Tall Wheatgrass (Thinopyrum ponticum): Flood Resilience, Growth Response to Sea Water Immersion, and Its Capacity for Erosion and Flooding Control of Coastal Areas
Abstract
1. Introduction
2. Materials and Methods
2.1. Flood Resilience Experiment
2.2. Post-Immersion Growth Experiment
3. Results
3.1. Critical Decomposition Time
3.2. Viability
3.3. Growth Response
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef]
- Durant, D.; Kernéïs, E.; Meynard, J.M.; Choisis, J.P.; Chataigner, C.; Hillaireau, J.M.; Rossignol, C. Impact of storm Xynthia in 2010 on coastal agricultural areas: The Saint Laurent de la Prée research farm’s experience. J. Coast. Conserv. 2018, 22, 1177–1190. [Google Scholar] [CrossRef]
- Hoggart, S.; Hanley, M.; Parker, D.; Simmonds, D.; Bilton, D.; Filipova-Marinova, M.; Franklin, E.; Kotsev, I.; Penning-Rowsell, E.; Rundle, S.; et al. The consequences of doing nothing: The effects of seawater flooding on coastal zones. Coast. Eng. 2014, 87, 169–182. [Google Scholar] [CrossRef]
- Castelle, B.; Marieu, V.; Bujan, S.; Splinter, K.D.; Robinet, A.; Sénéchal, N.; Ferreira, S. Impact of the winter 2013–2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology 2015, 238, 135–148. [Google Scholar] [CrossRef]
- Wahl, T.; Brown, S.; Haigh, I.D.; Nilsen, J.E.Ø. Coastal Sea Levels, Impacts, and Adaptation. J. Mar. Sci. Eng. 2018, 6, 19. [Google Scholar] [CrossRef]
- Weisse, R.; Bellafiore, D.; Menéndez, M.; Méndez, F.; Nicholls, R.J.; Umgiesser, G.; Willems, P. Changing extreme sea levels along European coasts. Coast. Eng. 2014, 87, 4–14. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef]
- Vergiev, S. The impact of sea water immersion on the viability of psammophilous species Carex colchica and its capacity as dune stabilizer. C. R. Acad. Bulg. Sci. 2018, 71, 648–654. [Google Scholar] [CrossRef]
- Nordstrom, K.; Jackson, N.L.; Bruno, M.S.; de Butts, H.A. Municipal initiatives for managing dunes in coastal residential areas: A case study of Avalon, New Jersey, USA. Geomorphology 2002, 47, 137–152. [Google Scholar] [CrossRef]
- Donker, J.; Van Maarseveen, M.; Ruessink, G. Spatio-Temporal Variations in Foredune Dynamics Determined with Mobile Laser Scanning. J. Mar. Sci. Eng. 2018, 6, 126. [Google Scholar] [CrossRef]
- Everard, M.; Jones, L.; Watts, B. Have we neglected the societal importance of sand dunes? An ecosystem services perspective. Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20, 476–487. [Google Scholar] [CrossRef]
- Vergiev, S. The growth response of Galilea mucronata (L.) Parl. to sea water immersion. GSC Biol. Pharm. Sci. 2018, 5, 103–108. [Google Scholar] [CrossRef]
- Vergiev, S. The response of Galilea mucronata (L.) Parl. to simulated flooding experiments and its capacity as dune stabilizer. Am. J. Environ. Sci. Eng. 2017, 1, 34–39. [Google Scholar]
- Schoutens, K.; Heuner, M.; Minden, V.; Schulte Ostermann, T.; Silinski, A.; Belliard, J.; Temmerman, S. How effective are tidal marshes as nature-based shoreline protection throughout seasons? Limnol. Oceanogr. 2019. [Google Scholar] [CrossRef]
- Narayan, S.; Nicholls, R.; Trifonova, E.; Filipova-Marinova, M.; Kotsev, I.; Vergiev, S.; Hanson, S.; Clarke, D. Coastal habitats within flood risk assessments: Role of the 2D SPR approach. Coast. Eng. Proc. 2012, 1, 12. [Google Scholar] [CrossRef]
- Ogura, A.; Yura, H. Effects of sandblasting and salt spray on inland plants transplanted to coastal sand dunes. Ecol. Res. 2008, 23, 107–112. [Google Scholar] [CrossRef]
- Maun, M.A. The Biology of Coastal Sand Dunes, 1st ed.; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Clark, J.R. Coastal Zone Management Handbook, 1st ed.; CRC Press/Lewis Publishers: New York, NY, USA, 1995. [Google Scholar] [CrossRef]
- Borsjea, B.W.; van Wesenbeeck, B.K.; Dekker, F.; Paalvast, P.; Bouma, T.J.; van Katwijk, M.M.; de Vries, M.B. How ecological engineering can serve in coastal protection. Ecol. Eng. 2011, 37, 113–122. [Google Scholar] [CrossRef]
- Hart, A.T.; Hilton, M.J.; Wakes, S.J.; Dickinson, K.J.M. The impact of Ammophila arenaria foredune development on downwind aerodynamics and parabolic dune development. J. Coast. Res. 2012, 28, 112–122. [Google Scholar] [CrossRef]
- Hilton, M.; Harvey, N.; Hart, A.; James, K.; Arbuckle, C. The impact of exotic dune grass species on foredune development in Australia and New Zealand: A case study of Ammophila arenaria and Thinopyrum junceiforme. Aust. Geogr. 2006, 37, 313–334. [Google Scholar] [CrossRef]
- Weintraub, F.C. Grasses Introduced into the United States; USDA Agric. Handb. 58; U.S. Gov. Print. Office: Washington, DC, USA, 1953.
- Barkworth, M.E.; Anderton, L.K.; Capels, K.C.; Long, S.; Piep, M.B. Manual of Grasses for North America; Intermountain Herbarium and Utah State University Press: Logan, UT, USA, 2007. [Google Scholar]
- Kozhuharov, S. Poaceae. In Field Guide to the Vascular Plants in Bulgaria, 1st ed.; Kozhuharov, S., Ed.; BAS Press: Sofia, Bulgaria, 1992. [Google Scholar]
- Vergiev, S.; Filipova-Marinova, M.; Trifonova, E.; Kotsev, I.; Pavlov, D. The impact of sea water immersion on the viability of psammophilous species Leymus racemosus subsp. sabulosus and Ammophila arenaria. C. R. Acad. Bulg. Sci. 2013, 66, 211–216. [Google Scholar] [CrossRef]
- Vergiev, S. GIS mapping of plant biodiversity hotspots in the Bulgarian floristic region Black Sea Coast. SocioBrains 2018, 52, 171–178. [Google Scholar]
- Vergiev, S. GIS mapping of plant biodiversity hotspots in the Bulgarian floristic region Northern Black Sea Coast for 2018. SocioBrains 2019, 54, 196–201. [Google Scholar]
- Vergiev, S. Comparative study of the response of four native to the Bulgarian Black Sea Coast psammophytes to simulated flooding experiments. Annu. Res. Rev. Biol. 2017, 16, 1–8. [Google Scholar] [CrossRef]
- Trifonova, E.; Valchev, N.; Keremedchiev, S.; Kotsev, I.; Eftimova, P.; Todorova, V.; Konsulova, T.; Doncheva, V.; Filipova-Marinova, M.; Vergiev, S.; et al. Case studies world-wide: Mitigating flood and erosion risk using sediment management for a tourist City: Varna, Bulgaria. In Coastal Risk Management in a Changing Climate, 1st ed.; Zanuttigh, B., Nicholls, R., Vanderlinden, J., Burcharth, H., Thompson, R., Eds.; Butterworth-Heinemann: Oxford, UK, 2014; pp. 358–383. [Google Scholar] [CrossRef]
- Vergiev, S.; Filipova-Marinova, M.; Trifonova, E.; Kotsev, I. A rapid method for vulnerability assessment of coastal plant communities from flooding caused by unusual storms. In Proceedings of Seminar of Ecology with International Participation 2017, 1st ed.; Chankova, S., Ed.; Farago: Sofia, Bulgaria, 2018; pp. 146–152. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Van Eck, W.H.J.M.; Lenssen, J.P.M.; van de Steeg, H.M.; Blom, C.W.P.M.; de Kroon, H. Seasonal Dependent Effects of Flooding on Plant Species Survival and Zonation: A Comparative Study of 10 Terrestrial Grassland Species. Hydrobiologia 2006, 565, 59–69. [Google Scholar] [CrossRef]
- Konlechner, T.M.; Hilton, M.J. The potential for marine dispersal of Ammophila arenaria (marram grass) rhizome. J. Coast. Res. 2009, 56, 434–437. [Google Scholar]
- Sykes, M.T.; Wilson, J.B. The effect of salinity on the growth of some New Zealand sand dune species. Acta Bot. Neerl. 1989, 38, 173–182. [Google Scholar] [CrossRef]
- Konlechner, T.M.; Orlovich, D.A.; Hilton, M.J. Restrictions in the sprouting ability of an invasive coastal plant, Ammophila arenaria, from fragmented rhizomes. Plant Ecol. 2016, 217, 521–532. [Google Scholar] [CrossRef]
- Rachel, A.; Marcel, R. The effect of sea-water submergence on rhizome bud viability of the introduced Ammophila arenaria and the native Leymus mollis in California. J. Coast. Conserv. 2000, 6, 107–111. [Google Scholar] [CrossRef]
- Blunk, S.L.; Jenkins, B.M.; Aldas, R.E.; Zhang, R.; Zhongli, P.; Yu, C.W.; Skar, N.R.; Zheng, Y. Fuel Properties and Characteristics of Saline Biomass; Paper Number 056132; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2005. [Google Scholar]
- Zheng, Y.; Zhongli, P.; Zhang, R.; Jenkins, B.M.; Blunk, S. Medium-Density Particle Board from Saline ’Jose’ Tall Wheatgrass; Paper Number 056127; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2005. [Google Scholar]
- Roundy, B.A. Emergence and establishment of basin wild rye and tall wheatgrass in relation to moisture and salinity. J. Range Mgmt. 1995, 38, 126–131. [Google Scholar] [CrossRef]
- Retana, J.; Parker, D.R.; Amrhein, C.; Page, A.L. Growth and trace element concentrations of five plant species grown in a highly saline soil. J. Environ. Qual. 1993, 22, 805–811. [Google Scholar] [CrossRef]
- White, A.C.; Colmer, T.D.; Cawthray, G.R.; Hanley, M.E. Variable response of three Trifolium repens ecotypes to soil flooding by seawater. Ann. Bot. 2014, 114, 347–355. [Google Scholar] [CrossRef]
- Liew, J.; Andersson, L.; Boström, U.; Forkman, J.; Hakman, I.; Magnuski, E. Regeneration capacity from buds on roots and rhizomes in five herbaceous perennials as affected by time of fragmentation. Plant Ecol. 2013, 214, 1199–1209. [Google Scholar] [CrossRef]
- Hanley, M.E.; Yip, P.Y.S.; Hoggart, S.; Bilton, D.T.; Rundle, S.D.; Thompson, R.C. Riding the storm: The response of Plantago lanceolata to simulated tidal flooding. J. Coast. Conserv. 2013, 17, 799–803. [Google Scholar] [CrossRef]
- Obeso, J.R. The costs of reproduction in plants. New Phytol. 2002, 155, 321–348. [Google Scholar] [CrossRef]
- Hanley, M.E.; Gove, T.L.; Cawthray, G.R.; Colmer, T.D. Differential responses of three coastal grassland species to seawater flooding. J. Plant Ecol. 2017, 10, 322–330. [Google Scholar] [CrossRef][Green Version]
- Harris, D.; Davy, A.J. Regenerative potential of Elymus farctus from rhizome fragments and seed. J. Ecol. 1986, 74, 1057–1067. [Google Scholar] [CrossRef]
- Hack, J.T. Dunes of the western Navajo Country. Geogr. Rev. 1941, 31, 240–263. [Google Scholar] [CrossRef]
- Valkanov, A.; Marinov, H.; Danov, H.; Vladev, P. The Black Sea, 1st ed.; Georgi Bakalov Publishing House: Varna, Bulgaria, 1978. [Google Scholar]
- Vergiev, S.; Filipova-Marinova, M.; Giosan, L.; Pavlov, D.; Slavchev, V. Pollen-based quantitative reconstruction of holocene vegetation in Varna Lake area (Northeastern Bulgaria) using modelling and simulation approach. C. R. Acad. Bulg. Sci. 2014, 71, 648–654. [Google Scholar]
- Tewari, P.; Saxena, A.K.; Rao, O.P. Effect of sodicity and salinity on seedling growth of two early successional agroforestry tree species. Trop. Ecol. 2006, 47, 125–132. [Google Scholar]
- Upreti, K.K.; Murti, G.S.R. Response of grape rootstocks to salinity: Changes in root growth, polyamines and abscisic acid. Biol. Plant. 2010, 54, 730–734. [Google Scholar] [CrossRef]
Parameter | 4 °C | 13 °C | 23 °C |
---|---|---|---|
Beginning of decomposition of | |||
leaves | 168 | 168 | 168 |
stems | n/a | n/a | n/a |
roots | n/a | n/a | n/a |
Complete decomposition of | |||
leaves | 450 | 450 | 450 |
stems | n/a | n/a | n/a |
roots | n/a | n/a | n/a |
Growth of | |||
stems | 168 | 168 | 168 |
root sprouts | 168 | 168 | 168 |
Beginning of decomposition of newly grown | |||
stems | n/a | n/a | n/a |
roots | n/a | n/a | n/a |
Complete decomposition of newly grown | |||
stems | n/a | n/a | n/a |
roots | n/a | n/a | n/a |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergiev, S. Tall Wheatgrass (Thinopyrum ponticum): Flood Resilience, Growth Response to Sea Water Immersion, and Its Capacity for Erosion and Flooding Control of Coastal Areas. Environments 2019, 6, 103. https://doi.org/10.3390/environments6090103
Vergiev S. Tall Wheatgrass (Thinopyrum ponticum): Flood Resilience, Growth Response to Sea Water Immersion, and Its Capacity for Erosion and Flooding Control of Coastal Areas. Environments. 2019; 6(9):103. https://doi.org/10.3390/environments6090103
Chicago/Turabian StyleVergiev, Stoyan. 2019. "Tall Wheatgrass (Thinopyrum ponticum): Flood Resilience, Growth Response to Sea Water Immersion, and Its Capacity for Erosion and Flooding Control of Coastal Areas" Environments 6, no. 9: 103. https://doi.org/10.3390/environments6090103
APA StyleVergiev, S. (2019). Tall Wheatgrass (Thinopyrum ponticum): Flood Resilience, Growth Response to Sea Water Immersion, and Its Capacity for Erosion and Flooding Control of Coastal Areas. Environments, 6(9), 103. https://doi.org/10.3390/environments6090103