 16.6 ± 5.7 b | 0.07 ± 0.01 a | 0.054 ± 0.011 a | 0.065 ± 0.005 a | 0.006 ± 0.001 a | 10.5 ± 4.98 b | 0.12 ± 0.01 a | |
M | 19.0 ± 3.9 b | 0.15 ± 0.05 a | 0.053 ± 0.005 a | 0.118 ± 0.019 a | 0.011 ± 0.001 b | 9.09 ± 0.43 b | 0.21 ± 0.01 a | |
O | 14.5 ± 1.1 b | 0.13 ± 0.03 a | 0.058 ± 0.012 a | 0.106 ± 0.016 a | 0.010 ± 0.001 b | 10.81 ± 2.31 b | 0.18 ± 0.01 a | |
Zn | C | 8.4 ± 1.8 a | 2.20 ± 0.69 a | 0.04 ± 0.301 a | 0.36 ± 0.06 a | 0.034 ± 0.006 a | 06.30± 1.74 a | 0.20 ± 0.08 a |
N | 25.7 ± 6.7 b | 1.48 ± 0.48 a | 1.14 ± 0.115 b | 0.21 ± 0.03 a | 0.02 ± 0.003 a | 24.66 ± 1.91 b | 0.02 ± 0.00 a | |
M | 38.6 ± 3.9 b | 2.97 ± 0.32 a | 0.43 ± 0.301 ab | 0.38 ± 0.06 a | 0.036 ± 0.005 a | 25.34 ± 2.51 b | 0.19 ± 0.07 a | |
O | 45.2 ± 1.4 b | 2.10 ± 0.87 a | 1.02 ± 0.004 b | 0.54 ± 0.16 a | 0.052 ± 0.015 a | 28.47 ± 1.73 b | 0.05 ± 0.02 a |
Metal | Variable | CDGT | CSOL | R | Wheat | Soil | CE | CaCl2 | pH | TOC |
---|---|---|---|---|---|---|---|---|---|---|
Cd | CSOL | 0.54 * | 1 | |||||||
R | 0.27 | −0.27 | 1 | |||||||
Wheat | 0.27 | 0.02 | 0.37 | 1 | ||||||
Soil | 0.41 | 0.55 * | −0.27 | 0.48 * | 1 | |||||
CE | 0.99 *** | 0.55 * | 0.26 | 0.25 | 0.39 | 1 | ||||
CaCl2 | 0.22 | −0.46 | 0.48 | 0.10 | −0.34 | 0.21 | 1 | |||
pH | 0.06 | 0.26 | −0.57 * | 0.22 | 0.57 * | 0.04 | −0.20 | 1 | ||
TOC | 0.18 | 0.23 | −0.14 | −0.44 | 0.01 | 0.20 | −0.09 | −0.20 | 1 | |
TC | −0.23 | 0.10 | −0.25 | 0.32 | 0.58 ** | −0.25 | −0.17 | 0.63 ** | −0.08 | |
Cu | CSOL | 0.90 *** | 1 | |||||||
R | 0.66 ** | 0.33 | 1 | |||||||
Wheat | −0.44 | −0.53 * | −0.01 | 1 | ||||||
Soil | 0.13 | 0.30 | −0.21 | 0.26 | 1 | |||||
CE | 0.99 *** | −0.91 *** | 0.65 ** | −0.46 | 0.13 | 1 | ||||
CaCl2 | 0.42 | 0.57 | 0.03 | −0.58 * | 0.25 | 0.45 | 1 | |||
pH | −0.22 | 0.10 | −0.63 ** | 0.11 | 0.51 * | −0.22 | 0.04 | 1 | ||
TOC | 0.30 | 0.2 | -0.02 | −0.23 | 0.27 | 0.31 | −0.03 | −0.20 | 1 | |
TC | −0.32 | −0.21 | −0.55 * | 0.11 | −0.17 | −0.32 | 0.01 | 0.36 | −0.04 | |
Mn | CSOL | 0.13 | 1 | |||||||
R | 0.31 | 0.07 | 1 | |||||||
Wheat | −0.15 | −0.54 * | −0.16 | 1 | ||||||
Soil | −0.46 | −0.46 | 0.10 | 0.27 | 1 | |||||
CE | 0.96 *** | −<0.01 | 0.26 | 0.04 | −0.50 | 1 | ||||
CaCl2 | 0.09 | 0.27 | 0.07 | 0.05 | −0.10 | 0.13 | 1 | |||
pH | −0.44 | −0.59 ** | 0.31 | 0.36 | 0.81 *** | −0.37 | −0.20 | 1 | ||
TOC | 0.43 | −0.22 | −0.36 | 0.30 | −0.26 | 0.54 * | −0.009 | −0.20 | 1 | |
TC | 0.17 | −0.15 | −0.91 *** | 0.13 | −0.34 | 0.31 | −0.34 | −0.25 | 0.70 ** | |
Ni | CSOL | 0.56 * | 1 | |||||||
R | 0.04 | −0.59 * | 1 | |||||||
Wheat | 0.22 | 0.46 | −0.3 | 1 | ||||||
Soil | 0.48 * | 0.67 ** | −0.2 | 0.75 *** | 1 | |||||
CE | 0.99 *** | 0.52 * | 0.01 | 0.19 | 0.42 | 1 | ||||
CaCl2 | 0.32 | −0.03 | 0.4 * | −0.33 | 0.13 | 0.30 | 1 | |||
pH | −0.15 | 0.45 | −0.73 ** | 0.63 ** | 0.52 * | −0.19 | −0.52 * | 1 | ||
TOC | 0.37 | 0.30 | 0.10 | −0.16 | −0.04 | 0.38 | 0.26 | −0.20 | 1 | |
TC | −0.20 | 0.50 | −0.79 *** | 0.20 | 0.31 | −0.19 | −0.45 | 0.66 ** | −0.03 | |
Zn | CSOL | 0.14 | 1 | |||||||
R | −0.10 | −0.97 *** | 1 | |||||||
Wheat | 0.13 | 0.48 * | −0.45 | 1 | ||||||
Soil | 0.43 | 0.31 | −0.32 | 0.83 *** | 1 | |||||
CE | 0.99 *** | 0.15 | −0.10 | 0.13 | 0.43 | 1 | ||||
CaCl2 | −0.08 | −0.32 | 0.30 | 0.07 | 0.02 | −0.07 | 1 | |||
pH | −0.48 | 0.55 * | −0.60 ** | 0.59 ** | 0.27 | −0.49 * | −0.21 | 1 | ||
TOC | 0.82 *** | 0.42 | −0.34 | 0.35 | 0.50 * | 0.83 *** | −0.09 | −0.20 | 1 | |
TC | −0.57 * | 0.46 | −0.53 * | 0.28 | −0.06 | −0.57 * | 0.02 | 0.81 *** | −0.33 |
Independent Variable | Model | R2 |
---|---|---|
Metal concentrations in wheat | Cd = No models were able to be developed | - |
Cu = No models were able to be developed | - | |
Mn (mg/kg) = 104 + 0.01 TOC (C% dry soil) − 0.9 road age (years) − 0.08 soil Mn (mg/kg) | 0.936 | |
Ni (mg/kg) = −7.78 + 0.73 soil-Ni (mg/kg) + 0.37 soil moisture (%) | 0.936 | |
Zn (mg/kg) = 16.5 + 0.32 soil-Zn (mg/kg) − 0.12 age (years) | 0.931 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Silva, S.; Huynh, T.; Ball, A.S.; Indrapala, D.V.; Reichman, S.M. Measuring Soil Metal Bioavailability in Roadside Soils of Different Ages. Environments 2020, 7, 91. https://doi.org/10.3390/environments7100091
De Silva S, Huynh T, Ball AS, Indrapala DV, Reichman SM. Measuring Soil Metal Bioavailability in Roadside Soils of Different Ages. Environments. 2020; 7(10):91. https://doi.org/10.3390/environments7100091
Chicago/Turabian StyleDe Silva, Shamali, Trang Huynh, Andrew S. Ball, Demidu V. Indrapala, and Suzie M. Reichman. 2020. "Measuring Soil Metal Bioavailability in Roadside Soils of Different Ages" Environments 7, no. 10: 91. https://doi.org/10.3390/environments7100091
APA StyleDe Silva, S., Huynh, T., Ball, A. S., Indrapala, D. V., & Reichman, S. M. (2020). Measuring Soil Metal Bioavailability in Roadside Soils of Different Ages. Environments, 7(10), 91. https://doi.org/10.3390/environments7100091