Resource Use Efficiency as a Climate Smart Approach: Case of Smallholder Maize Farmers in Nyando, Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Method
- f = the stochastic production frontier function to be estimated;
- Yi = Subplot maize production in Kilograms;
- Labouri = Adult labour days including family and hired labour;
- Landi = size of subplot in hectares;
- Seedsi = market value in Kenyan Shillings of maize seeds;
- Carboni = Percentage amount of carbon in the soil;
- Erosivityi = Indexed extent of soil erosion (1 = Slight; 2 = Moderate; 3 = High; 4 = Severe);
- P/PEi = Ratio of Precipitation to Potential Evapotranspiration;
- Varietyi = 1 if household adopted an improved maize variety;
- vi − ui = Combined random error term;
- vi = Random error term;
- ui = Technical inefficiency
- ui= Subplot level technical inefficiency;
- Residi =Residue management (=1 if residue is left on the field);
- Intercropi =Intercropping (=1 if a subplot is intercropped with Beans);
- Distancei =Distance in Metres of the subplot from the household;
- Radioi =Number of radios in the household;
- Ploughi = 1 if the household owns a plough;
- Agei =Age of the household head in years;
- Adultsi = Number of persons above 15 years of age in the household;
- Genderi = 1 if subplot is farmed by male;
- Inci =Average off-farm income of the household;
- = A randomly distributed statistical error term.
3. Results
3.1. Production Function Estimates
3.2. Technical Efficiency
3.3. Linking Soil Conservation Practices to Soil Capital
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organizaton of the United Nations (FAO). Climate-Smart Agriculture Sourcebook; FAO: Rome, Italy, 2013; Available online: http://www.fao.org/docrep/018/i3325e/i3325e.pdf (accessed on 20 August 2016).
- Thornton, P.K.; Lipper, L. How Does Climate Change Alter Agricultural Strategies to Support Food Security? Policies, Institutions and Markets; IFPRI: Washington, DC, USA, 2014. [Google Scholar]
- Collier, P.; Conway, G.; Venables, T. Climate Change and Africa. Oxf. Rev. Econ. Policy 2008, 24, 337–353. [Google Scholar] [CrossRef]
- Alliance for a Green Revolution in Africa (AGRA). Africa Agriculture Status Report: Climate Change and Smallholder Agriculture in Sub-Saharan Africa; Alliance for a Green Revolution in Africa (AGRA): Nairobi, Kenya, 2014. [Google Scholar]
- IPCC. Climate Change 2014. Synthesis Report: Summary for Policy Makers. 2014. Available online: https://www.ipcc.ch/pdf/assessment-report/ar5/syr/ar5_syr_final_spm.pdf (accessed on 28 October 2016).
- Food and Agriculture Organizaton of the United Nations (FAO). Climate-Smart Agriculture: Policies, Practices and Financing for Food Security, Adaptation and Mitigation; Food and Agriculture Organizaton of the United Nations (FAO): Rome, Italy, 2010. [Google Scholar]
- Branca, G.; McCarthy, N.; Lipper, L.; Jolejole, M.C. Climate Smart Agriculture: A Synthesis of Empirical Evidence of Food Security and Mitigation Benefits from Improved Cropland Management; Working Paper; FAO: Rome, Italy, October 2011; pp. 1–27. [Google Scholar]
- Arslan, A.; McCarthy, N.; Lipper, L.; Asfaw, S.; Cattaneo, A.; Kokwe, M. Climate Smart Agriculture? Assessing the Adaptation Implications in Zambia. J. Agric. Econ. 2015, 66, 753–780. [Google Scholar] [CrossRef]
- Abate, G.T.; Francesconi, G.N.; Getnet, K. Impact of Agricultural Cooperatives on Smallholders’ TE: Empirical Evidence from Ethiopia. Ann. Public Coop. Econ. 2014, 85, 1–30. [Google Scholar] [CrossRef]
- Mburu, S.; Ackello-Ogutu, C.; Mulwa, R. Analysis of Economic Efficiency and Farm Size: A Case Study of Wheat Farmers in Nakuru District, Kenya. Econ. Res. Int. 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Sanchez, P.A. Soil fertility and hunger in Africa. Science 2002, 295, 2019–2020. [Google Scholar] [CrossRef] [PubMed]
- Swallow, B.M.; Sang, J.K.; Nyabenge, M.; Bundotich, D.K.; Duraiappah, A.K.; Yatich, T.B. Tradeoffs, Synergies and Traps among Ecosystem Services in the Lake Victoria Basin of East Africa. Environ. Sci. Policy 2009, 12, 504–519. [Google Scholar] [CrossRef]
- Raburu, P.; Okeyo-Owuor, J.; Kwena, F. Community Based Approach to the Management of Nyando Wetland, Lake Victoria Basin; Mcpow Media Ltd.: Nairobi, Kenya, 2012. [Google Scholar]
- Verchot, L.; Boye, A.; Zomer, R. Baseline Report Nyando River Basin:Western Kenya Integrated Ecosystem Management Project Findings from the Baseline Surveys; International Centre for Research in Agroforestry: Nairobi, Kenya, 2008. [Google Scholar]
- Khisa, P.S.; Uhlenbrook, S.; van Dam, A.A.; Wenninger, J.; van Griensven, A.; Abira, M. Ecohydrological characterization of the Nyando wetland, Lake Victoria, Kenya: A state of system (SoS) analysis. Afr. J. Environ. Sci. Technol. 2013, 7, 417–434. [Google Scholar]
- Waruru, B.K.; Wanjogu, S.N.; Njoroge, C.R. Biophysical Baseline Information for the Nyando Catchment Area. In The Soils of the Nyando Catchment Area; Rep. No. 12. P.1-175; Kenya Ministry of Agriculture: Nairobi, Kenya, 2003. [Google Scholar]
- Mohajan, H.K. Food and Nutrition Scenario of Kenya. Am. J. Food Nutr. 2014, 2, 28–38. [Google Scholar]
- Rufino, M.C.; Quiros, C.; Boureima, M.; Desta, S.; Douxchamps, S.; Herrero, M.; Kiplimo, J.; Lamissa, D.; Mango, J.; Moussa, A.S.; et al. Developing Generic Tools for Characterizing Agricultural Systems for Climate and Global Change Studies (IMPACTlite—Phase 2); Report to CCAFS; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2013. [Google Scholar]
- Song, J.; Oh, D.H.; Kang, J. Robust Estimation in Stochastic Frontier Models. Comput. Stat. Data Anal. 2017, 105, 243–267. [Google Scholar] [CrossRef]
- Marenya, P.P.; Barrett, C.B. State-conditional fertilizer yield response on western Kenya farms. Am. J. Agric. Econ. 2009, 91, 991–1006. [Google Scholar] [CrossRef]
- Zorn, M.; Komac, B. Erosivity. In Encyclopedia of Natural Hazards; Bobrowsky, P.T., Ed.; Springer: New York, NY, USA, 2013; pp. 289–290. [Google Scholar]
- Coelli, T.J.; Rao, D.S.P.; O’Donnell, C.J.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis; Springer: Berlin, Germany, 2005. [Google Scholar]
- Cullinane, K.; Wang, T.-F.; Song, D.-W.; Ji, P. The TE of Container Ports: Comparing Data Envelopment Analysis and Stochastic Frontier Analysis. Transp. Res. Part. A Policy Pract. 2006, 40, 354–374. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data. Empir. Econ. 1995, 20, 325–332. [Google Scholar] [CrossRef]
- Barbier, E.B. Valuing Ecosystem Services as Productive Inputs. Econ. Policy 2007, 22, 177–229. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Pascual, U.; Termansen, M.; Abson, D. The Economic Value of Soil Carbon. In Soil Carbon: Science, Management and Policy for Multiple Benefits; CPI Group: Oxfordshire, UK, 2015; pp. 179–187. [Google Scholar]
- Muoneke, C.O.; Ogwuche, M.A.O.; Kalu, B.A. Effect of Maize Planting Density on the Performance of Maize/soybean Intercropping System in a Guinea Savannah Agroecosystem. Afr. J. Agric. Res. 2007, 2, 667–677. [Google Scholar]
- Raji, J.A. Intercropping Soybean and Maize in a Derived Savanna Ecology. Afr. J. Biotechnol. 2007, 6, 1885–1887. [Google Scholar]
- Tittonell, P.; Vanlauwe, B.; Leffelaar, P.A.; Shepherd, K.D.; Giller, K.E. Exploring diversity in soil fertility management of smallholder farms in western Kenya: II. Within-farm variability in resource allocation, nutrient flows and soil fertility status. Agric. Ecosyst. Environ. 2005, 110, 166–184. [Google Scholar] [CrossRef]
- Karamagi, I. Examining Technical and Economic Efficiency: Empirical Applications Using Panel Data From Alberta Dairy Farmers; University of Alberta: Edmonton, AB, Canada, 2002. [Google Scholar]
- Coelli, T.J. Recent Developments in Frontier Modelling and Efficiency Measurement. Aust. J. Agric. Resour. Econ. 1995, 39, 219–245. [Google Scholar] [CrossRef]
- Kodde, D.A.; Palm, F.C. Wald criteria for jointly testing equality and inequality restrictions. Econometrica 1986, 54, 1243–1248. [Google Scholar] [CrossRef]
- Rho, S.; Schmidt, P. Are all firms inefficient? J. Prod. Anal. 2015, 43, 327–349. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Wang, H.; Horncastle, A.P. A Practitioner’s Guide to Stochastic Frontier Analysis Using Stata; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Lal, R. Crop Residues and Soil Carbon. In Proceedings of the Conservation Agriculture Carbon Offset Consultation, Lafayette, IN, USA, 28–30 October 2008; pp. 1–14. [Google Scholar]
- Smith, A.; Snapp, S.; Dimes, J.; Gwenambira, C.; Chikowo, R. Doubled-up Legume Rotations Improve Soil Fertility and Maintain Productivity under Variable Conditions in Maize-Based Cropping Systems in Malawi. Agric. Syst. 2016, 145, 139–149. [Google Scholar] [CrossRef]
- Kibaara, B.W. TE In Kenya’s Maize Production: An Application of the Stochastic Frontier Approach; Colorado State University: Fort Collins, CO, USA, 2005. [Google Scholar]
- Mutoka, M.C.; Hein, L.; Shisanya, C.A. Farm Diversity, Resource Use Efficiency and Sustainable Land Management in the Western Highlands of Kenya. J. Rural Stud. 2014, 36, 108–120. [Google Scholar] [CrossRef]
- Oduol, J.B.A.; Hotta, K.; Shinkai, S.; Tsuji, M. Farm Size and Productive Efficiency: Lessons from Smallholder Farms in Embu District, Kenya. J. Fac. Agric. Kyushu Univ. 2006, 51, 449–458. [Google Scholar]
- Lemba, J.; D’Haese, M.; D’Haese, L.; Frija, A.; Speelman, S. Comparing the TE of Farms Benefiting from Different Agricultural Interventions in Kenya’s Drylands. Dev. South. Afr. 2012, 29, 287–301. [Google Scholar] [CrossRef]
- Chepng’etich, E. Analysis of TE of Smallholder Sorghum Producers in Machakos and Makindu Districts in Kenya; Egerton University: Nakuru, Kenya, 2013. [Google Scholar]
- Fisher, M.; Abate, T.; Lunduka, R.W.; Asnake, W.; Alemayehu, Y.; Madulu, R.B. Drought Tolerant Maize for Farmer Adaptation to Drought in Sub-Saharan Africa: Determinants of Adoption in Eastern and Southern Africa. Clim. Chang. 2015, 133, 283–299. [Google Scholar] [CrossRef]
- Castellanos-Navarrete, A.; Tittonell, P.; Rufino, M.C.; Giller, K.E. Feeding, Crop Residue and Manure Management for Integrated Soil Fertility Management—A Case Study from Kenya. Agric. Syst. 2015, 134, 24–35. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Field, D.J. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef] [Green Version]
Variable | Description | Mean | SD | Min | Max |
---|---|---|---|---|---|
Yield | Maize Yield in Kg/sub-plot | 478.5895 | 830.6019 | 12 | 8070 |
Labour | Days per month | 5.867284 | 6.437913 | 1 | 60 |
Land | Size in hectares | 0.9649383 | 0.9686518 | 0.02 | 7.5 |
Seeds | Value in Kenyan Shilling | 4232.529 | 28,979.04 | 37.5 | 375,000 |
Carbon | % Organic Carbon in soil | 1.788 | 0.553 | 1.3 | 3.000 |
P/PE | Precipitation/Evapotranspiration | 0.950 | 0.084 | 0.759 | 1.077 |
Variety | 1 if improved seed variety | 0.818 | 0.387 | 0 | 1 |
Residue Mngment | 1 if residue is left on subplot | 0.691 | 0.463 | 0 | 1 |
Intercrop | 1 if maize is intercropped with Beans | 0.207 | 0.406 | 0 | 1 |
Gender | 1 if subplot is farmed by male | 0.688 | 0.464 | 0 | 1 |
Distance | Distance of plot from homestead in meters | 160.785 | 530.288 | 0 | 5000 |
Ploughs | 1 if HH * owns a plough | 0.485 | 0.501 | 0 | 1 |
Radio | Number of Radios in the HH | 0.941 | 0.629 | 0 | 3 |
Age | Age of HH head in Years | 52.559 | 15.389 | 20 | 84 |
Adults | Number of adults ≥ 18 years | 2.799 | 1.388 | 1 | 7 |
Income | Total Income in Ksh per HH | 3761.281 | 4796.653 | 0 | 35,000 |
Variable | Coefficient | T-Ratio |
---|---|---|
Constant | 3.814 *** | 8.900 |
Labour | 0.311 *** | 4.640 |
Land | 0.304 *** | 4.890 |
Seeds | 0.323 *** | 7.220 |
Carbon | 0.423 ** | 2.160 |
Erosivity | −0.107 | −1.490 |
P/PE | 3.123 *** | 4.270 |
Variety | 0.371 ** | 2.840 |
σu | 0.973 *** | 7.300 |
σv | 0.463 *** | 6.800 |
λ | 2.101 *** | 13.340 |
Log-Likelihood | −387.785 | |
Number of Obs | 324 |
Input | Elasticity |
---|---|
Carbon | 0.423 |
Seeds | 0.323 |
Labour | 0.311 |
Land | 0.304 |
Returns to Scale | 1.361 |
Hypothesis | Test | Result |
---|---|---|
(a) H0: λ = 0 Estimated Frontier not different from OLS | LLFU | −387.785 |
LLFR | −424.187 | |
LR | 72.04 | |
Critical Value (5% level) | 20.41 | |
Decision | Reject H0 | |
(b) H0: δ1 = δ2 = … = δ10 Variables in the inefficiency effects model are simultaneously equal to zero (No TE effects) | LLFU | −387.785 |
LLFR | −416.131 | |
LR | 56.69 | |
Critical Value (5% level) | 17.67 | |
Decision | Reject H0 | |
(c) H0: δ1 = δ2 = 0 TE effects of Soil Conservation variables are simulatenously equal to zero | LLFU | −387.87 |
LLFR | −397.23 | |
LR | 12.58 | |
Critical Value (5% level) | 5.14 | |
Decision | Reject H0 |
Variable | Coefficient | Marginal Effect | T-Ratio |
---|---|---|---|
Constant | 1.724 *** | - | 3.660 |
Residue Mngment | −0.492 ** | −0.25 | −2.280 |
Intercrop | −0.701 * | −0.35 | −2.02 |
Distance | −0.001 * | −0.43 × 10−3 | −1.700 |
Radio | −0.421 ** | −0.21 | −2.400 |
Plough | −0.598 ** | −0.30 | −2.420 |
age | 0.009 | 4.5 × 10−2 | 1.390 |
adults | −0.131 | −0.07 | −1.580 |
Income | 0.325 × 10−4 | 0.162 × 10−4 | −1.320 |
Gender | 0.073 | 0.04 | 0.330 |
Practice | Group | Test | ||||||
---|---|---|---|---|---|---|---|---|
Adopters | Non-Adopters | T | Diff | |||||
Mean | SD | n | Mean | SD | n | |||
Residue Management | 1.852 | 0.597 | 224 | 1.644 | 0.407 | 100 | 3.173 *** | −0.208 |
Intercropping | 2.119 | 0.682 | 67 | 1.702 | 0.480 | 257 | 5.775 *** | −0.418 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salat, M.; Swallow, B. Resource Use Efficiency as a Climate Smart Approach: Case of Smallholder Maize Farmers in Nyando, Kenya. Environments 2018, 5, 93. https://doi.org/10.3390/environments5080093
Salat M, Swallow B. Resource Use Efficiency as a Climate Smart Approach: Case of Smallholder Maize Farmers in Nyando, Kenya. Environments. 2018; 5(8):93. https://doi.org/10.3390/environments5080093
Chicago/Turabian StyleSalat, Mohamud, and Brent Swallow. 2018. "Resource Use Efficiency as a Climate Smart Approach: Case of Smallholder Maize Farmers in Nyando, Kenya" Environments 5, no. 8: 93. https://doi.org/10.3390/environments5080093
APA StyleSalat, M., & Swallow, B. (2018). Resource Use Efficiency as a Climate Smart Approach: Case of Smallholder Maize Farmers in Nyando, Kenya. Environments, 5(8), 93. https://doi.org/10.3390/environments5080093