Urban Soils and Road Dust—Civilization Effects and Metal Pollution—A Review
Abstract
:1. Introduction
2. Soil Function Changes from Human Civilizations
2.1. Soil Use
2.2. Human Impacts from Constructions
2.3. Human Impacts from Roads
2.4. Carbon and Phosphorus
2.5. Methods to Detect the Changes
3. Metal Contaminations
3.1. Sampling and Determination Methods
3.2. Metal Sources
3.2.1. Brakes
3.2.2. Tires
3.2.3. Metal corrosions
3.2.4. Antimony
3.2.5. Arsenic
3.2.6. Barium
3.2.7. Cadmium
3.2.8. Chromium
3.2.9. Copper
3.2.10. Lead
3.2.11. Manganese
3.2.12. Mercury
3.2.13. Molybdenum
3.2.14. Nickel and Vanadium
3.2.15. Sodium
3.2.16. Zinc
3.3. Cumulative Indices for Characterization of Metal Contaminations
3.3.1. Geo-Accumulation Index
3.3.2. The Contamination Index
+ (Hg/0.1) + (Ni/22) + (Pb/17) + (Zn/65)}/10
3.3.3. The Pollution Index
+ (Mo/10) + (Ni/60) + (Pb/100) + (Zn/300)}/10
3.3.4. The Nemerov Pollution Index
3.4. Levels Met in Urban and Roadside Soils
3.4.1. Europe
3.4.2. Asia
3.4.3. America
3.4.4. Australia
3.4.5. Africa
3.5. Levels Met in Roadside Dusts
3.5.1. Europe
3.5.2. Asia
3.5.3. America
3.5.4. Africa
3.6. Risk Assessment
3.7. Mobile Soil and Dust Fractions
3.7.1. Assignment of Speciation from Selective Leaching
3.7.2. Examples from Europe
3.7.3. Examples from Asia, Australia and America
4. Platinum Metals
4.1. General
4.2. Use of Platinum Group Elements
4.3. The Catalyst Technology
4.4. Pt-Metals in Urban Soils
4.5. Road Dusts
4.6. Solubilities and Mobilities
5. Roadside Flora
5.1. Roadside Trees
5.2. Roadside Herbs
6. Conclusions
Funding
Conflicts of Interest
Appendix A. Urban Soil Data
Upper crust | [136] | 8.10 | ||||
Continental crust | [40] | 7.96 | ||||
sampling year | reference | Sampling depth cm | grain size mm | Digestion | % Al | |
Aberdeen parkland | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 1.39 ± 0.11 |
Aberdeen roadside | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 1.28 ± 0.08 |
Uppsala | 2003 | [8] | 0–5 | <2 | HNO3/HCl | 1.84/1.02–3.26 |
Uppsala | 2003 | [8] | 5–10 | <2 | HNO3/HCl | 2.25/0.96–3.53 |
Uppsala | 2003 | [8] | 10–20 | <2 | HNO3/HCl | 2.47/1.03–3.45 |
Zadar urban soils | 2003/2004 | [73] | 0–10 | <2 | HNO3/HCl | 2.77/0.65–4.23 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 3.00/1.00–6.30 |
Tyumen urban soils | 2016 | [64] | 0–10 | <1 | XRF | 4.56/0.79–6.88 |
Xuzhou urban soils | 2004 | [80] | 0–10 | <2 | HF/HNO3/HCl-XRF | 5.87/5.13–8.04 |
Danang urban soils | 1995 | [83] | 0–20 | <0.063 | HF/HNO3/HCl | 6.94/3.07–9.37 |
Bangkok urban soils | 1996 | [84] | 0–5 | <2 | HNO3/HClO4 | 1.25/0.14–4.34 |
Ottawa garden soils | 1993 | [86] | 0–5 | 0.1–0.25 | HNO3/HF/HClO4 | 5.58/4.54–6.22 |
Upper crust | [136] | 5.20 | ||||
Continental crust | [40] | 4.32 | ||||
sampling year | reference | Sampling depth cm | grain size mm | Digestion | % Fe | |
Aberdeen parkland | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 1.85 ± 0.011 |
Aberdeen roadside | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 1.81 ± 0.08 |
Uppsala | 2003 | [8] | 0–5 | <2 | HNO3/HCl | 2.49/1.56–3.79 |
Uppsala | 2003 | [8] | 5–10 | <2 | HNO3/HCl | 2.76/1.33–4.07 |
Uppsala | 2003 | [8] | 10–20 | <2 | HNO3/HCl | 3.03/1.36–4.11 |
Warsaw urban soils | 1996 | [7] | 0–20 | <1 | 450°/HCl | 0.90/0.35–3.10 |
Zadar urban soils | 2003/2004 | [73] | 0–10 | <2 | HNO3/HCl | 3.33/0.87–4.11 |
Sevilla parks-gardens | 2000 | [9] | 0–20 | <2 | HNO3/HCl | 2.09/1.45–2.71 |
Vigo parks-gardens | 2013 | [12] | 0–20 | <2 | XRF | 2.58/1.17–5.20 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 2.32/1.04–3.23 |
Tyumen urban soils | 2016 | [64] | 0–10 | <1 | XRF | 1.53/0.31–3.36 |
Xuzhou urban soils | 2004 | [80] | 0–10 | <2 | HF/HNO3/HCl-XRF | 3.29/2.66–4.15 |
Hangzhou industrial | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 3.91 ± 1.43 |
Hangzhou roadside | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 3.05 ± 0.69 |
Hangzhou residential | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 2.89 ± 0.63 |
Hangzhou parks | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 2.80 ± 0.68 |
Danang urban soils | 1995 | [83] | 0–20 | <0.063 | HF/HNO3/HCl | 3.99/1.40–4.48 |
Bangkok urban soils | 1996 | [84] | 0–5 | <2 | HNO3/HClO4 | 1.84/0.39–2.67 |
Sydney roadside soils | 2009 | [36] | 0–10 | <0.425 | HNO3/HCl | 3.11/0.62–4.72 |
Suva(Fiji)roadside soil | 2015 | [88] | 0–5 | none | HNO3/HCl | 3.95/2.93–8.67 |
Ottawa garden soils | 1993 | [86] | 0–5 | 0.1–0.25 | HNO3/HF/HClO4 | 2.08/1.53–2.81 |
Havana urban soils | 2018 | [51] | horizons | <2 | HNO3/HCl | 2.55 ± 1.00 |
Upper crust | [136] | 654 | ||||
Continental crust | [40] | 757 | ||||
sampling year | reference | Sampling depth cm | grain size mm | Digestion | P mg/kg | |
Aberdeen parkland | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 957 ± 170 |
Aberdeen roadside | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 861 ± 70 |
Warsaw urban soils | 1996 | [7] | 0–20 | <1 | 450°/HCl | 53/18–163 |
Zadar urban soils | 2003/2004 | [73] | 0–10 | <2 | HNO3/HCl | 796/309–2719 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 1000/400–2600 |
Ottawa garden soils | 1993 | [86] | 0–5 | 0.1–0.25 | HNO3/HF/HClO4 | 1160/570–1909 |
New York Parks | 1999 | [20] | 0–15 | <2 | HNO3/HCl | 643/198–8158 |
Upper crust | [136] | |||||
Continental crust | [40] | 11 | ||||
reference | Sampling depth cm | grain size mm | B mg/kg | |||
Tallinn | 1987–90 | [67] | 0–10 | <1 | XRF | 20/<10–100 |
Vilnius central | 2000 | [68] | 0–10 | <1 | DC-arc | 21.3 |
Vilnius peripheral | 2000 | [68] | 0–10 | <1 | DC-arc | 24.5 |
Siauliai | 2000 | [68] | 0–10 | <1 | DC-arc | 28.7 |
Mazeikiai | 2000 | [68] | 0–10 | <1 | DC-arc | 25.1 |
Joniskis | 2000 | [68] | 0–10 | <1 | DC-arc | 24.9 |
Berlin low-D residential | 1993–96 | [29] | 0–20 | <2 | XRF | 14/max 820 |
Berlin high-D residential | 1993–96 | [29] | 0–20 | <2 | XRF | 15/max 46 |
Berlin allotment | 1993–96 | [29] | 0–20 | <2 | XRF | 16/max 61 |
Berlin industrial | 1993–96 | [29] | 0–20 | <2 | XRF | 15/max 570 |
Zadar | 2003/04 | [73] | 0–10 | <2 | HNO3/HCl | 19.5/15.3–36.7 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 10/5–17.4 |
Beijing | 2008 | [78] | 0–20 | fine soil | HNO3/HClO4/HF | 8.1 ± 0.9 |
Continental crust | [40] | 0.07 | ||||
Location | sampling year | reference | Sampling depth cm | grain size mm | Ag mg/kg | |
Tallinn urban soils | 1987–90 | [67] | 0–10 | <1 | XRF | 0.15/<0.1–3 |
Vilnius central | 2000 | [68] | 0–10 | <1 | DC-arc | 0.31 |
Vilnius peripheral | 2000 | [68] | 0–10 | <1 | DC-arc | 0.12 |
Siauliai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 0.09 |
Mazeikiai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 0.07 |
Joniskis urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 0.08 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 0.09/0.02–0.72 |
Xuzhou urban soils | 2004 | [80] | 0–10 | <2 | HF/HNO3/HCl-XRF | 0.19/0.06–0.72 |
Ottawa garden soils | 1993 | [86] | 0–5 | 0.1–0.25 | HNO3/HF/HClO4 | 0.30/0.20–0.43 |
New York Parks | 1999 | [20] | 0–15 | <2 | HNO3/HCl | 0.2/0.02–15.0 |
Upper crust | [136] | 5.7 | ||||
Continental crust | [40] | 1.7 | ||||
Location | sampling year | reference | sampling depth cm | grain size mm | As mg/kg | |
Trondheim urban soils | 1994 | [66] | 0–2 | <2 | HNO3/HCl | 2.8/0.5–83 |
Trondheim urban soils | 2004 | [66] | 0–2 | <2 | 1/1 HNO3 | 3.3/0.3–23 |
Uppsala | 2003 | [8] | 0–5 | <2 | HNO3/HCl | 3.5/1.4–15.0 |
Uppsala | 2003 | [8] | 5–10 | <2 | HNO3/HCl | 3.9/1.4–16.2 |
Uppsala | 2003 | [8] | 10–20 | <2 | HNO3/HCl | 3.9/1.3–23.7 |
Kielce-residential | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 2.3/1.1–3.4 |
Kielce road soils | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 1.2/0.5–2.8 |
Kielce urban greenery | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 2.5/0.3–8.4 |
Kielce allotment gardens | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 2.7/0.3–10.0 |
Kielce agricultural areas | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 1.3/0.5–3.7 |
Berlin low-D residential | 1993–96 | [29] | 0–20 | <2 | unknown | 3.4/max 58.6 |
Berlin high-D residential | 1993–96 | [29] | 0–20 | <2 | unknown | 4.3/max 42.3 |
Berlin allotment | 1993–96 | [29] | 0–20 | <2 | unknown | 3.7/max 18.7 |
Berlin industrial | 1993–96 | [29] | 0–20 | <2 | unknown | 4.1/max 126 |
Vienna roadside soils | 1997 | [70] | 0–10 | none | HNO3/HCl | 8.2/3.9–10.5 |
Vienna parks | 1997 | [70] | 0–10 | none | HNO3/HCl | 8.8/4.7–12.1 |
Vienna urban soils | 2003 | [16] | 0–10 | <2 | HNO3/HCl | 8.1 ± 1.2 |
Novi Sad urban soils | 2017 | [72] | 0–15 | <2 | HNO3/H2O2 | 6.3/2.1–11.1 |
Zadar urban soils | 2003–04 | [73] | 0–10 | <2 | HNO3/HCl | 12.4/5.0–18.7 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 10.4/4.3–17.3 |
Sangareddy urban soils | 2019 | [85] | 0–10 | <0.074 | XRF | 3.65/2.3–4.8 |
Tyumen urban soils | 2016 | [64] | 0–10 | <1 | XRF | 7.7/1.5–81 |
Beijing parks | 2018 | [79] | 0–5 | <0.125 | HNO3/HCl | 12/1–26 |
Xian urban soils | 2016 | [1] | 0–10 | none | XRF | 12.7/7.5–14.5 |
Xuzhou urban soils | 2004 | [80] | 0–10 | <2 | HF/HNO3/HCl-XRF | 13/9–17 |
Hangzhou Industrial | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 9.0/6.7–13.3 |
Hangzhou Roadside | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 9.9/6.7–15.6 |
Hangzhou Residential | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 0.16/0.11–0.23 |
Ottawa garden soils | 1993 | [86] | 0–5 | 0.1–0.25 | HNO3/HF/HClO4 | 2.8/1.7–4.4 |
New York Parks | 1999 | [20] | 0–15 | <2 | HNO3/HCl | 13/1–46 |
Clay County urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 0.81/0.20–1.68 |
Ocala urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 1.42/0.40–4.78 |
Orlando urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 0.95/0.17–2.41 |
Pensacola urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 3.52/0.86–24.2 |
Tampa urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 1.01/0.05–4.52 |
West Palm Beach urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 1.63/0.26–6.16 |
Havana urban soils | 2018 | [51] | horizons | <2 | HNO3/HCl | 8.11 ± 3.9 |
Ibadan | 2006 | [89] | 0–15 cm | <0.075 | HNO3/HCl | 3.0/<–22 |
Upper crust | [136] | 628 | ||||
Continental crust | [40] | 584 | ||||
Location | sampling year | reference | sampling depth cm | grain size mm | Ba mg/kg | |
Aberdeen parkland | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 99 ± 15 |
Aberdeen roadside | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 204 ± 43 |
Tallinn urban soils | 1987–90 | [67] | 0–10 | <1 | XRF | 250/<100–600 |
Vilnius central | 2000 | [68] | 0–10 | <1 | DC-arc | 433 |
Vilnius peripheral | 2000 | [68] | 0–10 | <1 | DC-arc | 412 |
Siauliai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 381 |
Mazeikiai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 332 |
Joniskis urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 401 |
Kielce residential | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 52/12–129 |
Kielce road soils | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 39/23–58 |
Kielce urban greenery | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 43/7–171 |
Kielce allotment gardens | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 55/16–135 |
Kielce agricultural areas | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 40/8–169 |
Zadar urban soils | 2003/04 | [73] | 0–10 | <2 | HNO3/HCl 3:1 | 146/115–409 |
Vigo parks-gardens | 2013 | [12] | 0–20 | <2 | XRF | 528/238–1145 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 284/96–556 |
Xian urban soil | 2016 | [1] | 0–10 | none | XRF | 560/495–896 |
Xuzhou urban soils | 2004 | [80] | 0–10 | <2 | HF/HNO3/HCl-XRF | 470/425–614 |
Ottawa garden soils | 1993 | [86] | 0–5 | 0.1–0.25 | HNO3/HF/HClO4 | 772/609–854 |
New York Parks | 1999 | [20] | 0–15 | <2 | HNO3/HCl | 106/39–307 |
Clay County urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 23.4/4.9–52.7 |
Ocala urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 119/23.9–346 |
Orlando urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 20.3/2.0–58.8 |
Pensacola urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 48.1/6.6–322 |
Tampa urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 23.7/4.1–259 |
West Palm Beach urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 29.1/8.1–129 |
Mexico | 2008 | [24] | 0–10 | <0.074 | XRF | 505/321–1098 |
Upper crust | [136] | 0.06 | ||||
Continental crust | [40] | 0.10 | ||||
Location | sampling year | reference | sampling depth cm | grain size mm | Cd mg/kg | |
Trondheim urban soils | 1994 | [66] | 0–2 | <2 | HNO3/HCl | 0.16/<0.01–11.3 |
Trondheim urban soils | 2004 | [66] | 0–2 | <2 | 1/1 HNO3 | 0.12/0.002–5.6 |
Uppsala | 2003 | [8] | 0–5 | <2 | HNO3/HCl | 0.21/0.08–0.71 |
Uppsala | 2003 | [8] | 5–10 | <2 | HNO3/HCl | 0.21/0.09–0.99 |
Uppsala | 2003 | [8] | 10–20 | <2 | HNO3/HCl | 0.22/0.07–0.40 |
Warsaw urban soils | 1996 | [7] | 0–20 | <1 | 450°/HCl | 1.0/<–5.5 |
Kielce residential | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 0.104/0.001–0.23 |
Kielce road soils | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 0.141/0.032–0.37 |
Kielce urban greenery | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 0.081/0.001–0.21 |
Kielce allotment gardens | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 0.182/0.079–0.49 |
Kielce agricultural areas | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 0.050/0.001–0.19 |
Berlin low-D residential | 1993–96 | [29] | 0–20 | <2 | unknown | 0.21/max 6.7 |
Berlin high-D residential | 1993–96 | [29] | 0–20 | <2 | unknown | 0.41/max 20.3 |
Berlin allotment | 1993–96 | [29] | 0–20 | <2 | unknown | 0.32/max 2.5 |
Berlin industrial | 1993–96 | [29] | 0–20 | <2 | unknown | 0.50/max 131 |
Vienna roadside soils | 1997 | [70] | 0–10 | none | HNO3/HCl | 0.6/0.2–3.4 |
Vienna parks | 1997 | [70] | 0–10 | none | HNO3/HCl | 0.55/0.3–1.3 |
Vienna urban soils | 2003 | [16] | 0–10 | <2 | HNO3/HCl | 0.5 ± 0.2 |
Sopron urban soils | 2012 | [39] | 0–10 | none | HNO3/H2O2 | 1.62/0.37–6.74 |
Sopron urban soils | 2012 | [39] | 0–20 | none | HNO3/H2O2 | 1.52/0.17–6.14 |
Zadar urban soils | 2003/04 | [73] | 0–10 | <2 | HNO3/HCl | 1.06/0.16–3.24 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 0.42/0.15–1.07 |
Palermo public parks | 2000 | [31] | 0–10 | <2 | HNO3/HCl | 0.68/0.27–1.86 |
Seoul-Uijeongbu urban soils | 1995 | [58] | 0–15 | <0.18 | HNO3/HClO4 | 1.4/0.7–3.8 |
Seoul-Koyang urban soils | 1995 | [58] | 0–15 | <0.18 | HNO3/HClO4 | 2.0/1.3–3.7 |
Shenyang urban soils | 2008 | [77] | 0–5 | <1 | HNO3/HClO4 | 0.04–2.08 |
Beijing roadside soil | 2008 | [78] | 0–20 | fine soil | HNO3/HClO4/HF | 0.215 ± 0.070 |
Beijing Parks | 2018 | [79] | 0–5 | <0.125 | HNO3/HCl | 0.47/0.17–0.87 |
Xuzhou urban soils | 2004 | [80] | 0–10 | <2 | HF/HNO3/HCl-XRF | 0.37/0.11–1.00 |
Hangzhou Industrial | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 1.99 ± 0.65 |
Hangzhou Roadside | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 1.31 ± 0.29 |
Hangzhou Residential | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 1.08 ± 0.21 |
Hangzhou Parks | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 0.94 ± 0.13 |
Hangzhou Industrial | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 0.16/0.10–0.26 |
Hangzhou Roadside | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 0.20/0.14–0.41 |
Hangzhou Residential | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 0.16/0.11–0.23 |
Shanghai urban soils | 2006 | [33] | 0–10 | <0.125 | HF/HNO3/HClO4 | 0.52/0.19–3.66 |
Hong Kong urban parks | 2000 | [82] | 0–10 | <2 | HNO3 | 2.18 ± 1.02 |
Hong Kong Urban | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 0.33/0.11–1.36 |
Hong Kong suburban | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 0.31/0.23–0.80 |
Hong Kong country park | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 0.32/0.20–0.58 |
Danang urban soils | 1995 | [83] | 0–20 | <0.063 | HF/HNO3/HCl | 0.4/0.1–4.6 |
Bangkok urban soils | 1996 | [84] | 0–5 | <2 | HNO3/HClO4 | 0.15/0.05–2.53 |
Sydney roadside soils | 2009 | [36] | 0–10 | <0.425 | HNO3/HCl | 0.18/0.01–0.49 |
Adelaide garden soils | 2017 | [14] | 0–10 | <20 | HNO3/HClO4/HCl | <0.1/<0.1–0.38 |
Suva(Fiji)roadside soil | 2015 | [88] | 0–5 | none | HNO3/HCl | 3.1/2.0–6.2 |
Ottawa garden soils | 1993 | [86] | 0–5 | 0.1–0.25 | HNO3/HF/HClO4 | 0.27/0.11–0.59 |
New York Parks | 1999 | [20] | 0–15 | <2 | HNO3/HCl | 0.4/0.1–3.0 |
Clay County urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 0.12/0.01–0.58 |
Ocala urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 0.33/0.01–1.21 |
Orlando urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 0.16/0.01–1.60 |
Pensacola urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 0.27/0.01–1.67 |
Tampa urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 0.18/0.01–1.54 |
West Palm Beach urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 0.31/0.03–1.33 |
Havana urban soils | 2018 | [51] | horizons | <2 | HNO3/HCl | 0.62 ± 0.56 |
Ibadan urban soils | 2006 | [89] | 0–15 | <0.075 | HNO3/HCl | 0.15/0.1–69 |
Upper crust | [136] | 15 | ||||
Continental crust | [40] | 24 | ||||
Location | sampling year | reference | sampling depth cm | grain size mm | Co mg/kg | |
Aberdeen parkland | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 6.4 ± 0.7 |
Aberdeen roadside | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 6.2 ± 0.3 |
Tallinn urban soils | 1987–90 | [67] | 0–10 | <1 | XRF | 5/<3–50 |
Vilnius central | 2000 | [68] | 0–10 | <1 | DC-arc | 3.6 |
Vilnius peripheral | 2000 | [68] | 0–10 | <1 | DC-arc | 3.9 |
Siauliai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 6.2 |
Mazeikiai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 4.1 |
Joniskis urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 5.0 |
Kielce residential | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 1.5/0.5–3.0 |
Kielce road soils | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 1.0/0.5–1.9 |
Kielce urban greenery | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 1.1/0.2–2.5 |
Kielce allotment gardens | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 1.7/0.5–3.7 |
Kielce agricultural areas | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 0.8/0.2–1.6 |
Vienna roadside soils | 1997 | [70] | 0–10 | none | HNO3/HCl | 7.8/4.5–9.8 |
Vienna parks | 1997 | [70] | 0–10 | none | HNO3/HCl | 8.0/5.2–9.8 |
Vienna urban soils | 2003 | [16] | 0–10 | <2 | HNO3/HCl | 7.9 ±1.1 |
Sopron urban soils | 2012 | [39] | 0–10 | none | HNO3/H2O2 | 20.6/3.6–64.2 |
Sopron urban soils | 2012 | [39] | 0–20 | none | HNO3/H2O2 | 21.1/5.4–55.9 |
Szeged urban soils | 2005 | [17] | 0–10 | none | HNO3/HCl | 3.5/0.2–8.5 |
Novi Sad urban soils | 2017 | [72] | 0–15 | <2 | HNO3/H2O2 | 7.2/3.5–11.2 |
Zadar urban soils | 2003/04 | [73] | 0–10 | <2 | HNO3/HCl | 12.9/2.4–19.2 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 8.0/3.8–13.0 |
Palermo public parks | 2000 | [31] | 0–10 | <2 | HNO3/HCl | 5.2/1.5–14.8 |
Tyumen urban soils | 2016 | [64] | 0–10 | <1 | XRF | 19.5/3.5–55.6 |
Seoul-Uijeongbu | 1995 | [58] | 0–15 | <0.18 | HNO3/HClO4 | 9.6/1.2–20 |
Seoul-Koyang | 1995 | [58] | 0–15 | <0.18 | HNO3/HClO4 | 23.2/13.2–39.2 |
Xian urban soils | 2016 | [1] | 0–10 | none | XRF | 23.0/13.8–53.0 |
Xuzhou urban soils | 2004 | [80] | 0–10 | <2 | HF/HNO3/HCl-XRF | 11/9–19 |
Hangzhou Industrial | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 15.0/12.1–16.8 |
Hangzhou Roadside | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 15.1/12.8–16.4 |
Hangzhou Residential | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 14.4/10.8–17.1 |
Hong Kong Urban | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 3.3/0.6–10.9 |
Hong Kong suburban | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 2.9/1.7–16.3 |
Hong Kong country park | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 2.7/1.4–8.1 |
Danang urban soils | 1995 | [83] | 0–20 | <0.063 | HF/HNO3/HCl | 17/7–217 |
Suva(Fiji)roadside soil | 2015 | [88] | 0–5 | none | HNO3/HCl | 33/24–38 |
Ottawa garden soils | 1993 | [86] | 0–5 | 0.1–0.25 | HNO3/HF/HClO4 | 8.1/5.6–11.6 |
New York Parks | 1999 | [20] | 0–15 | <2 | HNO3/HCl | 7/3–13 |
Clay County urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 0.64/0.11–2.11 |
Ocala urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 1.54/0.32–5.48 |
Orlando urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 0.41/0.07–2.28 |
Pensacola urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 1.04/0.32–1.97 |
Tampa urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 0.51/0.06–1.41 |
West Palm Beach urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 0.78/0.20–2.62 |
Mexico | 2008 | [24] | 0–10 | <0.074 | XRF | 19/11–42 |
Havana urban soils | 2018 | [51] | horizons | <2 | HNO3/HCl | 11.7 ± 7.8 |
Upper crust | [136] | 73 | ||||
Continental crust | [40] | 126 | ||||
Location | sampling year | reference | sampling depth cm | grain size mm | Cr mg/kg | |
Aberdeen parkland | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 23.9 ± 2.3 |
Aberdeen roadside | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 22.9 ± 2.8 |
Trondheim urban soils | 1994 | [66] | 0–2 | <2 | HNO3/HCl | 69/8–199 |
Trondheim urban soils | 2004 | [66] | 0–2 | <2 | 1/1 HNO3 | 58/23–296 |
Uppsala | 2003 | [8] | 0–5 | <2 | HNO3/HCl | 32/14–62 |
Uppsala | 2003 | [8] | 5–10 | <2 | HNO3/HCl | 38/13–61 |
Uppsala | 2003 | [8] | 10–20 | <2 | HNO3/HCl | 43/14 - 65 |
Tallinn urban soils | 1987–90 | [67] | 0–10 | <1 | XRF | 33/<6–300 |
Vilnius central | 2000 | [68] | 0–10 | <1 | DC-arc | 33.8 |
Vilnius peripheral | 2000 | [68] | 0–10 | <1 | DC-arc | 32.8 |
Siauliai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 41.9 |
Mazeikiai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 32.5 |
Joniskis urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 49.6 |
Warsaw urban soils | 1996 | [7] | 0–20 | <1 | 450°/HCl | 13/5–70 |
Kielce residential | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 7.9/3.2–12.9 |
Kielce road soils | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 6.8/3.8–12.5 |
Kielce urban greenery | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 6.9/1.4–19.1 |
Kielce allotment gardens | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 7.9/2.6–18.4 |
Kielce agricultural areas | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 3.6/0.8–6.8 |
Berlin low-D residential | 1993–96 | [29] | 0–20 | <2 | XRF | 22/max 214 |
Berlin high-D residential | 1993–96 | [29] | 0–20 | <2 | XRF | 27/max 168 |
Berlin allotment | 1993–96 | [29] | 0–20 | <2 | XRF | 23/max 135 |
Berlin industrial | 1993–96 | [29] | 0–20 | <2 | XRF | 27/max 1840 |
Vienna roadside soils | 1997 | [70] | 0–10 | none | HNO3/HCl | 30/10–68 |
Vienna parks | 1997 | [70] | 0–10 | none | HNO3/HCl | 26/14–46 |
Vienna urban soils | 2003 | [16] | 0–10 | <2 | HNO3/HCl | 36 ± 8 |
Szeged urban soils | 2005 | [17] | 0–10 | none | HNO3/HCl | 53/41–69 |
Novi Sad urban soils | 2017 | [72] | 0–15 | <2 | HNO3/H2O2 | 28.4/10.6–51 |
Zadar urban soils | 2003/04 | [73] | 0–10 | <2 | HNO3/HCl | 80/42–158 |
Torino urban soils | 1999 | [6] | 0–20 | <2 | HNO3/HCl | 157/67–870 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 17.2/10.9–35 |
Palermo public parks | 2000 | [31] | 0–10 | <2 | HNO3/HCl | 34/12–100 |
Sevilla parks-gardens | 2000 | [9] | 0–20 | <2 | HNO3/HCl | 42/24–67 |
Vigo parks-gardens | 2013 | [12] | 0–20 | <2 | XRF | 65/33–195 |
Tyumen urban soils | 2016 | [64] | 0–10 | <1 | XRF | 107/25–348 |
Sangareddy urban soil | 2019 | [85] | 0–10 | <0.074 | XRF | 198/158–482 |
Seoul-Uijeongbu urban soils | 1995 | [58] | 0–15 | <0.18 | HNO3/HClO4 | 23/4–85 |
Seoul-Koyang urban soils | 1995 | [58] | 0–15 | <0.18 | HNO3/HClO4 | 45/23–85 |
Beijing roadside soil | 2008 | [78] | 0–20 | fine soil | HNO3/HClO4/HF | 61.9 ± 2.3 |
Beijing Parks | 2018 | [79] | 0–5 | <0.125 | HNO3/HCl | 53/21–489 |
Xian urban soils | 2016 | [1] | 0–10 | none | XRF | 69/58–148 |
Xuzhou urban soils | 2004 | [80] | 0–10 | <2 | HF/HNO3/HCl-XRF | 71/63–102 |
Hangzhou Industrial | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 102/80–153 |
Hangzhou Roadside | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 99/85–120 |
Hangzhou Residential | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 95/77–110 |
Shanghai urban soils | 2006 | [33] | 0–10 | <0.125 | HF/HNO3/HClO4 | 108/26–233 |
Hong Kong Urban | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 16.8/2.6–51.4 |
Hong Kong suburban | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 19.7/10.1–49 |
Hong Kong country park | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 20.2/13.7–48 |
Danang urban soils | 1995 | [83] | 0–20 | <0.063 | HF/HNO3/HCl | 104/23–175 |
Bangkok urban soils | 1996 | [84] | 0–5 | <2 | HNO3/HClO4 | 25.4/4.3–57.4 |
Sydney roadside soils | 2009 | [36] | 0–10 | <0.425 | HNO3/HCl | 35/10–79 |
Suva(Fiji)roadside soil | 2015 | [88] | 0–5 | none | HNO3/HCl | 34/14–63 |
Ottawa garden soils | 1993 | [86] | 0–5 | 0.1–0.25 | HNO3/HF/HClO4 | 43.8/28.8–59 |
New York Parks | 1999 | [20] | 0–15 | <2 | HNO3/HCl | 37/16–71 |
Clay County urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 9.9/3.5–24.0 |
Ocala urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 56.7/6.4–289 |
Orlando urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 9.6/1.9–28.2 |
Pensacola urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 12.6/6.0–24.4 |
Tampa urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 11.1/1.5–41.5 |
West Palm Beach urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 15.9/5.0–86.9 |
Mexico | 2008 | [24] | 0–10 | <0.074 | XRF | 135/65–559 |
Havana urban soils | 2018 | [51] | horizons | <2 | HNO3/HCl | 82.9 ± 119.3 |
Ibadan urban soils | 2006 | [89] | 0–15 | <0.075 | HNO3/HCl | 56/10–436 |
Upper crust | [136] | 27 | ||||
Continental crust | [40] | 25 | ||||
sampling year | reference | sampling depth cm | grain size mm | Cu mg/kg | ||
Aberdeen parkland | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 27 ± 64 |
Aberdeen roadside | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 45 ± 11 |
Trondheim urban soils | 1994 | [66] | 0–2 | <2 | HNO3/HCl | 35/1.7–706 |
Trondheim urban soils | 2004 | [66] | 0–2 | <2 | 1/1 HNO3 | 32/5–383 |
Uppsala | 2003 | [8] | 0–5 | <2 | HNO3/HCl | 25/11–110 |
Uppsala | 2003 | [8] | 5–10 | <2 | HNO3/HCl | 26/13–356 |
Uppsala | 2003 | [8] | 10–20 | <2 | HNO3/HCl | 26/11–54 |
Tallinn urban soils | 1987–90 | [67] | 0–10 | <1 | XRF | 35/7–621 |
Vilnius central | 2000 | [68] | 0–10 | <1 | DC-arc | 18.5 |
Vilnius peripheral | 2000 | [68] | 0–10 | <1 | DC-arc | 13.6 |
Siauliai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 17.9 |
Mazeikiai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 11.3 |
Joniskis urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 15.6 |
Warsaw urban soils | 1996 | [7] | 0–20 | <1 | 450°/HCl | 25/7–65 |
Kielce residential | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 8.2/1.8–12.3 |
Kielce road soils | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 13.8/8.7–22.7 |
Kielce urban greenery | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 9.9/0.9–24.1 |
Kielce allotment gardens | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 11.5/3.1–41.9 |
Kielce agricultural areas | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 4.7/0.6–11.1 |
Berlin low-D residential | 1993–96 | [29] | 0–20 | <2 | XRF | 19/max 1340 |
Berlin high-D residential | 1993–96 | [29] | 0–20 | <2 | XRF | 37/max 3230 |
Berlin allotment | 1993–96 | [29] | 0–20 | <2 | XRF | 25/max 1280 |
Berlin industrial | 1993–96 | [29] | 0–20 | <2 | XRF | 46/max 6470 |
Vienna roadside soils | 1997 | [70] | 0–10 | none | HNO3/HCl | 47/17–228 |
Vienna parks | 1997 | [70] | 0–10 | none | HNO3/HCl | 46/23–135 |
Vienna urban soils | 2003 | [16] | 0–10 | <2 | HNO3/HCl | 39.5 ± 12.5 |
Sopron urban soils | 2012 | [39] | 0–10 | <2 | HNO3/H2O2 | 118/11–1221 |
Sopron urban soils | 2012 | [39] | 0–20 | none | HNO3/H2O2 | 121/11–1449 |
Szeged urban soils | 2005 | [17] | 0–10 | none | HNO3/HCl | 36/26–88 |
Novi Sad urban soils | 2017 | [72] | 0–15 | <2 | HNO3/H2O2 | 27.7/4.4–459 |
Zadar urban soils | 2003/04 | [73] | 0–10 | <2 | HNO3/HCl | 83/43.5–893 |
Torino urban soils | 1999 | [6] | 0–20 | <2 | HNO3/HCl | 76/34–283 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 60.6/17.2–181 |
Palermo public parks | 2000 | [31] | 0–10 | <2 | HNO3/HCl | 63/10–344 |
Sevilla parks-gardens | 2000 | [9] | 0–20 | <2 | HN O3/HCl | 42/11–374 |
Vigo parks-gardens | 2013 | [12] | 0–20 | <2 | XRF | 62/23–208 |
Tyumen urban soils | 2016 | [64] | 0–10 | <1 | XRF | 39/5–224 |
Sangareddy urban soils | 2019 | [85] | 0–10 | <0.074 | XRF | 112/84–214 |
Seoul Uijeongbu urban soils | 1996 | [58] | 0–15 | <0.18 | HNO3/HClO4 | 37/10–283 |
Seoul Koyang urban soils | 1996 | [58] | 0–15 | <0.18 | HNO3/HClO4 | 48/26–220 |
Shenyang urban soils | 2008 | [77] | 0–5 | <1 | HNO3/HClO4 | 33/19–275 |
Beijing roadside soil | 2006 | [78] | 0–20 | fine soil | HNO3/HClO4/HF | 29.7 ± 5.7 |
Beijing Parks | 2018 | [79] | 0–5 | <0.125 | HNO3/HCl | 32/15–91 |
Xian urban soils | 2016 | [1] | 0–10 | none | XRF | 29.4/22.2–97 |
Xuzhou urban soils | 2004 | [80] | 0–10 | <2 | HF/HNO3/HCl-XRF | 32/17–80 |
Hangzhou Industrial | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 58 ± 35 |
Hangzhou Roadside | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 50 ± 27 |
Hangzhou Residential | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 38 ± 20 |
Hangzhou Parks | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 52 ± 31 |
Hangzhou Industrial | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 30/20–55 |
Hangzhou Roadside | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 30/25–49 |
Hangzhou Residential | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 26/20–31 |
Shanghai urban soils | 2006 | [33] | 0–10 | <0.125 | HF/HNO3/HClO4 | 59/23–152 |
Hong Kong Urban | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 10.4/1.3–277 |
Hong Kong suburban | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 4.9/1.4–89 |
Hong Kong country park | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 4.8/2.0–20.2 |
Danang urban soils | 1995 | [83] | 0–20 | <0.063 | HF/HNO3/HCl | 56/37–208 |
Bangkok urban soils | 1996 | [84] | 0–5 | <2 | HNO3/HClO4 | 27/5–283 |
Sydney roadside soils | 2009 | [36] | 0–10 | <0.425 | HNO3/HCl | 69/6–225 |
Adelaide garden soils | 2017 | [14] | 0–10 | <20 | HNO3/HClO4/HCl | 25.2/0.3–183 |
Lithgow roadside soils | 2011 | [49] | 0–2 | <0.18 | XRF | 39/16–509 |
Lithgow roadside soils | 2011 | [49] | 0–2 | <2 | XRF | 28/11–682 |
Suva(Fiji)roadside soil | 2015 | [88] | 0–5 | none | HNO3/HCl | 266/120–847 |
Ottawa garden soils | 1993 | [86] | 0–5 | 0.1–0.25 | HNO3/HF/HClO4 | 12.1/6.3–19.4 |
New York Parks | 1999 | [20] | 0–15 | <2 | HNO3/HCl | 46/14–348 |
Clay County urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 5.4/1.0–32.5 |
Ocala urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 6.6/1.4–25.5 |
Orlando urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 9.8/1.4–104 |
Pensacola urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 10.4/2.8–29.9 |
Tampa urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 7.8/0.9–43.8 |
West Palm Beach urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 19.9/2.0–75.9 |
Mexico | 2008 | [24] | 0–10 | <0.074 | XRF | 93/26–461 |
Havana urban soils | 2018 | [51] | horizons | <2 | HNO3/HCl | 73.5 ± 37.5 |
Ibadan urban soils | 2006 | [89] | 0–15 | <0.075 | aqua regia | 32/7–248 |
Continental crust | [40] | 0.040 | ||||
Location | sampling year | reference | sampling depth cm | grain size mm | Hg mg/kg | |
Trondheim urban soils | 1994 | [66] | 0–2 | <2 | HNO3/HCl | 0.13/0.02–4.5 |
Trondheim urban soils | 2004 | [66] | 0–2 | <2 | 1/1 HNO3 | 0.09/0.02–2.2 |
Uppsala | 2003 | [8] | 0–5 | <2 | HNO3/HCl | 0.14/<–3.66 |
Uppsala | 2003 | [8] | 5–10 | <2 | HNO3/HCl | 0.15/<–5.41 |
Uppsala | 2003 | [8] | 10–20 | <2 | HNO3/HCl | 0.13/<–1.11 |
Berlin low-D residential | 1993–96 | [29] | 0–20 | <2 | unknown | 0.10/max 5.0 |
Berlin high-D residential | 1993–96 | [29] | 0–20 | <2 | unknown | 0.34/max 3.5 |
Berlin allotment | 1993–96 | [29] | 0–20 | <2 | unknown | 0.17/max 5.0 |
Berlin industrial | 1993–96 | [29] | 0–20 | <2 | unknown | 0.21/max 71.2 |
Vienna roadside soils | 1997 | [70] | 0–10 | none | HNO3/HCl | 0.3/0.1–1.7 |
Vienna parks | 1997 | [70] | 0–10 | none | HNO3/HCl | 0.5/0.1–4.1 |
Vienna urban soils | 2003 | [16] | 0–10 | <2 | HNO3/HCl | 0.15 ±0.11 |
Zadar urban soils | 2003/04 | [73] | 0–10 | <2 | HNO3/HCl | 0.25/0.17–1.15 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 0.056/0.021–0.256 |
Palermo public parks | 2000 | [31] | 0–10 | <2 | HNO3/HCl | 0.68/0.04–6.96 |
Beijing Parks | 2018 | [79] | 0–5 | <0.125 | HNO3/HCl | 0.44/0.1–15.2 |
Xuzhou urban soils | 2004 | [80] | 0–10 | <2 | HF/HNO3/HCl-XRF | 0.17/0.02–0.83 |
Hangzhou Industrial | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 0.12/0.05–0.40 |
Hangzhou Roadside | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 0.09/0.06–0.19 |
Hangzhou Residential | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 0.12/0.06–0.28 |
Lithgow roadside soils | 2011 | [49] | 0–2 | <0.18 | Cold vapour | 0.044/0.019–14.9 |
Ottawa garden soils | 1993 | [86] | 0–5 | 0.1–0.25 | HNO3/HF/HClO4 | 0.048/0.018–0.111 |
New York Parks | 1999 | [20] | 0–15 | <2 | HNO3/HCl | 0.3/0.1–1.0 |
Havana urban soils | 2018 | [51] | horizons | <2 | HNO3/HCl | 0.51 ± 0.57 |
Upper crust | [136] | 774 | ||||
Continental crust | [40] | 716 | ||||
Location | sampling year | reference | sampling depth cm | grain size mm | Mn mg/kg | |
Aberdeen parkland | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 286 ± 52 |
Aberdeen roadside | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 264 ± 24 |
Uppsala | 2003 | [8] | 0–5 | <2 | HNO3/HCl | 494/199–833 |
Uppsala | 2003 | [8] | 5–10 | <2 | HNO3/HCl | 526/162–940 |
Uppsala | 2003 | [8] | 10–20 | <2 | HNO3/HCl | 573/145–968 |
Tallinn urban soils | 1987–90 | [67] | 0–10 | <1 | XRF | 320/76–1750 |
Vilnius central | 2000 | [68] | 0–10 | <1 | DC-arc | 427 |
Vilnius peripheral | 2000 | [68] | 0–10 | <1 | DC-arc | 558 |
Siauliai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 478 |
Mazeikiai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 329 |
Joniskis urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 418 |
Warsaw urban soils | 1996 | [7] | 0–20 | <1 | 450°/HCl | 280/18–992 |
Kielce residential | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 657/84–1804 |
Kielce road soils | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 330/96–711 |
Kielce urban greenery | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 365/39–1308 |
Kielce allotment gardens | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 616/122–1674 |
Kielce agricultural areas | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 441/99–1303 |
Novi Sad urban soils | 2017 | [73] | 0–15 | <2 | HNO3/H2O2 | 364/200–623 |
Zadar urban soils | 2003/04 | [73] | 0–10 | <2 | HNO3/HCl | 871/142–1334 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 716/302–1095 |
Palermo public parks | 2000 | [31] | 0–10 | <2 | HNO3/HCl | 519/142–1241 |
Sevilla parks-gardens | 2000 | [9] | 0–20 | <2 | HNO3/HCl | 468/335–893 |
Vigo parks-gardens | 2013 | [12] | 0–20 | <2 | XRF | 517/168–879 |
Xian urban soils | 2016 | [1] | 0–10 | none | XRF | 662/425–1126 |
Xuzhou urban soils | 2004 | [80] | 0–10 | <2 | HF/HNO3/HCl-XRF | 507/430–902 |
Hangzhou Industrial | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 931/698–2240 |
Hangzhou Roadside | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 816/598–1150 |
Hangzhou Residential | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 861/703–1300 |
Danang urban soils | 1995 | [83] | 0–20 | <0.063 | HF/HNO3/HCl | 387/155–775 |
Bangkok urban soils | 1996 | [84] | 0–5 | <2 | HNO3/HClO4 | 290/50–810 |
Sydney roadside soils | 2009 | [36] | 0–10 | <0.425 | HNO3/HCl | 750/16–2460 |
Adelaide garden soils | 2017 | [14] | 0–10 | <20 | HNO3/HClO4/HCl | 169/0.1–750 |
Ottawa garden soils | 1993 | [86] | 0–5 | 0.1–0.25 | HNO3/HF/HClO4 | 532/320–718 |
New York Parks | 1999 | [20] | 0–15 | <2 | HNO3/HCl | 406/19–3117 |
Havana urban soils | 2018 | [51] | horizons | <2 | HNO3/HCl | 578 ± 235 |
Ibadan urban soils | 2006 | [89] | 0–15 | <0.075 | HNO3/HCl | 993/114–3053 |
Upper crust | [136] | 0.6 | ||||
Continental crust | [40] | 1.1 | ||||
Location | sampling year | reference | sampling depth cm | grain size mm | Mo mg/kg | |
Tallinn urban soils | 1987–90 | [67] | 0–10 | <1 | XRF | 1.5/<1–30 |
Vilnius central | 2000 | [68] | 0–10 | <1 | DC-arc | 1.01 |
Vilnius peripheral | 2000 | [68] | 0–10 | <1 | DC-arc | 0.83 |
Siauliai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 0.72 |
Mazeikiai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 0.64 |
Joniskis urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 0.86 |
Vienna roadside soils | 1997 | [70] | 0–10 | none | HNO3/HCl | 0.9/0.6–6.4 |
Vienna parks | 1997 | [70] | 0–10 | none | HNO3/HCl | 0.9/0.6–1.8 |
Vienna urban soils | 2003 | [16] | 0–10 | <2 | HNO3/HCl | 0.8 ±0.2 |
Zadar urban soils | 2003/04 | [73] | 0–10 | <2 | HNO3/HCl | 0.97/0.40–5.77 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 1.78/0.74–4.37 |
Xuzhou urban soils | 2004 | [80] | 0–10 | <2 | HF/HNO3/HCl-XRF | 1.2/0.7–2.5 |
Ottawa garden soils | 1993 | [86] | 0–5 | 0.1–0.25 | HNO3/HF/HClO4 | 0.60/0.30–1.26 |
New York Parks | 1999 | [20] | 0–15 | <2 | HNO3/HCl | 2.0/0.4–6.0 |
Ibadan urban soils | 2006 | [89] | 0–15 | <0.075 | HNO3/HCl | 1.4/0.1–35 |
Upper crust | [136] | 34 | ||||
Continental crust | [40] | 56 | ||||
Location | sampling year | reference | sampling depth cm | grain size mm | Ni mg/kg | |
Aberdeen parkland | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 14.9 ± 1.6 |
Aberdeen roadside | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 15.9 ± 1.7 |
Trondheim urban soils | 1994 | [66] | 0–2 | <2 | HNO3/HCl | 45/6–231 |
Trondheim urban soils | 2004 | [66] | 0–2 | <2 | 1/1 HNO3 | 43/17–153 |
Uppsala | 2003 | [8] | 0–5 | <2 | HNO3/HCl | 19/7–39 |
Uppsala | 2003 | [8] | 5–10 | <2 | HNO3/HCl | 21/6–57 |
Uppsala | 2003 | [8] | 10–20 | <2 | HNO3/HCl | 23/7–43 |
Tallinn urban soils | 1987–90 | [67] | 0–10 | <1 | XRF | 15/4–65 |
Vilnius central | 2000 | [68] | 0–10 | <1 | DC-arc | 14.1 |
Vilnius peripheral | 2000 | [68] | 0–10 | <1 | DC-arc | 12.5 |
Siauliai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 14.6 |
Mazeikiai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 13.9 |
Joniskis urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 13.8 |
Kielce residential | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 6.4/2.0–13.7 |
Kielce road soils | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 5.2/3.1–9.9 |
Kielce urban greenery | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 5.2/1.2–11.7 |
Kielce allotment gardens | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 5.0/1.5–9.8 |
Kielce agricultural areas | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 2.5/0.6–5.9 |
Berlin low-D residential | 1993–96 | [29] | 0–20 | <2 | XRF | 5.8/max 91 |
Berlin high-D residential | 1993–96 | [29] | 0–20 | <2 | XRF | 9.0/max 45 |
Berlin allotment | 1993–96 | [29] | 0–20 | <2 | XRF | 6.1/max 51 |
Berlin industrial | 1993–96 | [29] | 0–20 | <2 | XRF | 8.7/max 769 |
Vienna roadside soils | 1997 | [70] | 0–10 | none | HNO3/HCl | 31/20–45 |
Vienna parks | 1997 | [70] | 0–10 | none | HNO3/HCl | 29/21–38 |
Vienna urban soils | 2003 | [16] | 0–10 | <2 | HNO3/HCl | 28 ±4 |
Sopron urban soils | 2012 | [39] | 0–10 | none | HNO3/H2O2 | 26/6–99 |
Sopron urban soils | 2012 | [39] | 0–20 | none | HNO3/H2O2 | 25/4–71 |
Szeged urban soils | 2005 | [17] | 0–10 | none | HNO3/HCl | 34/17–44 |
Novi Sad urban soils | 2017 | [72] | 0–15 | <2 | HNO3/H2O2 | 27.7/10.2–74 |
Zadar urban soils | 2003/04 | [73] | 0–10 | <2 | HNO3/HCl | 62/35–120 |
Torino urban soils | 1999 | [6] | 0–20 | <2 | HNO3/HCl | 175/103–790 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 15.3/9.9–29.3 |
Palermo public parks | 2000 | [31] | 0–10 | <2 | HNO3/HCl | 17.8/7.0–38.6 |
Sevilla | 2000 | [9] | 0–20 | <2 | HNO3/HCl | 23/16–32 |
Vigo parks-gardens | 2013 | [12] | 0–20 | <2 | XRF | 32.0/11.5–60 |
Tyumen urban soils | 2016 | [64] | 0–10 | <1 | XRF | 44/5–283 |
Sangareddy urban soils | 2019 | [85] | 0–10 | <0.074 | XRF | 31.5/19–51 |
Seoul-Uijeongbu urban soils | 1995 | [58] | 0–15 | <0.18 | HNO3/HClO4 | 20/8–130 |
Seoul-Koyang urban soils | 1995 | [58] | 0–15 | <0.18 | HNO3/HClO4 | 45/24–81 |
Beijing Roadside soil | 2008 | [78] | 0–20 | fine soil | HNO3/HClO4/HF | 26.7 ±2.4 |
Beijing Parks | 2018 | [79] | 0–5 | <0.125 | HNO3/HCl | 27/18–39 |
Xian urban soils | 2016 | [1] | 0–10 | none | XRF | 31.1/21.7–34.6 |
Xuzhou urban soils | 2004 | [80] | 0–10 | <2 | HF/HNO3/HCl-XRF | 30/25–54 |
Hangzhou Industrial | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 43/31–74 |
Hangzhou Roadside | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 39/32–46 |
Hangzhou Residential | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 37/28–43 |
Shanghai urban soils | 2006 | [33] | 0–10 | <0.125 | HF/HNO3/HClO4 | 31/5–66 |
Hong Kong Urban | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 3.7/0.2–19.9 |
Hong Kong suburban | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 3.1/1.3–6.8 |
Hong Kong country park | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 4.8/1.8–9.6 |
Danang urban soils | 1995 | [83] | 0–20 | <0.063 | HF/HNO3/HCl | 15/9–68 |
Bangkok urban soils | 1996 | [84] | 0–5 | <2 | HNO3/HClO4 | 23/4–52 |
Sydney roadside soils | 2009 | [36] | 0–10 | <0.425 | HNO3/HCl | 147/27–242 |
Adelaide garden soils | 2017 | [14] | 0–10 | <20 | HNO3/HClO4/HCl | 7.8/<0.03–32.6 |
Suva(Fiji)roadside soil | 2015 | [88] | 0–5 | none | HNO3/HCl | 32/22–66 |
Ottawa garden soils | 1993 | [86] | 0–5 | 0.1–0.25 | HNO3/HF/HClO4 | 15.8/10.5–23.1 |
New York Parks | 1999 | [20] | 0–15 | <2 | HNO3/HCl | 29/8–97 |
Clay County urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 2.5/0.9–4.4 |
Ocala urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 8.7/2.8–29.9 |
Orlando urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 2.3/0.3–5.0 |
Pensacola urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 4.2/1.8–8.9 |
Tampa urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 3.0/0.5–10.3 |
West Palm Beach urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 3.1/1.2–7.9 |
Mexico | 2008 | [24] | 0–10 | <0.074 | XRF | 49/29–151 |
Havana urban soils | 2018 | [51] | horizons | <2 | HNO3/HCl | 72.1± 131 |
Ibadan urban soils | 2006 | [59] | 0–15 | <0.075 | HNO3/HCl | 16.5/7–118 |
Upper crust | [136] | 17 | ||||
Continental crust | [40] | 14.8 | ||||
Location | sampling year | reference | sampling depth cm | grain size mm | Pb mg/kg | |
Aberdeen parkland | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 94 ± 216 |
Aberdeen roadside | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 173 ± 34 |
Trondheim urban soils | 1994 | [66] | 0–2 | <2 | HNO3/HCl | 35/9–976 |
Trondheim urban soils | 2004 | [66] | 0–2 | <2 | 1/1 HNO3 | 32/16–1025 |
Uppsala | 2003 | [8] | 0–5 | <2 | HNO3/HCl | 26/9–358 |
Uppsala | 2003 | [8] | 5–10 | <2 | HNO3/HCl | 25/9–163 |
Uppsala | 2003 | [8] | 10–20 | <2 | HNO3/HCl | 26/10–160 |
Tallinn urban soils | 1987–1990 | [67] | 0–10 | <1 | XRF | 50/<6–602 |
Vilnius central | 2000 | [68] | 0–10 | <1 | DC-arc | 51.6 |
Vilnius peripheral | 2000 | [68] | 0–10 | <1 | DC-arc | 24.8 |
Siauliai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 29.6 |
Mazeikiai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 15.3 |
Joniskis urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 33.9 |
Kielce residential | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 34/6.4–95 |
Kielce road soils | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 29/9–45 |
Kielce urban greenery | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 36/1–102 |
Kielce allotment gardens | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 23/7–103 |
Kielce agricultural areas | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 9.9/4.7–28.9 |
Berlin low-D residential | 1993–1996 | [29] | 0–20 | <2 | XRF | 50/max 2070 |
Berlin high-D residential | 1993–1996 | [29] | 0–20 | <2 | XRF | 109/max 1490 |
Berlin allotment | 1993–1996 | [29] | 0–20 | <2 | XRF | 62/max 722 |
Berlin industrial | 1993–1996 | [29] | 0–20 | <2 | XRF | 87/max 4710 |
Vienna roadside soils | 1997 | [70] | 0–10 | none | HNO3/HCl | 86/20–354 |
Vienna parks | 1997 | [70] | 0–10 | none | HNO3/HCl | 86/38–243 |
Vienna urban soils | 2003 | [16] | 0–10 | <2 | HNO3/HCl | 64 ± 27 |
Sopron urban soils | 2012 | [39] | 0–10 | none | HNO3/H2O2 | 125/28–559 |
Sopron urban soils | 2012 | [39] | 0–20 | none | HNO3/H2O2 | 120/25–287 |
Szeged urban soils | 2005 | [17] | 0–10 | none | HNO3/HCl | 40/23–136 |
Novi Sad urban soils | 2017 | [72] | 0–15 | <2 | HNO3/H2O2 | 49/9–999 |
Zadar urban soils | 2003/2004 | [73] | 0–10 | <2 | HNO3/HCl | 80/44–553 |
Torino urban soils | 1999 | [6] | 0–20 | <2 | HNO3/HCl | 117/31–870 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 67/16–538 |
Palermo public parks | 2000 | [31] | 0–10 | <2 | HNO3/HCl | 202/57–682 |
Sevilla parks-gardens | 2000 | [9] | 0–20 | <2 | HNO3/HCl | 103/14–791 |
Vigo parks-gardens | 2013 | [12] | 0–20 | <2 | XRF | 82/34–259 |
Tyumen urban soils | 2016 | [64] | 0–10 | <1 | XRF | 19.6/8–430 |
Sangareddy urban soils | 2019 | [85] | 0–10 | <0.074 | XRF | 17/3–32 |
Seoul-Uijeongbu urban soils | 1995 | [58] | 0–15 | <0.18 | HNO3/HClO4 | 57/28–444 |
Seoul-Koyang urban soils | 1995 | [58] | 0–15 | <0.18 | HNO3/HClO4 | 67/36–956 |
Shenyang urban soils | 2008 | [77] | 0–5 | <1 | HNO3/HClO4 | 48/0.1–340 |
Beijing roadside soil | 2008 | [78] | 0–20 | fine soil | HNO3/HClO4/HF | 35.4 ± 13.5 |
Beijing Parks | 2018 | [79] | 0–5 | <0.125 | HNO3/HCl | 33/8–92 |
Xian urban soils | 2016 | [1] | 0–10 | none | XRF | 32.2/20.6–70.7 |
Xuzhou urban soils | 2004 | [80] | 0–10 | <2 | HF/HNO3/HCl-XRF | 36/16–120 |
Hangzhou Industrial | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 139 ± 107 |
Hangzhou Roadside | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 95 ± 81 |
Hangzhou Residential | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 91 ± 71 |
Hangzhou Parks | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 56 ± 39 |
Hangzhou Industrial | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 29/21–70 |
Hangzhou Roadside | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 30/25–39 |
Hangzhou Residential | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 27/20–45 |
Shanghai urban soils | 2006 | [33] | 0–10 | <0.125 | HF/HNO3/HClO4 | 71/14–192 |
Hong Kong urban parks | 2000 | [82] | 0–10 | <2 | HNO3 | 93 ± 37 |
Hong Kong Urban | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 71/8–496 |
Hong Kong Suburban | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 49/16–161 |
Hong Kong country park | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 37/11–124 |
Danang urban soils | 1995 | [83] | 0–20 | <0.063 | HF/HNO3/HCl | 1.8/0.4–20.1 |
Bangkok urban soils | 1996 | [84] | 0–5 | <2 | HNO3/HClO4 | 29/12–269 |
Sydney roadside soils | 2009 | [36] | 0–10 | <0.425 | HNO3/HCl | 64/24–198 |
Adelaide garden soils | 2017 | [14] | 0–10 | <20 | HNO3/HClO4/HCl | 30/<0.1–268 |
Lithgow roadside soils | 2011 | [49] | 0–2 | <0.18 | XRF | 46/<5–3490 |
Lithgow roadside soils | 2011 | [49] | 0–2 | <2 | XRF | 27/<5–3200 |
Suva(Fiji) roadside soil | 2015 | [88] | 0–5 | none | HNO3/HCl | 59/21–135 |
Ottawa Parks | 1993 | [86] | 0–5 | 0.1–0.25 | HNO3/HF/HClO4 | 33.8/15.6–205 |
New York Parks | 1999 | [20] | 0–15 | <2 | HNO3/HCl | 178/40–730 |
Clay County urban soils | 2016/2018 | [87] | 0–15 | <2 | HNO3/H2O2 | 28.4/5.5–165 |
Ocala urban soils | 2016/2018 | [87] | 0–15 | <2 | HNO3/H2O2 | 35.9/5.3–271 |
Orlando urban soils | 2016/2018 | [87] | 0–15 | <2 | HNO3/H2O2 | 18.7/1.8–245 |
Pensacola urban soils | 2016/2018 | [87] | 0–15 | <2 | HNO3/H2O2 | 86.3/5.2–466 |
Tampa urban soils | 2016/2018 | [87] | 0–15 | <2 | HNO3/H2O2 | 38.4/2.3–552 |
West Palm Beach urban soils | 2016/2018 | [87] | 0–15 | <2 | HNO3/H2O2 | 53.7/4.3–433 |
Mexico | 2008 | [24] | 0–10 | <0.074 | XRF | 116/15–693 |
Havana urban soils | 2018 | [51] | horizons | <2 | HNO3/HCl | 73.5 ± 79.4 |
Ibadan urban soils | 2006 | [89] | 0–15 | <0.075 | HNO3/HCl | 47/9–648 |
Upper crust | [136] | 0.4 | ||||
Continental crust | [40] | 0.30 | ||||
Location | sampling year | reference | sampling depth cm | grain size mm | Sb mg/kg | |
Zadar urban soils | 2003/04 | [73] | 0–10 | <2 | HNO3/HCl | 0.87/0.41–10.02 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 1.22/0.38–7.57 |
Palermo public parks | 2000 | [31] | 0–10 | <2 | HNO3/HCl | 3.0/1.1–15.7 |
Xuzhou urban soils | 2004 | [80] | 0–10 | <2 | HF/HNO3/HCl-XRF | 0.96/0.79–1.60 |
Ottawa garden soils | 1993 | [86] | 0–5 | 0.1–0.25 | HNO3/HF/HClO4 | 0.22/0.11–1.00 |
New York Parks | 1999 | [20] | 0–15 | <2 | HNO3/HCl | 2.0/0.4–6.0 |
Upper crust | [136] | 2.2 | ||||
Continental crust | [40] | 2.3 | ||||
Location | sampling year | reference | sampling depth cm | grain size mm | Sn mg/kg | |
Tallinn urban soils | 1987–90 | [67] | 0–10 | <1 | XRF | 3/<1–4 |
Vilnius central | 2000 | [68] | 0–10 | <1 | DC-arc | 4.39 |
Vilnius peripheral | 2000 | [68] | 0–10 | <1 | DC-arc | 2.87 |
Siauliai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 2.98 |
Mazeikiai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 2.35 |
Joniskis urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 3.11 |
Berlin low-D residential | 1993–96 | [29] | 0–20 | <2 | XRF | 3.4/max 267 |
Berlin high-D residential | 1993–96 | [29] | 0–20 | <2 | XRF | 8.6/max 150 |
Berlin allotment | 1993–96 | [29] | 0–20 | <2 | XRF | 4.9/max 112 |
Berlin industrial | 1993–96 | [29] | 0–20 | <2 | XRF | 7.4/max 409 |
Zadar urban soils | 2003/04 | [73] | 0–10 | <2 | HNO3/HCl | 8.6/6.5–19.2 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 4.6/1.3–15.2 |
Xuzhou urban soils | 2004 | [80] | 0–10 | <2 | HF/HNO3/HCl-XRF | 4.2/2.2–11 |
Ottawa garden soils | 1993 | [86] | 0–5 | 0.1–0.25 | HNO3/HF/HClO4 | 1.32/0.77–2.65 |
New York Parks | 1999 | [20] | 0–15 | <2 | HNO3/HCl | 9/2–41 |
Upper Crust | [136] | 106 | ||||
Continental crust | [40] | 98 | ||||
sampling year | reference | sampling depth cm | grain size mm | V mg/kg | ||
Tallinn urban soils | 1987–90 | [67] | 0–10 | <1 | XRF | 30/6–90 |
Vilnius central | 2000 | [68] | 0–10 | <1 | DC-arc | 27 |
Vilnius peripheral | 2000 | [68] | 0–10 | <1 | DC-arc | 32 |
Siauliai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 36 |
Mazeikiai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 40 |
Joniskis urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 44 |
Vienna roadside soils | 1997 | [70] | 0–10 | none | HNO3/HCl | 30/17–45 |
Vienna parks | 1997 | [70] | 0–10 | none | HNO3/HCl | 28/19–41 |
Vienna urban soils | 2003 | [16] | 0–10 | <2 | HNO3/HCl | 34 ± 5 |
Zadar urban soils | 2003/2004 | [73] | 0–10 | <2 | HNO3/HCl | 99/29–125 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 55/26.2–92.2 |
Palermo public parks | 2000 | [31] | 0–10 | <2 | HNO3/HCl | 54/21–124 |
Tyumen urban soils | 2016 | [64] | 0–10 | <1 | XRF | 95/5–162 |
Xian urban soils | 2016 | [1] | 0–10 | none | XRF | 79/54–90 |
Xuzhou urban soils | 2004 | [80] | 0–10 | <2 | HF/HNO3/HCl-XRF | 72/5–101 |
Danang urban soils | 1995 | [83] | 0–20 | <0.063 | HF/HNO3/HCl | 101/21–119 |
New York Parks | 1999 | [20] | 0–15 | <2 | HNO3/HCl | 82/8–355 |
Mexico | 2008 | [24] | 0–10 | <0.074 | XRF | 186/60–229 |
Ottawa garden soils | 1993 | [86] | 0–5 | 0.1–0.25 | HNO3/HF/HClO4 | 46/29–71 |
Upper crust | [136] | 75 | ||||
Continental crust | [40] | 65 | ||||
Location | sampling year | reference | sampling depth cm | grain size mm | Zn mg/kg | |
Aberdeen parkland | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 58 ± 8 |
Aberdeen roadside | 1994 | [65] | 0–10 | <2 | HNO3/HCl | 113 ± 15 |
Trondheim urban soils | 1994 | [66] | 0–2 | <2 | HNO3/HCl | 98/7–3420 |
Trondheim urban soils | 2004 | [66] | 0–2 | <2 | 1/1 HNO3 | 80/4–1056 |
Uppsala | 2003 | [8] | 0–5 | <2 | HNO3/HCl | 84/45–149 |
Uppsala | 2003 | [8] | 5–10 | <2 | HNO3/HCl | 90/38–245 |
Uppsala | 2003 | [8] | 10–20 | <2 | HNO3/HCl | 99/27–191 |
Tallinn urban soils | 1987–90 | [67] | 0–10 | <1 | XRF | 114/11–1560 |
Vilnius central | 2000 | [68] | 0–10 | <1 | DC-arc | 136 |
Vilnius peripheral | 2000 | [68] | 0–10 | <1 | DC-arc | 99 |
Siauliai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 107 |
Mazeikiai urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 39 |
Joniskis urban soils | 2000 | [68] | 0–10 | <1 | DC-arc | 76 |
Warsaw urban soils | 1996 | [7] | 0–20 | <1 | 450°/HCl | 140/20–426 |
Kielce residential | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 91/19–274 |
Kielce road soils | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 87/39–235 |
Kielce urban greenery | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 58/7–193 |
Kielce allotment gardens | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 107/27–290 |
Kielce agricultural areas | 2016 | [69] | 0–20 | <2 | HNO3 (HF?) | 28/9–50 |
Berlin low-D residential | 1993–96 | [29] | 0–20 | <2 | XRF | 85/max 3160 |
Berlin high-D residential | 1993–96 | [29] | 0–20 | <2 | XRF | 163/max 6040 |
Berlin allotment | 1993–96 | [29] | 0–20 | <2 | XRF | 121/max 3160 |
Berlin industrial | 1993–96 | [29] | 0–20 | <2 | XRF | 169/max 25210 |
Vienna roadside soils | 1997 | [70] | 0–10 | none | HNO3/HCl | 157/77–688 |
Vienna parks | 1997 | [70] | 0–10 | none | HNO3/HCl | 156/84–374 |
Vienna urban soils | 2003 | [16] | 0–10 | <2 | HNO3/HCl | 141 ± 43 |
Sopron urban soils | 2012 | [39] | 0–10 | none | HNO3/H2O2 | 133/27–607 |
Sopron urban soils | 2012 | [39] | 0–20 | none | HNO3/H2O2 | 102/16–579 |
Szeged urban soils | 2005 | [17] | 0–10 | none | HNO3/HCl | 203/137–228 |
Novi Sad urban soils | 2017 | [72] | 0–15 | <2 | HNO3/H2O2 | 101/46–194 |
Zadar urban soils | 2003/04 | [73] | 0–10 | <2 | HNO3/HCl | 191/76–932 |
Torino urban soils | 1999 | [6] | 0–20 | <2 | HNO3/HCl | 149/78–545 |
Salerno urban soils | 2018 | [75] | 0–20 | <2 | HNO3/HCl | 129/47–633 |
Palermo public parks | 2000 | [31] | 0–10 | <2 | HNO3/HCl | 138/52–433 |
Sevilla parks-gardens | 2000 | [9] | 0–20 | <2 | HNO3/HCl | 86/26–450 |
Vigo parks-gardens | 2013 | [12] | 0–20 | <2 | XRF | 150/59–234 |
Tyumen urban soils | 2016 | [64] | 0–10 | <1 | XRF | 70/5–368 |
Sangareddy urban soils | 2019 | [85] | 0–10 | <0.074 | XRF | 104/84–134 |
Seoul-Uijeongbu urban soils | 1995 | [58] | 0–15 | <0.18 | HNO3/HClO4 | 164/60–864 |
Seoul-Koyang urban soils | 1995 | [58] | 0–15 | <0.18 | HNO3/HClO4 | 189/87–1400 |
Shenyang urban soils | 2008 | [77] | 0–5 | <1 | HNO3/HClO4 | 115/61–265 |
Beijing roadside soil | 2008 | [78] | 0–20 | fine soil | HNO3/HClO4/HF | 92 ± 19 |
Beijing Parks | 2018 | [79] | 0–5 | <0.125 | HNO3/HCl | 137/69–288 |
Xian urban soils | 2016 | [1] | 0–10 | none | XRF | 90/63–245 |
Xuzhou urban soils | 2004 | [80] | 0–10 | <2 | HF/HNO3/HCl-XRF | 102/53–380 |
Hangzhou Industrial | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 346 ± 314 |
Hangzhou Roadside | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 215 ± 121 |
Hangzhou Residential | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 211 ± 74 |
Hangzhou Parks | 2009 | [23] | 0–10 | <2 | HNO3/HClO4/HF | 94 ± 61 |
Hangzhou Industrial | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 103/72–187 |
Hangzhou Roadside | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 108/89–165 |
Hangzhou Residential | 2019 | [63] | 0–30 | <0.15 | HNO3/HClO4/HF | 95/68–119 |
Shanghai urban soils | 2006 | [33] | 0–10 | <0.125 | HF/HNO3/HClO4 | 301/103–1025 |
Hong Kong urban parks | 2000 | [82] | 0–10 | <2 | HNO3 | 168 ± 75 |
Hong Kong Urban | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 78/23–930 |
Hong Kong suburban | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 52/26–173 |
Hong Kong country park | 2004 | [81] | 0–15 | <2 | HNO3/HClO4 | 44/25–136 |
Danang urban soils | 1995 | [83] | 0–20 | <0.063 | HF/HNO3/HCl | 81/48–465 |
Bangkok urban soils | 1996 | [84] | 0–5 | <2 | HNO3/HClO4 | 38/3–814 |
Sydney roadside soil | 2009 | [36] | 0–10 | <0.425 | HNO3/HCl | 152/71–238 |
Adelaide garden soils | 2017 | [14] | 0–10 | <20 | HNO3/HClO4/HCl | 103/<0.6–662 |
Lithgow roadside soil | 2011 | [49] | 0–2 | <0.18 | XRF | 120/40–2170 |
Lithgow roadside soil | 2011 | [49] | 0–2 | <2 | XRF | 97/34–4950 |
Suva(Fiji) roadside soil | 2015 | [88] | 0–5 | none | HNO3/HCl | 507/60–1617 |
Ottawa garden soils | 1993 | [86] | 0–5 | 0.1–0.25 | HNO3/HF/HClO4 | 100/50–223 |
New York Parks | 1999 | [20] | 0–15 | <2 | HNO3/HCl | 81/19–300 |
Clay County urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 32.6/5.8–158 |
Ocala urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 48.3/6.0–297 |
Orlando urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 37.0/0.6–253 |
Pensacola urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 69.8/7.6–331 |
Tampa urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 67.2/4.8–1001 |
West Palm Beach urban soils | 2016/18 | [87] | 0–15 | <2 | HNO3/H2O2 | 70.9/9.5–383 |
Mexico | 2008 | [24] | 0–10 | <0.074 | XRF | 447/95–1890 |
Havana urban soils | 2018 | [51] | horizons | <2 | HNO3/HCl | 126 + 88 |
Ibadan urban soils | 2006 | [89] | 0–15 | <0.075 | HNO3/HCl | 94/28–2643 |
Appendix B. Urban Dust Data
Upper crust | [136] | 8.10 | |||
Continental crust | [40] | 7.96 | |||
sampling year | reference | grain size | Digestion | % Al | |
Budapest city | 2003/2004 | [59] | <0.075 mm | HNO3/HCl | 0.85/0.43–1.02 |
Chelyabinsk | 2017 | [92] | <1 mm | HNO3/HF/HClO4 | 0.85/0.56–1.20 |
Seoul | 2004/05 | [59] | <0.075 mm | HNO3/HCl | 1.82/1.30–2.21 |
Ottawa | 1993 | [86] | 0.1–0.25 | HF/HNO3/HClO4 | 4.77/1.22–5.81 |
Buenos Aires | 2009 | [35] | <0.1 mm | HNO3-HCl-HF | 3.09/1.56–3.87 |
Luanda | 2002 | [100] | <0.1 mm | HCl/HNO3/H2O | 0.47/0.28–0.88 |
Upper crust | [136] | 5.20 | |||
Continental crust | [40] | 4.32 | |||
sampling year | reference | grain size | Digestion | % Fe | |
Budapest city | 2004/2005 | [59] | <0.075 mm | HNO3/HCl | 2.48/1.53–8.75 |
Chelyabinsk | 2017 | [92] | <1 mm | HNO3/HF/HClO4 | 1.48/1.01–2.33 |
Dhaka industrial + old | 2004 | [98] | <1 mm | XRF | 3.50 ± 2.61 |
Dhaka commercial | 2004 | [98] | <1 mm | XRF | 2.82 ± 0.49 |
Dhaka residential | 2004 | [98] | <1 mm | XRF | 2.41 ± 0.29 |
Dhaka residential-low-traffic | 2004 | [98] | <1 mm | XRF | 2.22 ± 0.33 |
Seoul | 2004/05 | [59] | <0.075 mm | HNO3/HCl | 3.63/2.57–3.79 |
Sydney | 2009 | [36] | <0.425 mm | HNO3/HCl | 8.52/2.20–10.30 |
Suva(Fiji) | 2015 | [88] | none | HNO3/HCl | 4.10/2.61–10.48 |
Ottawa | 1993 | [86] | 0.1–0.25 | HF/HNO3/HClO4 | 1.80/0.73–2.77 |
Buenos Aires | 2009 | [35] | <0.1 mm | HNO3-HCl-HF | 3.35/2.80–4.11 |
Luanda | 2002 | [100] | <0.1 mm | HCl/HNO3/H2O | 1.11/0.80–2.01 |
Upper crust | [136] | 5.7 | |||
Continental crust | [40] | 1.7 | |||
sampling year | reference | grain size | As mg/kg | ||
Budapest city | 2004–2005 | [59] | <0.075 mm | HNO3/HCl | 11.6/8.2–15.8 |
Chelyabinsk | 2017 | [92] | <1 mm | HNO3/HF/HClO4 | 3.8/1.6–7.9 |
Dhaka industrial + old | 2004 | [98] | <1 mm | XRF | 7 ± 2.2 |
Dhaka commercial | 2004 | [98] | <1 mm | XRF | 8 ± 3.1 |
Dhaka residential | 2004 | [98] | <1 mm | XRF | 5 ± 0.9 |
Dhaka residential-low traffic | 2004 | [98] | <1 mm | XRF | 4 ± 0.3 |
Seoul | 2004–2005 | [98] | <0.075 mm | HNO3/HCl | 24.9/15.2–31.2 |
Ottawa | 1993 | [86] | 0.1–0.25 mm | HF/HNO3/HClO4 | 1.4/<–2.5 |
Buenos Aires | 2009 | [35] | <0.1 mm | HNO3-HCl-HF | 5.5/2.3–11.0 |
Luanda | 2002 | [100] | <0.1 mm | HCl/HNO3/H2O2 | 4.9/3.5–7.8 |
Upper crust | [136] | ||||
Continental crust | [40] | 11 | |||
reference | B mg/kg | ||||
Luanda | 2002 | [100] | <0.1 mm | HCl/HNO3/H2O2 | 8/3–16 |
Upper crust | [136] | 628 | |||
Continental crust | [40] | 584 | |||
sampling year | reference | grain size | Ba mg/kg | ||
Oslo | 1994 | [95] | <0.1 mm | HNO3/HClO4/HF | 526 ± 14 |
Budapest city | 2004–2005 | [59] | <0.075 mm | HNO3/HCl | 304/137–961 |
Seoul | 2004–2005 | [59] | <0.075 mm | HNO3/HCl | 570/217–716 |
Ottawa | 1993 | [86] | 0.1–0.25 mm | HF/HNO3/HClO4 | 584/153–687 |
Luanda | 2002 | [100] | <0.1 mm | HCl/HNO3/H2O2 | 121/68–363 |
Upper crust | [136] | 0.06 | |||
Continental crust | [40] | 0.10 | |||
sampling year | reference | grain size | Cd mg/kg | ||
Oslo | 1994 | [95] | <0.1 mm | HNO3/HClO4/HF | 1.4 ± 0.2 |
Budapest city | 2004–05 | [59] | <0.075 mm | HNO3/HCl | 0.81/0.39–1.89 |
Murcia | 2010 | [96] | <2 mm | HNO3/HClO4 | 0.67 ± 0.16 |
Samsun residential-low traffic | 2007 | [97] | none | HNO3/HCl | 0.30/0.19–0.40 |
Samsun residential-high traffic | 2007 | [97] | none | HNO3/HCl | 0.23/0.02–0.65 |
Samsun industrial | 2007 | [97] | none | HNO3/HCl | 1.47/0.04–6.16 |
Chelyabinsk | 2017 | [92] | <1 mm | HNO3/HF/HClO4 | 0.4/0.06–2.00 |
Delhi | 2009 | [90] | <0.075 mm | unknown | 2.65/1.9–3.8 |
Seoul before rainy season | 1996 | [76] | <0.18 mm | HNO3/HClO4 | 1.5/0.4–3.1 |
Seoul urban soils | 2004–05 | [59] | <0.075 mm | HNO3/HCl | 3.45/1.40–6.65 |
Shanghai | 2006 | [33] | <0.125 mm | HF/HNO3/HClO4 | 1.23/0.36–4.72 |
Hong Kong | 2000 | [82] | <2 mm | HNO3 | 3.77 ± 2.25 |
Sydney | 2009 | [36] | <0.425 mm | HNO3/HCl | 0.73/0.24–1.72 |
Suva(Fiji) | 2015 | [88] | none | HNO3/HCl | 3.7/2.4–12.2 |
Ottawa | 1993 | [86] | 0.1–0.25 mm | HF/HNO3/HClO4 | 0.30/0.08–0.79 |
Buenos Aires | 2009 | [35] | <0.1 mm | HNO3-HCl-HF | 2.1/0.5–3.9 |
Luanda | 2002 | [100] | <0.1 mm | HCl/HNO3/H2O2 | 1.1/0.7–4.0 |
Upper crust | [136] | 15 | |||
Continental crust | [40] | 24 | |||
sampling year | reference | grain size | Co mg/kg | ||
Oslo | 1994 | [95] | <0.1 mm | HNO3/HClO4/HF | 19 ± 0.5 |
Budapest city | 2004–05 | [59] | <0.075 mm | HNO3/HCl | 7.9/4.8–12.6 |
Madrid | 1990 | [95] | <0.1 mm | HNO3/HClO4/HF | 3 ± 0.6 |
Samsun residential-low traffic | 2007 | [97] | none | HNO3/HCl | 7.3/5.1–9.7 |
Samsun residential-high traffic | 2007 | [97] | none | HNO3/HCl | 8.1/4.9–10.2 |
Samsun industrial | 2007 | [97] | none | HNO3/HCl | 8.9/4.5–41.7 |
Chelyabinsk | 2017 | [92] | <1 mm | HNO3/HF/HClO4 | 6.3/4.5–8.3 |
Seoul before rainy season | 1996 | [76] | <0.18 mm | HNO3/HClO4 | 11.5/3.6–61 |
Seoul | 2004–05 | [59] | <0.075 mm | HNO3/HCl | 17.9/15.4–87.6 |
Ottawa | 1993 | [86] | 0.1–0.25 mm | HF/HNO3/HClO4 | 8.65/2.31–11.15 |
Suva(Fiji) | 2015 | [88] | none | HNO3/HCl | 35/27–58 |
Luanda | 2002 | [100] | <0.1 mm | HCl/HNO3/H2O2 | 2.7/1.9–7.0 |
Upper crust | [136] | 73 | |||
Continental crust | [40] | 126 | |||
sampling year | reference | grain size | Cr mg/kg | ||
Budapest city | 2004–2005 | [59] | <0.075 mm | HNO3/HCl | 65.5/37.4–121 |
Madrid | 1990 | [95] | <0.1 mm | HNO3/HClO4/HF | 61 ± 7 |
Chelyabinsk | 2017 | [92] | <1 mm | HNO3/HF/HClO4 | 49/23–95 |
Delhi | 2009 | [90] | <0.075 mm | unknown | 149/56–500 |
Dhaka industrial + old | 2004 | [98] | <1 mm | XRF | 136 ± 35 |
Dhaka commercial | 2004 | [98] | <1 mm | XRF | 105 ± 17 |
Dhaka residential | 2004 | [98] | <1 mm | XRF | 99 ± 17 |
Dhaka residential-low traffic | 2004 | [98] | <1 mm | XRF | 77 ± 14 |
Seoul before rainy season | 1996 | [76] | <0.18 mm | HNO3/HClO4 | 36/10–420 |
Seoul | 2004–2005 | [59] | <0.075 mm | HNO3/HCl | 130/104–195 |
Shanghai | 2006 | [33] | <0.125 mm | HF/HNO3/HClO4 | 159/18–1325 |
Sydney | 2009 | [36] | <0.425 mm | HNO3/HCl | 152/49–486 |
Suva(Fiji) | 2015 | [88] | none | HNO3/HCl | 40/21–82 |
Ottawa | 1993 | [86] | 0.1–0.25 mm | HF/HNO3/HClO4 | 42/14.7–63.9 |
Luanda | 2002 | [100] | <0.1 mm | HCl/HNO3/H2O2 | 26/17–37 |
Upper crust | [136] | 27 | |||
Continental crust | [40] | 25 | |||
sampling year | reference | grain size | Cu mg/kg | ||
Oslo | 1994 | [95] | <0.1 mm | HNO3/HClO4/HF | 123 ± 13 |
Budapest city | 2004–05 | [59] | <0.075 mm | HNO3/HCl | 236/144–352 |
Madrid | 1990 | [95] | <0.1 mm | HNO3/HClO4/HF | 188 ± 24 |
Murcia | 2010 | [96] | <2 mm | HNO3/HClO4 | 130± 39 |
Samsun residential-low traffic | 2007 | [97] | none | HNO3/HCl | 46/12–69 |
Samsun residential-high traffic | 2007 | [97] | none | HNO3/HCl | 101/33–203 |
Samsun industrial | 2007 | [97] | none | HNO3/HCl | 158/20–352 |
Chelyabinsk | 2017 | [92] | <1 mm | HNO3/HF/HClO4 | 56/15–218 |
Delhi | 2009 | [90] | <0.075 mm | unknown | 192/87–499 |
Dhaka industrial + old | 2004 | [98] | <1 mm | XRF | 105 ± 110 |
Dhaka commercial | 2004 | [98] | <1 mm | XRF | 46 ± 19 |
Dhaka residential | 2004 | [98] | <1 mm | XRF | 22 ± 9 |
Dhaka residential-low traffic | 2004 | [98] | <1 mm | XRF | 14 ± 6.6 |
Seoul before rainy season | 1996 | [76] | <0.18 mm | HNO3/HClO4 | 73/12–1860 |
Seoul after rainy season | 1996 | [76] | <0.18 mm | HNO3/HClO4 | 63/12–225 |
Seoul | 2004–05 | [59] | <0.075 | HNO3/HCl | 351/302–478 |
Shanghai | 2006 | [33] | <0.125 mm | HF/HNO3/HClO4 | 197/17–1175 |
Hong Kong | 2000 | [82] | <2 mm | HNO3 | 173 ± 190 |
Sydney | 2009 | [36] | <0.425 mm | HNO3/HCl | 544/314–730 |
Suva(Fiji) | 2015 | [88] | none | HNO3/HCl | 172/59–328 |
Ottawa | 1993 | [86] | 0.1–0.25 | HF/HNO3/HClO4 | 30/4.8–236 |
Buenos Aires | 2009 | [35] | <0.1 mm | HNO3-HCl-HF | 273/124–602 |
Luanda | 2002 | [100] | <0.1 mm | HCl/HNO3/H2O2 | 39/18–118 |
Upper crust | [136] | 0.05 | |||
Continental crust | [40] | 0.04 | |||
sampling year | reference | grain size | Hg mg/kg | ||
Budapest city | 2004–2005 | [59] | <0.075 mm | HNO3/HCl | 0.13/0.07–0.22 |
Chelyabinsk | 2017 | [92] | <1 mm | HNO3/HF/HClO4 | 2.0/<–4.8 |
Seoul | 2004–2005 | [59] | <0.075 mm | HNO3/HCl | 0.45/0.27–0.58 |
Ottawa | 1993 | [86] | 0.1–0.25 mm | HF/HNO3/HClO4 | 0.018/0.004–0.096 |
Luanda | 2002 | [100] | <0.1 mm | HCl/HNO3/H2O2 | 0.11/0.03–0.57 |
Upper crust | [136] | 774 | |||
Continental crust | [40] | 716 | |||
sampling year | reference | grain size | Mn mg/kg | ||
Oslo | 1994 | [95] | <0.1 mm | HNO3/HClO4/HF | 833 ± 16 |
Budapest city | 2004–05 | [59] | <0.075 mm | HNO3/HCl | 417/345–1011 |
Madrid | 1990 | [95] | <0.1 mm | HNO3/HClO4/HF | 362 ± 13 |
Samsun residential-low traffic | 2007 | [97] | none | HNO3/HCl | 147/134–179 |
Samsun residential-high traffic | 2007 | [97] | none | HNO3/HCl | 161/140–166 |
Samsun industrial | 2007 | [97] | none | HNO3/HCl | 162/133–171 |
Chelyabinsk | 2017 | [92] | <1 mm | HNO3/HF/HClO4 | 421/226–739 |
Seoul | 2004–05 | [59] | <0.075 mm | HNO3/HCl | 639/541–681 |
Sydney | 2009 | [36] | <0.425 mm | HNO3/HCl | 1276/489–3966 |
Ottawa | 1993 | [86] | 0.1–0.25 mm | HF/HNO3/HClO4 | 426/145–582 |
Buenos Aires | 2009 | [35] | <0.1 mm | HNO3/HCl/HF | 622/464–906 |
Luanda | 2002 | [100] | <0.1 mm | HCl/HNO3/H2O2 | 238/157–728 |
Upper crust | [136] | 0.6 | |||
Continental crust | [40] | 1.1 | |||
sampling year | reference | grain size | Mo mg/kg | ||
Oslo | 1994 | [95] | <0.1 mm | HNO3/HClO4/HF | 4 ± 0.3 |
Budapest city | 2004–2005 | [59] | <0.075 mm | HNO3/HCl | 5.00/1.25–8.76 |
Seoul | 2004–2005 | [59] | <0.075 mm | HNO3/HCl | 13.7/6.7–18.6 |
Ottawa | 1993 | [86] | 0.1–0.25 mm | HF/HNO3/HClO4 | 1.38/0.38–2.16 |
Buenos Aires | 2009 | [35] | <0.1 mm | HNO3-HCl-HF | 3.6/2.4–7.2 |
Luanda | 2002 | [100] | <0.1 mm | HCl/HNO3/H2O2 | 1.9/1.2–6.3 |
Upper crust | [136] | 34 | |||
Continental crust | [40] | 56 | |||
sampling year | reference | grain size | Ni mg/kg | ||
Oslo | 1994 | [95] | <0.1 mm | HNO3/HClO4/HF | 41 ± 1 |
Budapest city | 2004–05 | [59] | <0.075 mm | HNO3/HCl | 27.5/19.2–50 |
Madrid | 1990 | [95] | <0.1 mm | HNO3/HClO4/HF | 44 ± 5 |
Samsun residential-low traffic | 2007 | [97] | none | HNO3/HCl | 69/33–323 |
Samsun residential-high traffic | 2007 | [97] | none | HNO3/HCl | 51/25–121 |
Samsun industrial | 2007 | [97] | none | HNO3/HCl | 39/19–97 |
Chelyabinsk | 2017 | [92] | <1 mm | HNO3/HF/HClO4 | 21.9/13.2–52 |
Delhi | 2009 | [90] | <0.075 mm | unknown | 36/27–62 |
Dhaka industrial + old | 2004 | [98] | <1 mm | XRF | 35 ± 14 |
Dhaka commercial | 2004 | [98] | <1 mm | XRF | 26 ± 4.7 |
Dhaka residential | 2004 | [98] | <1 mm | XRF | 23 ± 4.2 |
Dhaka residential-low traffic | 2004 | [98] | <1 mm | XRF | 24 ± 2.5 |
Seoul before rainy season | 1996 | [76] | <0.18 mm | HNO3/HClO4 | 30/10–742 |
Seoul | 2004–05 | [59] | <0.075 mm | HNO3/HCl | 62/42–109 |
Shanghai | 2006 | [33] | <0.125 mm | HF/HNO3/HClO4 | 84/8–1251 |
Sydney | 2009 | [36] | <0.425 mm | HNO3/HCl | 69/20–208 |
Suva(Fiji) | 2015 | [88] | none | HNO3/HCl | 54/32–110 |
Ottawa | 1993 | [86] | 0.1–0.25 mm | HF/HNO3/HClO4 | 14.6/4.7–19.4 |
Buenos Aires | 2009 | [35] | <0.1 mm | HNO3-HCl-HF | 26.2/10.3–35.4 |
Luanda | 2002 | [100] | <0.1 mm | HCl/HNO3/H2O2 | 9.7/6.2–32 |
Upper crust | [136] | 654 | |||
Continental crust | [40] | 757 | |||
sampling year | reference | grain size | P mg/kg | ||
Oslo | 1994 | [95] | <0.1 mm | HNO3/HClO4/HF | 1086 ± 50 |
Budapest city | 2004–2005 | [59] | <0.075 mm | HNO3/HCl | 927/550–1469 |
Dhaka industrial + old | 2004 | [98] | <1 mm | XRF | 1220 ± 437 |
Dhaka commercial | 2004 | [98] | <1 mm | XRF | 873 ± 131 |
Dhaka residential | 2004 | [98] | <1 mm | XRF | 873 ± 262 |
Dhaka residential-low traffic | 2004 | [98] | <1 mm | XRF | 742 ± 87 |
Ottawa | 1993 | [86] | 0.1–0.25 mm | HF/HNO3/HClO4 | 606/344–875 |
Seoul | 2004–2005 | [59] | <0.075 mm | HNO3/HCl | 1088/748–1481 |
Luanda | 2002 | [100] | <0.1 mm | HCl/HNO3/H2O2 | 1180/580–2210 |
Upper crust | [136] | 17 | |||
Continental crust | [40] | 14.8 | |||
sampling year | reference | grain size | Pb mg/kg | ||
Oslo | 1994 | [95] | <0.1 mm | HNO3/HClO4/HF | 180 ±14 |
Budapest city | 2004–05 | [59] | <0.075 mm | HNO3/HCl | 408/49–1891 |
Madrid | 1990 | [95] | <0.1 mm | HNO3/HClO4/HF | 1927 ± 508 |
Murcia | 2010 | [96] | <2 mm | HNO3/HClO4 | 123 ± 21 |
Chelyabinsk | 2017 | [92] | <1 mm | HNO3/HF/HClO4 | 21.9/13.2–52.2 |
Samsun residential-low traffic | 2007 | [97] | none | HNO3/HCl | 12.7/5.5–25.7 |
Samsun residential-high traffic | 2007 | [97] | none | HNO3/HCl | 36/12–94 |
Samsun industrial | 2007 | [97] | none | HNO3/HCl | 48/13–224 |
Delhi | 2009 | [90] | <0.075 mm | unknown | 121/69–316 |
Dhaka | 2004 | [98] | <1 mm | XRF | 54 ± 19 |
Dhaka industrial + old | 2004 | [98] | <1 mm | XRF | 74 ±36 |
Dhaka commercial | 2004 | [98] | <1 mm | XRF | 35 ± 8 |
Dhaka residential | 2004 | [98] | <1 mm | XRF | 25 ± 5 |
Seoul before rainy season | 1996 | [58] | <0.18 mm | HNO3/HClO4 | 80/22–27000 |
Seoul after rainy season | 1996 | [58] | <0.18 mm | HNO3/HClO4 | 58/20–199 |
Seoul | 2004–05 | [59] | <0.075 mm | HNO3/HCl | 214/130–284 |
Shanghai | 2006 | [33] | <0.125 mm | HF/HNO3/HClO4 | 295/28–4443 |
Hong Kong | 2000 | [82] | <2 mm | HNO3 | 181 ± 93 |
Sydney | 2009 | [36] | <0.425 mm | HNO3/HCl | 119/36–379 |
Suva(Fiji) | 2015 | [88] | none | HNO3/HCl | 54/32–110 |
Ottawa | 1993 | [86] | 0.1–0.25 mm | HF/HNO3/HClO4 | 33/12.6–85 |
Buenos Aires | 2009 | [35] | <0.1 mm | HNO3-HCl-HF | 296/168–405 |
Luanda | 2002 | [100] | <0.1 mm | HCl/HNO3/H2O2 | 306/74–1856 |
Upper crust | [136] | 0.4 | |||
Continental crust | [40] | 0.30 | |||
sampling year | reference | grain size | Sb mg/kg | ||
Oslo | 1994 | [95] | <0.1 mm | HNO3/HClO4/HF | 6 ± 0.5 |
Budapest city | 2004–2005 | [59] | <0.075 mm | HNO3/HCl | 10.3/2.8–20.4 |
Chelyabinsk | 2017 | [92] | <1 mm | HNO3/HF/HClO4 | 1.33/<–2.2 |
Seoul | 2004–2005 | [59] | <0.075 mm | HNO3/HCl | 44.3/10.0–60.1 |
Ottawa | 1993 | [86] | 0.1–0.25 mm | HF/HNO3/HClO4 | 0.42/0.09–1.62 |
Buenos Aires | 2009 | [35] | <0.1 mm | HNO3-HCl-HF | 4.5/2.0–13.7 |
Luanda | 2002 | [100] | <0.1 mm | HCl/HNO3/H2O | 2.8/1.1–3.7 |
Upper crust | [136] | 2.2 | |||
Continental crust | [40] | 2.3 | |||
Sampling year | reference | grain size | Sn mg/kg | ||
Budapest city | 2004–2005 | [59] | <0.075 mm | HNO3/HCl | 20.9/6.0–31.0 |
Seoul | 2004–2005 | [59] | <0.075 mm | HNO3/HCl | 39.7/21.1–50.4 |
Ottawa | 1993 | [86] | 0.1–0.25 mm | HF/HNO3/HClO4 | 1.19/0.30–10.3 |
Buenos Aires | 2009 | [35] | <0.1 mm | HNO3-HCl-HF | 11.6/3.3–23 |
Upper crust | [136] | 106 | |||
Continental crust | [40] | 98 | |||
sampling year | reference | grain size | V | ||
Budapest city | 2004–2005 | [59] | <0.075 mm | HNO3/HCl | 25.1/14.7–29.6 |
Madrid | 1990 | [95] | <0.1 mm | HNO3/HClO4/HF | 17 ± 2 |
Dhaka industrial + old | 2004 | [98] | <1 mm | XRF | 72 ± 23 |
Dhaka commercial | 2004 | [98] | <1 mm | XRF | 68 ± 13 |
Dhaka residential | 2004 | [98] | <1 mm | XRF | 64 ± 11 |
Dhaka residential-low traffic | 2004 | [98] | <1 mm | XRF | 64 ± 6 |
Seoul | 2004–2005 | [59] | <0.075 mm | HNO3/HCl | 35/23–43 |
Ottawa | 1993 | [86] | 0.1–0.25 mm | HF/HNO3/HClO4 | 34/14–51 |
Luanda | 2002 | [100] | <0.1 mm | HCl/HNO3/H2O2 | 20/13–30 |
Upper crust | [136] | 75 | |||
Continental crust | [40] | 65 | |||
sampling year | reference | grain size | Zn mg/kg | ||
Oslo | 1994 | [95] | <0.1 mm | HNO3/HClO4/HF | 412 ± 61 |
Budapest city | 2004–05 | [59] | <0.075 mm | HNO3/HCl | 891/317–2110 |
Madrid | 1990 | [95] | <0.1 mm | HNO3/HClO4/HF | 476 ± 30 |
Murcia | 2010 | [96] | <2 mm | HNO3/HClO4 | 377 ± 32 |
Samsun residential-low traffic | 2007 | [97] | none | HNO3/HCl | 78.8/43.0–89.0 |
Samsun residential-high traffic | 2007 | [97] | none | HNO3/HCl | 106/72–142 |
Samsun industrial | 2007 | [97] | none | HNO3/HCl | 117/53–173 |
Chelyabinsk | 2017 | [92] | <1 mm | HNO3/HF/HClO4 | 154/66–616 |
Delhi | 2009 | [90] | <0.075 mm | unknown | 285/188–524 |
Dhaka industrial + old | 2004 | [98] | <1 mm | XRF | 169 ± 71 |
Dhaka commercial | 2004 | [98] | <1 mm | XRF | 154 ± 42 |
Dhaka residential | 2004 | [98] | <1 mm | XRF | 97 ± 29 |
Dhaka residential-low traffic | 2004 | [98] | <1 mm | XRF | 65 ± 15 |
Seoul before rainy season | 1996 | [76] | <0.18 mm | HNO3/HClO4 | 247/61–1200 |
Seoul after rainy season | 1996 | [76] | <0.18 mm | HNO3/HClO4 | 197/49–1160 |
Seoul | 2004–05 | [59] | <0.075 mm | HNO3/HCl | 1476/1075–2065 |
Shanghai | 2006 | [38] | <0.125 mm | HF/HNO3/HClO4 | 734/82–2136 |
Hong Kong | 2000 | [82] | <2 mm | HNO3 | 1450 ± 869 |
Sydney | 2009 | [36] | <0.425 mm | HNO3/HCl | 1109/557–2117 |
Suva(Fiji) | 2015 | [88] | none | HNO3/HCl | 685/146–3263 |
Ottawa | 1993 | [86] | 0.1–0.25 mm | HF/HNO3/HClO4 | 99/29–194 |
Buenos Aires | 2009 | [35] | <0.1 mm | HNO3-HCl-HF | 766/370–1228 |
Luanda | 2002 | [100] | <0.1 mm | HCl/HNO3/H2O2 | 271/142–1412 |
References
- Zhang, S.; Wang, L.; Zhang, W.; Shi, X.; Lu, X.; Li, X. Pollution assessment and source apportionment of trace metals in urban topsoil of Xi´an City in Northwest China. Arch. Environ. Contam. Toxicol. 2019, 77, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Ajmone-Marsan, F.; Biasioli, M. Trace elements in soils of urban areas. Water Air Soil Pollut. 2010, 213, 121–143. [Google Scholar] [CrossRef]
- Werkenthin, M.; Kluge, B.; Wessolek, G. Metals in European roadside soils and soil solutions. A Review. Environ. Pollut. 2014, 189, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Hanfi, M.Y.; Mostafa, M.Y.A.; Zhukovsky, M.V. Heavy metal contamination in urban surface sediments: Sources, distribution, contamination control and remediation. Environ. Monit. Assess. 2020, 192, 32. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.M.; Li, H.R.F.; Wang, L.; Tudi, M.; Yang, L. Concentration, spatial distribution, contamination degree and human health risk assessment of heavy metals in urban soils across China between 2003 and 2019—A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 3099. [Google Scholar] [CrossRef]
- Biasioli, M.; Barberis, R.; Ajmone-Marsan, F. The influence of a large city on some soil properties and metals content. Sci. Total Environ. 2006, 356, 154–164. [Google Scholar] [CrossRef]
- Pichtel, J.; Sawyer, H.T.; Czarnowska, K. Spatial and temporal distribution of metals in soils in Warsaw. Pol. Environ. Pollut. 1997, 98, 169–174. [Google Scholar] [CrossRef]
- Ljung, K.; Otabbong, E.; Selinus, O. Natural and anthropogenic metal inputs to soils in urban Uppsala, Sweden. Environ. Geochem. Health 2006, 28, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Madrid, L.; Diaz-Barientos, E.; Reinoso, R.; Madrid, F. Metals in urban soils of Sevilla: Seasonal changes and relations with other soil components and plant contents. Eur. J. Soil Sci. 2004, 55, 209–217. [Google Scholar] [CrossRef]
- Lehmann, A.; Stahr, K. Nature and significance of anthropogenic urban soils. J. Soils Sediments 2007, 7, 247–260. [Google Scholar] [CrossRef]
- Greinert, A. The heterogeneity of urban soils in the light of their properties. J. Soils Sediments 2015, 15, 1725–1737. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Seijo, A.; Andrade, M.L.; Vega, F.A. Origin and spatial distribution of metals in urban soils. J. Soils Sediments 2017, 17, 1514–1526. [Google Scholar] [CrossRef]
- Stoma, G.V.; Manucharova, N.A.; Belokopytova, N.A. Biological activity of microbial communities in soils of some Russian cities. Eurasian Soil Sci. 2020, 53, 760–771. [Google Scholar] [CrossRef]
- Salomon, M.J.; Watts-Williams, S.J.; McLaughlin, M.J.; Cavagnaro, T.R. Urban soil health: A city-wide survey of chemical and biological properties of urban agriculture soils. J. Clean. Prod. 2020, 275, 122900. [Google Scholar] [CrossRef]
- Kompostverordnung 2001. Verordnung des Bundesministeriums für Land und Forstwirtschaft, Umwelt und Wasserwirtschaft über Qualitätsanforderungen an Komposte aus Abfällen, BGBl II Nr. 292/2001. Available online: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20001486 (accessed on 29 October 2020).
- Pfleiderer, S.; Englisch, M.; Reiter, R. Current state of heavy metal contents in Vienna soils. Environ. Geochem. Health 2012, 34, 665–675. [Google Scholar] [CrossRef]
- Puskas, I.; Farsang, A. Diagnostic indicators for characterizing urban soils of Szeged, Hungary. Geoderma 2009, 148, 267–281. [Google Scholar] [CrossRef]
- Jamshidi, A.; Goodarzi, A.R.; Razmara, P. Long-term impacts of road salt application on the groundwater contamination in urban environments. Environ. Sci. Pollut. Res. 2020, 27, 30162–30177. [Google Scholar] [CrossRef]
- Davies, J.; O’Riordan, R.; Stevens, C.; Quinton, J.; Boyko, C. Urban soil ecosystem services: Contributing to sustainable urban development. In Proceedings of the 22nd EGU General Assembly, Vienna, Austria, 4–8 May 2020; pp. 2020–20260. [Google Scholar]
- Burt, R.; Hernandez, L.; Shaw, R.; Tunstead, R.; Ferguson, R.; Peaslee, S. Trace element concentration and speciation in selected urban soils in New York City. Environ. Monit. Assess. 2014, 186, 195–215. [Google Scholar] [CrossRef]
- Aparin, B.; Sukhacheva, E.; Bulysheva, A.M.; Lazareva, M. Humus horizons of soils in urban ecosystems. Eurasian Soil Sci. 2018, 59, 1008–1020. [Google Scholar] [CrossRef]
- Qin, G.; Wu, J.; Zheng, X.; Zhou, R.; Wei, Z. Phosphorus forms and associated properties along an urban-rural gradient in Southern China. Water 2019, 11, 2504. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.G.; Bai, S.Q. Contamination and potential mobility assessment of heavy metals in urban soils of Hangzhou, China: Relationship with different land uses. Environ. Earth Sci. 2010, 60, 1481–1490. [Google Scholar] [CrossRef]
- Rodriguez-Salazar, M.T.; Morton-Bermea, O.; Hernández Álvarez, E.; Lozano, R.; Tapia-Cruz, V. The study of metal contamination in urban top soils of Mexico City using GIS. Environ. Earth Sci. 2011, 62, 899–905. [Google Scholar] [CrossRef]
- Švedova, B.; Matysek, D.; Raclevska, H.; Kucbel, M.; Kantor, P.; Šafar, M.; Raclavsky, K. Variation of the chemical composition of street dust in a highly industrial city in the interval of ten years. J. Environ. Manag. 2020, 267, 110506. [Google Scholar] [CrossRef]
- Sager, M. Chemical speciation and environmental mobility of heavy metals in sediments and soils. In Hazardous Metals in the Environment; Stoeppler, M., Ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Sager, M. Ein vereinfachtes Verfahren zur Bestimmung mobiler Bodenfraktionen—Am Beispiel an Böden aus Apfelkulturen. VDLUFA Schr. 2014, 70, 537–551. [Google Scholar]
- Sager, M. Environmental aspects of trace elements in coal combustion. Toxicol. Environ. Chem. 1999, 71, 159–183. [Google Scholar] [CrossRef]
- Birke, M.; Rauch, U. Urban geochemistry: Investigations in the Berlin metropolitan area. Environ. Geochem. Health 2000, 22, 233–248. [Google Scholar] [CrossRef]
- Hjortenkrans, D.S.T.; Bergbäck, B.G.; Häggerud, A.V. Transveral immission patterns and leachability of heavy metals in roadside soils. J. Environ. Monit. 2008, 10, 739–746. [Google Scholar] [CrossRef]
- Manta, D.S.; Angelone, M.; Bellanca, A.; Neri, R.; Sprovieri, M. Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Sci. Total Environ. 2002, 300, 229–243. [Google Scholar] [CrossRef]
- Sager, M.; Belocky, R. Zur Geochemie, Mineralogie und Sedimentaologie von Feinsedimenten aus dem Donaustauraum Altenwörth, Niederöstereich. Mitt. Osterreichischen Geol. Ges. 1990, 83, 267–281. [Google Scholar]
- Shi, G.; Chen, Z.L.; Xu, S.Y.; Zhang, J.; Wang, L.; Bi, C.J.; Teng, J.Y. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ. Pollut. 2008, 156, 251–260. [Google Scholar] [CrossRef]
- Ondraček, J.; Schwarz, J.; Ždimal, V.; Andelova, L.; Vodička, P.; Bizek, V.; Tsai, C.-J.; Chen, S.-C.; Smolik, J. Contribution of the road traffic to air pollution in the Prague city (busy speedway and suburban crossroads). Atmos. Environ. 2011, 45, 5090–5100. [Google Scholar] [CrossRef]
- Fujiwara, F.; Rebagliati, R.J.; Dawidowski, L.; Gómez, D.; Polla, G.; Pereyra, V.; Smichowski, P. Spatial and chemical patterns of size fractionated road dust collected in a megacity. Atmos. Environ. 2011, 45, 1497–1505. [Google Scholar] [CrossRef]
- Mohammed, T.; Loganathan, P.; Kensila, A.; Vigneswaran, S.; Kandasami, J. Enrichment, interrelationship, and fractionation of heavy metals in road deposited sediments of Sydney, Australia. Soil Res. 2012, 50, 229–238. [Google Scholar] [CrossRef]
- De Silva, S.; Ball, A.S.; Huynh, T.; Reichman, S.M. Metal accumulation in roadside soil in Melbourne, Australia: Effect of road age, trafdfic intensity and vehicular speed. Environ. Pollut. 2016, 208, 102–109. [Google Scholar] [CrossRef]
- Ribeiro, A.P.; Figueiredo, A.M.G.; Sarkis, J.E.S.; Hortellani, M.A.; Markert, B. First study of anthropogenic Pt, Pd and Rh levels in soils from major avenues of Sao Paulo City, Brazil. Environ. Monit. Assess. 2012, 184, 7373–7382. [Google Scholar] [CrossRef]
- Horváth, A.; Szücs, P.; Bidló, A. Soil condition and pollution in urban soils: Evaluation of the soil quality in a Hungarian town. J. Soils Sediments 2015, 15, 1825–1835. [Google Scholar] [CrossRef] [Green Version]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Dousova, B.; Lhotka, M.; Buzek, F.; Čejkova, B.; Jackova, I.; Bednar, V.; Hajek, P. Environmental interaction of antimony and arsenic near busy traffic nodes. Sci. Total Environ. 2020, 702, 134642. [Google Scholar] [CrossRef]
- Iijima, A.; Sato, K.; Yano, K.; Kato, M.; Kozawa, K.; Furuta, N. Emission factor for antimony in brake abrasion dusts as one of the major atmospheric antimony sources. Environ. Sci. Technol. 2008, 42, 2937–2942. [Google Scholar] [CrossRef]
- Varrica, D.; Bardelli, F.; Dongarrá, G.; Tamburo, E. Speciation of Sb in airborne particulate matter vehicle brake linings, and brake pad wear residues. Atmos. Environ. 2013, 64, 18–24. [Google Scholar] [CrossRef]
- Hays, M.D.; Seung, H.C.; Baldauf, R.; Schauer, J.J.; Shafer, M. Particle size distributions of metal and non-metal elements in an urban near-highway environment. Atmos. Environ. 2011, 45, 925–934. [Google Scholar] [CrossRef]
- Panwar, B.S.; Grewal, M.S.; Marton, L. Kinetics of cadmium in different Indian and Hungarian soils: Incubation study at field capacity. Acta Agron. Hung. 2007, 55, 165–171. [Google Scholar] [CrossRef]
- Panwar, B.S.; Marton, L.; Kadar, I.; Anton, A.; Nemeth, T. Phytoremediation: A novel green technology to restore soil health. Acta Agron. Hung. 2010, 58, 443–458. [Google Scholar] [CrossRef]
- Panwar, B.S.; Kadar, I.; Biro, B.; Rajkai-Vegh, K.; Ragalyi, P.; Rekasi, M.; Marton, L. Phytoremediation: Enhanced cadmium (Cd) accumulation by organic manuring, EDTA and microbial inoculants (Azotobacter sp., Pseudomonas sp.) in Indian mustard (Brassica juncea L.). Acta Agron. Hung. 2011, 59, 101–107. [Google Scholar] [CrossRef]
- Sager, M.; Spornberger, A. Effect of copper foliar spray upon the contents of other elements in apple leaves. Int. J. Environ. Agric. Res. 2017, 3, 28–36. [Google Scholar] [CrossRef]
- Rouillon, M.; Gore, D.B.; Taylor, M.P. The nature and distribution of Cu, Zn, Hg and Pb in urban soils of a regional city Lithgow/Australia. Appl. Geochem. 2013, 36, 83–91. [Google Scholar] [CrossRef]
- Laszlo, M. Crop demand of manganese. Environ. Geochem. Health 2012, 34, 123–134. [Google Scholar]
- Moreno-Alvarez, J.M.; Orellana-Gallego, R.; Fernandez-Marcos, M.L. Potentially toxic elements in urban soils of Havana, Cuba. Environments 2020, 7, 43. [Google Scholar] [CrossRef]
- Sager, M. Nickel—A trace element hardly considered. Int. J. Hortic. Agric. Food Sci. (IJHAF) 2019, 3, 2456–8635. [Google Scholar] [CrossRef]
- López Salvador, L.; Mónaco, L. Vanadium, nickel and sulfur in crude oils and source rocks and their relationship with biomarkers: Implications for the origin of crude oils in Venezuelan basins. Org. Geochem. 2017, 104, 53–68. [Google Scholar] [CrossRef]
- Baize, D.; Saby, N.; Deslais, W. Content of Eight Trace Metals (Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn) in French Arable Topsoils; INRA: Angers, France, 2007. [Google Scholar]
- Ross, S.M.; Wood, M.D.; Copplestone, D.; Warrine, M.; Crook, P. Environmental Concentrations of Heavy Metals in UK Soil and Herbage; Environment Agency: Bristol, UK, 2007. [Google Scholar]
- Müller, G. Schwermetalle in den Sedimenten des Rheins—Veränderungen seit 1971. Umschau 1979, 79, 778–783. [Google Scholar]
- Müller, G. Die Schwermetallbelastung der Sedimente des Neckars und seiner Nebenflüsse: Eine Bestandsaufnahme. Chem. Ztg. 1981, 105, 157–164. [Google Scholar]
- Chon, H.T.; Kim, K.W.; Kim, J.Y. Metal contamination of soils and dusts in Seoul metropolitan city, Korea. Environ. Geochem. Health 1995, 17, 139–146. [Google Scholar] [CrossRef]
- Sager, M.; Chon, H.T.; Marton, L. Spatial variation of contaminant elements of roadside dust samples from Budapest (Hungary) and Seoul (Republic of Korea), including Pt, Pd and Ir. Environ Geochem Health 2015, 37, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.K.; Kim, D.H.; Kim, T.S.; Park, J.G.; Chung, I.R.; Kim, J.H.; Kim, H. Evaluation on natural background of the soil heavy metals in Korea. J. Soil Groundw. Environ. 2009, 14, 32–39. [Google Scholar]
- Gondi, F.; Hartányi, Z.; Nemecz, E.; Sipos, P.; Szendrei, G. A hazai környezet-geokémiai kutatások néhány eredménye. Magy. Kémiai Folyóirat-Összefoglaló Közlemények 2004, 109–110, 204–210. [Google Scholar]
- Steiermärkisches landwirtschaftliches Bodenschutzgesetz, LGBl Nr. 66/1987.
- Li, R.X.; Yuan, Y.; Li, C.H.W.; Yang, M.; Wang, X.R. Environmental health and ecological risk assessment of soil heavy metal pollution in the coastal cities of Estuarine Bay—A case study of Hangzhou Bay, China. Toxics 2020, 8, 75. [Google Scholar] [CrossRef]
- Konstantinova, E.; Minkina, T.; Sushkova, S.; Konstantinov, R.V.D.; Sherstnev, A. Urban soil geochemistry of an intensively developing Siberian city: A case study of Tyumen, Russia. J. Environ. Manag. 2019, 239, 366–375. [Google Scholar] [CrossRef]
- Paterson, E.; Sanka, M.; Clark, L. Urban soils as pollutant sinks—A case study from Aberdeen, Scotland. Appl. Geochem. 1996, 11, 129–131. [Google Scholar] [CrossRef]
- Andersson, M.; Ottesen, R.T.; Langedal, M. Geochemistry of urban surface soils monitoring in Trondheim, Norway. Geoderma 2010, 156, 112–118. [Google Scholar] [CrossRef]
- Bityukova, L.; Shogenova, A.; Birke, M. Urban geochemistry: A study of element distributions in the soils of Tallinn (Estonia). Environ. Geochem. Health 2000, 22, 173–193. [Google Scholar] [CrossRef]
- Taraškevičius, R.; Zinkute, R. Lithuanian soil quality criteria based on the heavy metal levels, and their application in urban territories with different industrial impact. Pol. Geol. Inst. Spec. Pap. 2008, 24, 117–122. [Google Scholar]
- Ciupa, T.; Suligowski, R.; Kosłowski, R. Trace metals in surface soils under different land uses in Kielce city, south-central Poland. Environ. Earth Sci. 2020, 79, 14. [Google Scholar] [CrossRef]
- Kreiner, P. Wiener Bodenbericht 2003. Beiträge zum Umweltschutz 70, Wien. Available online: https://www.wien.gv.at/umweltschutz/pdf/bodenber03.pdf (accessed on 29 October 2020).
- Plahl, F.; Rogalski, W.; Gilnreiner, G.; Erhart, E. Vienna’s biowaste compost—Quality development and effects of input materials. Waste Manag. Res. 2002, 20, 127–133. [Google Scholar] [CrossRef]
- Mihailovič, A.; Budinski Petkovič, L.; Popov, S.; Ninkov, J.; Vasin, J.; Ralevič, N.M.; Vučinič-Vasič, M. Spatial distribution of metals in urban soil of Novi Sad, Serbia. GIS based approach. J. Geochem. Explor. 2015, 150, 104–114. [Google Scholar] [CrossRef]
- Sager, M.; Kralik, M. Environmental impact of historical harbour city Zadar (Croatia) on the composition of marine sediments and soils. Environ. Geochem. Health 2012, 34, 83–93. [Google Scholar] [CrossRef]
- Montereali, M.R.; Angelone, M.; Manojlovič, M.; Armiento, G.; Čabilovski, R.; Crovato, C.; Cassata, M.; Massanisso, P.; Vidojevič, D. Mobility of Potentially Toxic Elements in Urban Soils: A Comparison between Rome and Novi Sad; Soicietá Geologica: Italiana, Roma, 2015; Volume 35, (Suppl. S2). [Google Scholar]
- Cicchella, D.; Zuzolo, D.; Albanese, S.; Fedele, L.; Di Tota, I.; Guagliardi, I.; Thiombane, M.; de Vivo, B.; Lima, A. Urban soil contamination in Salerno (Italy): Concentrations and patterns of major, minor, trace and ultra-trace elements in soils. J. Geochem. Explor. 2020, 213, 106519. [Google Scholar] [CrossRef]
- Chon, H.T.; Ahn, J.S.; Jung, M.C. Seasonal variations and chemical forms of heavy metals in soils and dusts from the satellite cities of Seoul Korea. Environ. Geochem. Health 1998, 20, 77–86. [Google Scholar] [CrossRef]
- Sun, Y.B.; Zhou, Q.X.; Xie, X.K.; Liu, R. Spatial sources and risk assessment of heavy metal contaminations of urban soils in typical regions of Shenyang, China. J. Hazard. Mat. 2010, 174, 455–462. [Google Scholar] [CrossRef]
- Chen, X.; Xia, X.H.; Zhao, Y.; Zhang, P. Heavy metal concentrations in road side soils and correlation with urban traffic in Beijing, China. J. Hazard. Mat. 2010, 181, 640–646. [Google Scholar] [CrossRef]
- Liu, L.L.; Liu, Q.Y.; Ma, J.; Wu, H.W.; Qu, Y.J.; Gong, Y.W.; Yang, S.H.; An, Y.F.; Zhou, Y. Heavy metal(loid)s in the topsoils of urban parks in Beijing, China: Concentrations, potential sources and risk assessment. Environ. Pollut. 2020, 260, 114083. [Google Scholar] [CrossRef]
- Wang, X.S.; Qin, Y. Spatial distribution of metals in urban topsoils of Xuzhou (China): Controlling factors and environmental implications. Environ. Geol. 2006, 49, 905–914. [Google Scholar] [CrossRef]
- Lee, C.S.; Li, X.D.; Shi, W.Z.; Cheung, S.C.; Thornton, I. Metal contamination in urban, suburban and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Sci. Total Environ. 2006, 356, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Li, X.D.; Poon, C.S.; Liu, P.S. Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl. Geochem. 2001, 16, 1361–1368. [Google Scholar] [CrossRef]
- Thuy, H.T.T.; Tobschall, H.J.; An, P.V. Distribution of heavy metals in urban soils—A case study of Danang-Hoian Area (Vietnam). Environ. Geol. 2000, 39, 603–610. [Google Scholar] [CrossRef]
- Wilcke, W.; Müller, S.; Kanchanakool, N.; Zech, W. Urban soil contamination in Bangkok: Heavy metal and aluminum partitioning in topsoils. Geoderma 1998, 86, 211–228. [Google Scholar] [CrossRef]
- Adimalla, N.; Qian, H.; Nandan, M.J.; Hursthouse, A.S. Potentially toxic element (PTEs) pollution in surface soils in a typical urban region of South India: An application of health risk assessment and distribution pattern. Ecotox. Environ. Saf. 2020, 203, 111055. [Google Scholar] [CrossRef]
- Rasmussen, P.E.; Subramanian, K.S.; Jessiman, B.J. A multi-element profile of housedust in relation to exterior dust and soils in the city of Ottawa, Canada. Sci. Total Environ. 2001, 267, 125–140. [Google Scholar] [CrossRef]
- Da Silva, E.B.; Gao, P.; Xu, M.; Guan, D.X.; Tang, X.J.; Ma, L.Q. Background concentrations of trace metals As, Ba, Cd, Co, Cu, Ni, Pb, Se and Zn in 214 Florida urban soils: Different cities and land uses. Environ. Pollut. 2020, 264, 114737. [Google Scholar] [CrossRef] [PubMed]
- Maeaba, W.; Prasad, S.; Chandra, S. First assessment of metals contamination in road dust and roadside soil of Suva City, Fiji. Arch. Environ. Contamin. Toxicol. 2019, 77, 249–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odewande, A.A.; Abimbola, A.F. Contamination indices and heavy metal concentrations in urban soil of Ibadan metropolis, southwestern Nigeria. Environ. Geochem. Health 2008, 30, 243–254. [Google Scholar] [CrossRef]
- Suryawanshi, P.V.; Rajaram, B.S.; Bhanarkar, A.D.; Chalapati Rao, C.V. Determining heavy metal contamination of road dust in Delhi, India. Atmosfera 2016, 29, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Gabarron, M.; Faz, A.; Acosta, J.A. Effect of different industrial activities on heavy metal concentration and chemical in topsoil and road dust. Environ. Earth Sci. 2017, 76, 129. [Google Scholar] [CrossRef]
- Krupnova, T.G.; Rakova, O.V.; Gavrilkina, S.V.; Antoshkina, E.G.; Baranov, E.O.; Yakimova, O.N. Road dust elements contamination, sources, dispersed composition, and human health risk in Chelyabinsk, Russia. Chemosphere 2020, 261, 127799. [Google Scholar] [CrossRef]
- McDonald, J.D.; Chow, J.C.; Peccia, J.; Liu, Y.S.; Chand, R.; Hidy, G.M.; Mauderly, J.L. Influence of collection region and site type on the consumption of paved road dust. Air Qual. Atmos. Health 2013, 6, 615–628. [Google Scholar] [CrossRef]
- Lee, H.Y.; Chon, H.T.; Sager, M.; Marton, L. Platinum pollution in road dusts, roadside soils and tree barks in Seoul, Korea. Environ. Geochem. Health 2012, 34, 5–12. [Google Scholar] [CrossRef] [PubMed]
- De Miguel, E.; Llamas, J.F.; Chacón, E.; Berg, T.; Larssen, S.; Røyset, O.; Vadset, M. Origin and patterns of distribution of trace elements in street dust: Unleaded petrol and urban lead. Atmos. Environ. 1997, 31, 2733–2740. [Google Scholar] [CrossRef]
- Acosta, J.A.; Faz, A.; Kalbitz, K.; Jansen, B.; Martínez-Martínez, S. Partitioning of heavy metals over different chemical fraction in street dust of Murcia (Spain) as a basis for risk assessment. J. Geochem. Explor. 2014, 144, 298–305. [Google Scholar] [CrossRef]
- Kabadayi, F.; Cesur, H. Determination of Cu, Pb, Zn, Ni, Co, Cd and Mn in road dusts of Samsun City. Environ. Monit. Assess. 2010, 168, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Ishiga, H. Trace metal concentrations in street dusts of Dhaka city, Bangladesh. Atmos. Environ. 2006, 40, 3835–3844. [Google Scholar] [CrossRef]
- Furuta, N.; Iijima, A.; Sakai, K.; Sato, K. Concentrations, enrichment and predominant sources of Sb and other trace elements in size classified airborne particulate matter collected in Tokyo from 1995 to 2004. J. Environ. Monit. 2005, 7, 1155–1161. [Google Scholar] [CrossRef]
- Ferreira, B.L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- Greksa, A.; Ljevnaič-Mišič, B.; Grabič, J.; Benka, P.; Blagojevič, B.; Sekulič, M. Potential urban trees for mitigating heavy mnetal pollution in the city of Novi Sad, Serbia. Environ. Monit. Assess. 2019, 191, 636. [Google Scholar] [CrossRef] [PubMed]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Sager, M.; Park, J.H.; Chon, H.T. The effect of soil bacteria and perlite on plant growth and soil proportion in metal contaminated samples. Water Air Soil Pollut. 2007, 179, 265–281. [Google Scholar] [CrossRef]
- Rauret, G.; López-Sánchez, J.F.; Sahuquillo, A.; Barahona, E.; Lachica, M.; Ure, A.; Davidson, C.M.; Gomez, A.; Lück, D.; Bacon, J.; et al. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. J. Environ. Monit. 2000, 2, 228–233. [Google Scholar] [PubMed]
- Sager, M. Microwave assisted digestion of organic materials with KClO3/HNO3 for the analysis of trace metals and non-metals. Anal. Chem. Indian J. 2011, 10, 101–108. [Google Scholar]
- Fernandez Espinosa, A.J.; Rodriguez, M.T.; Barragais De La Rosa, F.J.; Jimenez, S.J.C. A chemical speciaton of trace metals for fine urban particles. Atmos. Environ. 2002, 36, 773–780. [Google Scholar] [CrossRef]
- Farago, M.E.; Kavanagh, P.; Blanks, R.; Kelly, J.; Kazantzis, G.; Thornton, I.; Simpson, P.R.; Cook, J.M.; Parry, S.; Hall, G.M. Platinum metal concentrations in urban road dust and soil in the United Kingdom. Fresenius J. Anal. Chem. 1996, 354, 660–663. [Google Scholar] [CrossRef]
- Ward, N.I.; Dudding, L.M. Platinum emissions and levels in motorway dust samples: Influence of traffic characteristics. Sci. Total Environ. 2004, 334/335, 457–463. [Google Scholar] [CrossRef]
- Lesniewska, B.A.; Godlewska-Zylkiewicz, B.A.; Hulanicki, A. The effect of hydrofluoric acid on the determination of platinum and palladium in road dust applying inductively coupled plasma mass spectrometry. Chem. Anal. 2005, 50, 945–950. [Google Scholar]
- Alsenz, H.; Zereini, F.; Wiseman, C.L.S.; Cottmann, W. Analysis of palladium concentrations in airborne particulate matter with reductive co-precipitation, He-collision gas, and ID-ICP-Q.-MS. Anal. Bioanal. Chem. 2009, 395, 1919–1927. [Google Scholar] [CrossRef]
- Lesniewska, B.A.; Godlewska-Zyłkiewicz, B.; Bocca, B.; Caimi, S.; Caroli, S.; Hulanicki, A. Platinum, palladium and rhodium content in road dust and common grass in Białystok area (Poland): A pilot study. Sci. Total Environ. 2004, 321, 93–104. [Google Scholar] [CrossRef]
- Komendova, R.; Ježek, S. The distribution of platinum in the environment in large cities: A model study from Brno, Czech Republic. Int. J. Environ. Sci. Technol. 2019, 16, 3109–3116. [Google Scholar] [CrossRef]
- Dirksen, F.; Zereini, F.; Skerstupp, B.; Urban, H. PGE Konzentrationen in Böden entlang der Autobahnen A45 und A3 im Vergleich zu Böden im Einflussbereich der edelmetallverarbei-tenden Industrie in Hanau. In Emissionen von Platinmetallen; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Helmers, E.; Schwarzer, M.; Schuster, M. Comparison of Pd and Pt in environmental matrices. Environ. Sci. Pollut. Res. 1998, 5, 44–50. [Google Scholar] [CrossRef]
- Jackson, M.T.; Prichard, H.M.; Sampson, J. Platinum group elements in sewage sludge and incinerator ash in the United Kingdom: Assessment of PGE sources and mobilities in cities. Sci. Total Environ. 2010, 408, 1276–1285. [Google Scholar] [CrossRef]
- Whiteley, J.D.; Murray, F. Anthropogenic platinum group element (Pt, Pd and Rh) concentrations in road dust and roadside soils from Perth, Western Australia. Sci. Total Environ. 2003, 317, 121–135. [Google Scholar] [CrossRef]
- Čubelič, M.; Pecoroni, R.; Schäfer, J.; Eckhardt, J.D.; Berner, Z.; Stüben, D. Verteilung verkehrsbedingter Edelmetallimmissionen in Böden. Z. Umweltchem. Umweltwiss. Schadst. Forsch. 1997, 9, 249–258. [Google Scholar] [CrossRef]
- Cichella, D.; De Vivo, B.; Lima, A. Palladium and platinum concentrations in soils from Napoli metropolitan areas, Italy: Possible effects of catalytic exhausts. Sci. Total Environ. 2003, 308, 121–131. [Google Scholar] [CrossRef]
- Kan, S.F.; Tanner, P.A. Platinum concentrations in ambient aerosol at a coastal site in South China. Atmos. Environ. 2005, 39, 2625–2630. [Google Scholar] [CrossRef]
- Bocca, B.; Petrucci, F.; Alimonti, A.; Caroli, S. Traffic related platinum and rhodium concentrations in the atmosphere of Rome. J. Environ. Monit. 2003, 5, 563–568. [Google Scholar] [CrossRef]
- Djingova, R.; Heidenreich, H.; Kovacheva, P.; Markert, B. On the determination of platinum group elements in environmental matrices by inductively coupled plasma mass spectrometry and microwave digestion. Anal. Chim. Acta 2003, 489, 245–251. [Google Scholar] [CrossRef]
- Fritsche, J.; Meisel, T. Determination of anthropogenic input of Ru, Rh, Pd, Re, Os, Ir and Pt in soils along Austrian motorways by isotope dilution ICPMS. Sci. Total Environ. 2004, 325, 145–154. [Google Scholar] [CrossRef]
- Zereini, F.; Skerstupp, B.; Alt, F.; Helmers, E.; Urban, H. Geochemical behaviour of platinum-group elements (PGE) in particulate emissions by automobile exhaust catalysts: Experimental results and environmental investigations. Sci. Total Environ. 1997, 206, 137–146. [Google Scholar] [CrossRef]
- Merget, R.; Rosner, G. Evaluation of the health risk of platinum group metals emitted from automotive catalytic converters. Sci. Total Environ. 2001, 270, 165–173. [Google Scholar] [CrossRef]
- Tsogas, G.Z.; Giokas, D.I.; Vlessidis, A.G.; Aloupi, M.; Angelidis, M.O. Survey of the distribution and time-dependent increase of platinum-group element accumulations along urban roads in Ioannina (NW Greece). Water Air Soil Pollut. 2009, 20, 265–281. [Google Scholar] [CrossRef]
- Marcheselli, M.; Sala, L.; Mauri, M. Bioaccumulation of PGEs and other traffic-related metals in populations of the small mammal Apodemus Sylvaticus. Chemosphere 2010, 80, 1247–1254. [Google Scholar] [CrossRef]
- Lustig, S.; Zang, S.; Michalke, B.; Schramel, P.; Beck, W. Transformation behaviour of different platinum compounds in a clay-like humic soil: Speciation investigations. Sci. Total Environ. 1996, 188, 195–204. [Google Scholar] [CrossRef]
- Turner, A.; Price, S. Bioaccessibility of platinum group elements in automotive catalytic converter particulates. Environ. Sci. Technol. 2008, 42, 9443–9448. [Google Scholar] [CrossRef]
- Murer, E.; Strauss, P.; Schmidt, S.; Weisgram, R. Optimizing urban tree soil substrate fot the city of Vienna. EGU 2015-9632. Geophys. Res. 2015, 17, 9632. [Google Scholar]
- Morgenroth, J. Root growth response of platanus orientalis to porous pavements. Arboric. Urban For. 2011, 37, 45–50. [Google Scholar]
- Fumagalli, A.F.; Ronchini, B.; Terzaghi, M.; Lanfranchi, G.; Chirico, M.; Cherchi, N.L. Platinum, palladium, and rhodium deposition to the prinus laurus cerasus leaf surface as an indicator of the vehicular traffic pollution in the Varese area. Environ. Sci. Pollut. Res. Int. 2010, 17, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Becker, J.S.; Bellis, D.; Staton, I.; McLeod, C.W.; Dombovari, J. Determination of trace elements including platinum in tree bark by ICP mass spectrometry. Fresenius J. Anal. Chem. 2000, 368, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Wrobel, M.; Chudecka, J.; Tomaszewicz, T.; Gałczynska, M. Contents of heavy metals in roadside soils and spatial distribution of metallophyte plant species on the road sides of Szczecin Lowland. Ecol. Chem. Eng. 2009, 16, 91–98. [Google Scholar]
- Tankari Dan-Badjo, A.; Ducoulombier-Crépineau, C.; Soligot, C.; Feidt, C.; Rychen, G. Deposition of platinum group elements and polycyclic aromatic hydrocarbons on ryegrass exposed to vehicular traffic. Agron. Sustain. Dev. 2007, 27, 261–266. [Google Scholar] [CrossRef]
- Schäfer, J.; Puchelt, H. Platinum-group-metals (PGM) emitted from automobile catalytic converters and their distribution in roadside soils. J. Geochem. Explor. 1998, 64, 307–314. [Google Scholar] [CrossRef]
- Rudnick, R.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry, 1st ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 3, pp. 1–64. [Google Scholar]
| Exchangeable |
| Carbonates |
| Mn oxide |
| Fe oxide |
| Organics + sulfides |
| Residual |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sager, M. Urban Soils and Road Dust—Civilization Effects and Metal Pollution—A Review. Environments 2020, 7, 98. https://doi.org/10.3390/environments7110098
Sager M. Urban Soils and Road Dust—Civilization Effects and Metal Pollution—A Review. Environments. 2020; 7(11):98. https://doi.org/10.3390/environments7110098
Chicago/Turabian StyleSager, Manfred. 2020. "Urban Soils and Road Dust—Civilization Effects and Metal Pollution—A Review" Environments 7, no. 11: 98. https://doi.org/10.3390/environments7110098
APA StyleSager, M. (2020). Urban Soils and Road Dust—Civilization Effects and Metal Pollution—A Review. Environments, 7(11), 98. https://doi.org/10.3390/environments7110098