A Statistical and Spatial Analysis of Portuguese Forest Fires in Summer 2016 Considering Landsat 8 and Sentinel 2A Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Dataset
2.2. Preprocessing
2.3. Spectral Sensitivity
2.4. NDVI Computation
2.5. NBR Computation
3. Results and Discussion
3.1. Spectral Sensitivity
3.2. Spatial Analysis
3.3. Statistical Analysis
3.4. Normalized Burn Ratio (NBR)
3.5. Field Data
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Quintano, C.; Fernández-Manso, A.; Fernández-Mans, O. Combination of Landsat and Sentinel-2 MSI data for initial assessing of burn severity. Int. J. Appl. Earth Observ. Geoinf. 2018, 64, 221–225. [Google Scholar] [CrossRef]
- Oliveira, S.; Félix, F.; Nunes, A.; Lourenço, L.; Laneve, G.; Sebastian, A. Mapping wildfire vulnerability in Mediterranean Europe. Testing a stepwise approach for operational purposes. J. Environ. Manag. 2018, 206, 158–169. [Google Scholar] [CrossRef]
- Sa, A.; Benali, A.; Fernandes, P.; Pinto, R.; Trigo, R.; Salis, M.; Russo, A.; Jerez, S.; Soares, P.; Schroeder, W.; Pereira, J. Evaluating fire growth simulations using satellite active fire data. Remote Sens. Environ. 2017, 190, 302–317. [Google Scholar] [CrossRef]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildl. Fire 2006, 15, 319–345. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildl. Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Jain, T.; Pilliod, D.; Graham, R. Tongue-tied. Wildfire 2004, 4, 22–36. [Google Scholar]
- Chafer, C.J.; Noonan, M.; Macnaught, E. The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney wildfires. Int. J. Wildl. Fire 2004, 13, 227–240. [Google Scholar] [CrossRef]
- Rogan, J.; Franklin, J. Mapping Wildfire Burn Severity in Southern California Forests and Shrublands Using Enhanced Thematic Mapper Imagery. Geocarto Int. 2001, 16, 91–106. [Google Scholar] [CrossRef]
- Schroeder, W.; Prins, E.M.; Giglio, L.; Csiszar, I.; Schmidt, C.C.; Morisette, J.; Morton, D.C. Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sens. Environ. 2008, 112, 2711–2726. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Quayle, B.; Lorenz, E.; Morelli, F. Active fire detection using Landsat-8/OLI data. Remote Sens. Environ. 2016, 185, 210–220. [Google Scholar] [CrossRef]
- Chuvieco, E. Earth Observation of Wildland Fires in Mediterranean Ecosystems; Springer: New York, NY, USA, 2009. [Google Scholar]
- Borrelli, P.; Armentetas, D.; Panagos, P.; Modugno, S.; Schutt, B. The Implications of Fire Management in the Andean Paramo: A Preliminary Assessment Using Satellite Remote Sensing. Remote Sens. 2015, 7, 11061–11082. [Google Scholar] [CrossRef]
- Polychronaki, A.; Gitas, I.Z. The development of an operational procedure for burned-area mapping using object-based classification and ASTER imagery. Int. J. Remote Sens. 2010, 31, 1113–1120. [Google Scholar] [CrossRef]
- Navarro, G.; Caballero, I.; Silva, G.; Parra, P.; Vázquez, À.; Caldeira, R. Evaluation of forest fire on Madeira Island using Sentinel 2A MS Imagery. Int. J. Appl. Earth Observ. Geoinf. 2017, 58, 97–106. [Google Scholar] [CrossRef]
- Mallinis, G.; Mitsopoulos, I.; Chysafi, I. Evaluating and comparing Sentinel 2A and Landsat 8 Operational Land Imager (OLI) spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece. GISci. Remote Sens. 2018, 55, 1–18. [Google Scholar] [CrossRef]
- Key, C.; Benson, N. Landscape Assessment: Ground Measure of Severity, the Composite Burn Index; and Remote Sensing of Severity, the Normalized Burn Ratio. In FIREMON: Fire Effects Monitoring and Inventory System; USDA Forest Service, Rocky Mountains Research Station General Technical Report RMRS-GTR-164-CD: Fort Collins, CO, USA, 2006. [Google Scholar]
- Soverel, N.O.; Perrakis, D.D.B. Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. Remote Sens. Environ. 2010, 114, 1896–1909. [Google Scholar] [CrossRef]
- Chuvieco, E.; Martin, M.P.; Palacios, A. Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. Int. J. Remote Sens. 2002, 23, 5103–5110. [Google Scholar] [CrossRef]
- Escuin, E.; Navarro, R.; Fernández, P. Fire Severity Assessment by Using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) Derived from LANDSAT TM/ETM Images. Int. J. Remote Sens. 2008, 29, 1053–1073. [Google Scholar] [CrossRef]
- Dragozi, E.; Gitas, I.Z.; Bajocco, S.; Stavrakoudis, D.G. Exploring the Relationship between Burn Severity Field Data and Very High Resolution GeoEye Images: The Case of the 2011 Evros Wildfire in Greece. Remote Sens. 2016, 8, 566. [Google Scholar] [CrossRef]
- Soulard, C.E.; Albano, C.M.; Villareal, M.L.; Walker, J.J. Continuous 1985–2012 Landsat Monitoring to Assess Fire Effects on Meadows in Yosemite National Park, California. Remote Sens. 2016, 8, 371. [Google Scholar] [CrossRef]
- Chu, T.; Guo, X. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review. Remote Sens. 2014, 6, 470–520. [Google Scholar] [CrossRef]
- Teodoro, A.C.; Duarte, L. Forest fire risk maps: A GIS open source application – a case study in Norwest of Portugal. Int. J. Geogr. Inf. Sci. 2013, 27, 699–720. [Google Scholar] [CrossRef]
- Duarte, L.; Teodoro, A.; Monteiro, A.T.; Cunha, C.; Gonçalves, H. PhenoMetrics: An open source software application to assess vegetation phenology metrics. Comput. Electron. Agric. 2018, 148, 82–94. [Google Scholar] [CrossRef]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- French, N.H.F.; Kasischke, E.S.; Hall, R.J.; Murphy, K.A.; Verbyla, D.L.; Hoy, E.E.; Allen, J.L. Using Landsat data to assess fire and burn severity in the North American boreal forest region: An overview and summary of results. Int. J. Wildl. Fire 2008, 17, 443–462. [Google Scholar] [CrossRef]
- Keeley, J.E.; Davis, F.W. Terrestrial Vegetation of California; Barbour, M.G., Keeler-Wolf, T., Schoenherr, A.A., Eds.; University of California Press: Los Angeles, VA, USA, 2007; pp. 339–366. [Google Scholar]
- Keeley, J.E.; Zedler, P.H. Evolution of life histories in Pinus. In Ecology and Biogeography of Pinus; Richardson, D.M., Ed.; Cambridge University Press: Cambridge, UK, 1998; pp. 219–250. [Google Scholar]
- Fernandes, P.M.; Rigolot, E. The fire ecology and management of maritime pine (Pinus pinaster Ait). For. Ecol. Manag. 2007, 241, 1–13. [Google Scholar] [CrossRef]
- Rubel, F.; Kottek, M. Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol. Z. 2010, 19, 135–141. [Google Scholar] [CrossRef]
- Congedo, L. Semi-Automatic Classification Plugin Documentation. Available online: https://semiautomaticclassificationmanual-v5.readthedocs.io/en/latest/ (accessed on 1 May 2017).
- Chavez, P. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. Environ. 1988, 2, 459–479. [Google Scholar] [CrossRef]
- ESA. Sentinel-2 User Handbook. 2015. Available online: https://sentinels.copernicus.eu/documents/247904/ 685211/Sentinel-2_User_Handbook (accessed on 13 September 2017).
- Vermote, E.; El Saleouset, N.Z.; Justice, C.O. Atmospheric correction of MODIS data in the visible to middle infrared: First results. Remote Sens. Environ. 2002, 83, 97–111. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Martin, C.; Belen, F. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jimenéz-Munoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Lüdtke;, N.; Panzeri, S.; Brown, M.; Broomhead, D.; Knowles, J.; Montemurro, M.A.; Kell, D.B. Information-theoretic sensitivity analysis: A general method for credit assignment in complex networks. J. R. Soc. Interface 2007, 5, 223–235. [Google Scholar]
- Convertino, M.; Muñoz-Carpena, M.; Chu-Agor, M.L.; Kiker, G.A.; Linkov, I. Untangling drivers of species distributions: Global sensitivity and uncertainty analyses of MaxEnt. Environ. Model. Softw. 2014, 51, 296–309. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Lhermitte, S.; Verstraeten, W.; Goossens, R. Evaluation of Pre/Post-Fire Differenced Spectral Indices for Assessing Burn Severity in a Mediterranean Environment with Landsat Thematic Mapper. Int. J. Remote Sens. 2011, 32, 3521–3537. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Remote Sensing Measure of Severity: The Normalized Burn Ratio. In FIREMON Landscape Assessment (LA) V4 Sampling and Analysis Methods, LA1-16; USFS Rocky Mountain Research Station: Collins, CO, USA, 2004. [Google Scholar]
- Van Wagtendonk, J.W.; Root, R.R.; Key, C.H. Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sens. Environ. 2004, 92, 397–340. [Google Scholar] [CrossRef]
- De Santis, A.; Chuvieco, E. GeoCBI: A modified version of the Composite Burn Index for the initial assessment of the short-term burn severity from remotely sensed data. Remote Sens. Environ. 2009, 113, 554–562. [Google Scholar] [CrossRef]
- Huang, H.; Roy, D.; Boschetti, L.; Zhang, H.; Yan, L.; Kumar, S.; Gomez-Dans, J.; Li, J. Separability Analysis of sentinel-2A Multi-Spectral Instrument (MSI) Data for Burned Area Discrimination. Remote Sens. 2016, 8, 873. [Google Scholar] [CrossRef]
- Teodoro, A.; Amaral, A. Evaluation of forest fires in Portugal Mainland during 2016 summer considering different satellite datasets. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology, Warsaw, Poland, 11–14 September 2017. [Google Scholar]
- ICNF. Departamento de Gestão de Áreas Públicas e de Proteção Florestal. IN: 9º Relatório Provisório de Incêndios Florestais. Available online: http://www2.icnf.pt/portal/florestas/dfci/Resource/doc/rel/2017/9-rel-prov-1jan-16out-2017_v2.pdf / (accessed on 1 October 2017).
- Veraverbeke, S.; Lhermitte, S.; Verstraeten, W.; Goossens, R. Evaluating Landsat Thematic Mapper Spectral Indices for Estimating Burn Severity of the 2007 Peloponnese Wildfires in Greece. Int. J. Wildl. Fire 2010, 19, 558–569. [Google Scholar] [CrossRef]
- Delegido, J.; Pezzola, A.; Casella, A.; Winschel, C.; Urrego, E.P.; Jimenez, J.C.; Sobrino, J.A.; Soria, G.; Moreno, J. Fire severity estimation in southern of the Buenos Aires province, Argentina, using Sentinel-2 and its comparison with Landsat-8. Revista Teledetección 2018, 51, 47–60. [Google Scholar] [CrossRef]
- Amos, C.; Petropoulos, G.P.; Ferentinos, K.P. Determining the use of Sentinel-2A MSI for wildfire burning & severity detection. Int. J. Remote Sens. 2019, 40, 905–930. [Google Scholar]
Sentinel 2A | Landsat 8 | ||||
---|---|---|---|---|---|
Spectral Bands | Central Wavelength (nm) | Spatial Resolution (m) | Spectral Bands | Central Wavelength (nm) | Spatial Resolution (m) |
B1 | 443 | 60 | B1 | 440 | 30 |
B2 | 490 | 10 | B2 | 480 | 30 |
B3 | 560 | 10 | B3 | 560 | 30 |
B4 | 665 | 10 | B4 | 655 | 30 |
B5 | 705 | 20 | B5 | 865 | 30 |
B6 | 740 | 20 | B6 | 1610 | 30 |
B7 | 783 | 20 | B7 | 2200 | 30 |
B8 | 842 | 10 | B8 | 590 | 15 |
B8a | 865 | 20 | B9 | 1370 | 30 |
B9 | 945 | 60 | B10 | 10.895 * | 100 ** (30) |
B10 | 1380 | 60 | B11 | 12.005 * | 100 ** (30) |
B11 | 1610 | 20 | |||
B12 | 2190 | 20 |
Satellite/Sensor | Acquisition Date | Event | Municipality |
---|---|---|---|
Landsat 8 | 14 July 2016 12 April 2017 | Prefire event Postfire event | Arouca |
14 March 2016 19 March 2017 | Prefire event Postfire event | V. N. Cerveira | |
12 June 2016 28 April 2017 | Prefire event Postfire event | Sintra | |
Sentinel 2A | 19 July 2016 15 April 2017 | Prefire event Postfire event | Arouca |
24 March 2016 19 March 2017 | Prefire event Postfire event | V. N. Cerveira | |
16 June 2016 3 May 2017 | Prefire event Postfire event | Sintra |
Severity Level | dNBR Range (Not Scaled)- USGS | dNBR Range (Not Scaled)- Mediterranean Local Conditions |
---|---|---|
Enhanced Regrowth, high (postfire) | <−0.250 | |
Enhanced Regrowth, low (postfire) | −0.250 to −0.101 | |
Unburned | −0.100 to 0.099 | |
Low Severity | 0.100 to 0.269 | <0.319 |
Moderate–low Severity | 0.270 to 0.439 | 0.320–0.649 |
Moderate–high Severity | 0.440 to 0.659 | |
High Severity | >0.660 | >0.650 |
NDVI | Arouca | V. N. Cerveira | Sintra | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Landsat 8 | Sentinel 2A | Landsat 8 | Sentinel 2A | Landsat 8 | Sentinel 2A | |||||||
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
Minimum | 0.125 | 0.036 | −0.038 | −0.126 | 0.257 | 0.282 | 0.052 | 0.029 | −0.169 | −0.193 | −0.276 | −0.339 |
Maximum | 0.912 | 0.872 | 0.834 | 0.845 | 0.776 | 0.819 | 0.724 | 0.736 | 0.912 | 0.904 | 0.873 | 0.883 |
Mean | 0.666 | 0.391 | 0.546 | 0.323 | 0.611 | 0.521 | 0.517 | 0.397 | 0.653 | 0.684 | 0.611 | 0.619 |
Standard dev. | 0.116 | 0.140 | 0.112 | 0.142 | 0.127 | 0.156 | 0.144 | 0.174 | 0.178 | 0.161 | 0.183 | 0.171 |
Median | 0.687 | 0.365 | 0.564 | 0.296 | 0.660 | 0.511 | 0.578 | 0.390 | 0.705 | 0.739 | 0.671 | 0.676 |
Variance | 0.020 | 0.005 | 0.002 | 0.006 | 0.003 | 0.005 | 0.004 | 0.007 | 0.005 | 0.004 | 0.055 | 0.005 |
Mean Perc. Variation | −41.291% | −40.842% | −14.730% | −23.210% | +4.747% | +1.310% |
dNBR | Sentinel 2A | Landsat 8 | ||
---|---|---|---|---|
Arouca | Selected Area | Arouca | Selected Area | |
Minimum | −0.807 | −0.492 | −0.950 | −0.388 |
Maximum | 0.987 | 0.954 | 0.607 | 0.569 |
Mean | 0.135 | 0.271 | −0.035 | 0.161 |
Standard dev. | 0.188 | 0.187 | 0.220 | 1.151 |
Median | 0.086 | 0.283 | 0.124 | 0.172 |
Municipality | Total Area (ha) | Total Area Burned (ha) | |
---|---|---|---|
Arouca | 32,800 | 24,628 | Forest area—18,369 ha (74.6%) |
Bush—6259 ha (25.4%) | |||
V. N. Cerveira | 10,800 | 6755 | Forest area—755 ha (11.6%) |
Bush—5889 ha (87.2%) |
Municipality | Landsat 8 Area Burned (Estimated) | Sentinel 2A Area Burned (Estimated) | Field Data Area Burned (Field) | Differences Landsat 8/Sentinel 2A |
---|---|---|---|---|
Arouca | 27,440 ha | 26,443 ha | 24,628 ha | 11.1%/6.8% |
V.N. Cerveira | 7656 | 7284 | 6755 ha | 13.3%/7.8% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teodoro, A.; Amaral, A. A Statistical and Spatial Analysis of Portuguese Forest Fires in Summer 2016 Considering Landsat 8 and Sentinel 2A Data. Environments 2019, 6, 36. https://doi.org/10.3390/environments6030036
Teodoro A, Amaral A. A Statistical and Spatial Analysis of Portuguese Forest Fires in Summer 2016 Considering Landsat 8 and Sentinel 2A Data. Environments. 2019; 6(3):36. https://doi.org/10.3390/environments6030036
Chicago/Turabian StyleTeodoro, Ana, and Ana Amaral. 2019. "A Statistical and Spatial Analysis of Portuguese Forest Fires in Summer 2016 Considering Landsat 8 and Sentinel 2A Data" Environments 6, no. 3: 36. https://doi.org/10.3390/environments6030036
APA StyleTeodoro, A., & Amaral, A. (2019). A Statistical and Spatial Analysis of Portuguese Forest Fires in Summer 2016 Considering Landsat 8 and Sentinel 2A Data. Environments, 6(3), 36. https://doi.org/10.3390/environments6030036