Efficient Bacteria Inactivation by Ultrasound in Municipal Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Selection and Characterization
2.2. Microbial Growth Curve
- X2 = Absorbance corresponding to biomass concentration at time two, nm
- X1 = Absorbance corresponding to initial biomass concentration, nm
- dt = Difference between final and initial time, h.
2.3. Sonication Parameters
2.4. Bacteria Viability during Ultrasound Tests
2.5. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Pure Cultures Standardization of E. coli and B. subtilis
3.2. Sampling and Quantification of Coliforms and Suspended Solids
3.3. Ultrasound Treatment
3.3.1. Bacterial Inactivation
3.3.2. Suspended Solid Removal
3.3.3. Energy Consumption
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United Nations. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables; Working Paper No. ESA/P/WP.241; Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2015; Available online: https://esa.un.org/unpd/wpp/publications/files/key_findings_wpp_2015.pdf (accessed on 2 February 2018).
- UNESCO, U. N. United Nations World Report on Development of Water Resources. Wastewater, the Unused Resource. United Nations Educational Scientific; United Nations Educational Organization: Paris, France, 2015; pp. 1–7. [Google Scholar]
- Eddy, M.A.; Burton, F.L.; Tchobanoglous, G.; Tsuchihashi, R. Wastewater Engineering: Treatment and Resource Recovery, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2013; p. 2048, ISSN-13 978-0073401188. [Google Scholar]
- Vera, I.K. Performance of 14 full-scale sewage treatment plants: Comparison between four aerobic technologies regarding effluent quality, sludge production and energy consumption. Environ. Technol. 2013, 34, 2267–2275. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wanhong, G.; Wontae, L. Formation of disinfection byproducts upon chlorine dioxide preoxidation followed by chlorination or chloramination of natural organic matter. Chemosphere 2013, 91, 1477–1485. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances & Disease Registry. Available online: https://www.atsdr.cdc.gov/toxprofiles/TP.asp?id=1079&tid=36 (accessed on 5 February 2018).
- Zhang, W.; Jia, B.; Wang, Q.; Dionysois, D. Visible-light sensitization of TiO2 photocatalysts via wet chemical N-doping for the degradation of dissolved organic compounds in wastewater treatment: A review. J. Nanopart. Res. 2015, 17, 221. [Google Scholar] [CrossRef]
- Ban, Y.; Wang, X. Features and Application of titanium Dioxide Thin Films in Water Treatment. Procedia Eng. 2011, 24, 663–666. [Google Scholar]
- Lazar, M.A.; Varghese, S.; Santhosh, S.N. Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates. Catalysts 2012, 2, 572–601. [Google Scholar] [CrossRef]
- Shahid, M.; McDonagh, A.; Kim, J.H.; Shon, H.K. Magnetised titanium dioxide (TiO2) for water purification: Preparation, characterisation and application. Desalin. Water Treat. 2014, 54, 979–1002. [Google Scholar] [CrossRef]
- Li, J.; Ahn, J.; Liu, D.; Chen, S.; Ye, X.; Ding, T. Evaluation of ultrasound-induced damage to Escherichia coli and Staphylococcus aureus by flow cytometry and transmission electron microscopy. Appl. Envrion. Microbiol. 2016, 82, 1828–1837. [Google Scholar] [CrossRef] [PubMed]
- Antoniadis, A.; Poulios, I.; Nikolakaki, E.; Mantzavinos, D. Sonochemical disinfection of municipal wastewater. J. Hazard. Mater. 2007, 146, 492–495. [Google Scholar] [CrossRef] [PubMed]
- Hulsmans, A.; Joris, K.; Lambert, N.; Rediers, H.; Declerck, P.; Delaedt, Y.; Liers, S. Evaluation of process parameters of ultrasonic treatment of bacterial suspensions in a pilot scale water disinfection system. Ultrasound Sonochem. 2010, 17, 1004–1009. [Google Scholar] [CrossRef] [PubMed]
- Joyce, E.; Phull, S.; Lorimer, J.; Mason, T. The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication tieme on cultured Bacillus species. Ultrason. Sonochem. 2003, 10, 315–318. [Google Scholar] [CrossRef]
- Furuta, M.; Yamaguchi, M.; Tsukamoto, T.; Yim, B.; Stavarache, C.; Hasiba, K.; Maeda, Y. Inactivation of Escherichia coli by Ultrasonic irradiation. Ultrason. Sonochem. 2004, 11, 57–60. [Google Scholar] [CrossRef]
- Carrére, H.; Dumas, C.; Battimelli, A.; Bastone, D.; Delgenés, J.; Steyer, J.; Ferrer, I. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard. Mater. 2010, 183, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Yadav, N.; Rawat, L.; Goyal, M. Effect of two waves of ultrasonic on waste treatment. Chem. Eng. Process Technol. 2014, 5, 3–6. [Google Scholar] [CrossRef]
- European Commission, Environment, Water. Available online: http://ec.europa.eu/environment/water/reuse-actions.htm (accessed on 4 February 2018).
- Wilson, N. Soil, Water and Groundwater Sampling, 1st ed.Lewis Publishers: Boca Raton, FL, USA, 1995; pp. 145–197. ISBN 1-56670-073-6. [Google Scholar]
- Pahazri, N.F.G. Production and harvesting of microalgae biomass from wastewater: A critical review. Environ. Technol. Rev. 2016, 5, 39–56. [Google Scholar] [CrossRef]
- Europe Commission and Its Priorities. Available online: https://ec.europa.eu/info/law/better-regulation/initiatives/com-2017-753/feedback_en (accessed on 5 February 2018).
- Blume, T.; Neis, U. Improving clorine disinfection of wastewater by ultrasound application. Water Sci. Technol. 2005, 52, 139–144. [Google Scholar] [PubMed]
- Madigan, T.; Martinko, M.; Bender, S.; Buckley, H.; Stahl, A.; Brock, T. Brock Biology of Microorganisms, 14th ed.; Pearson: England, UK, 2015; pp. 176–210. ISBN 9788490352793. [Google Scholar]
- Watson, S.K. Carbon dioxide capture using Escherichia coli expressing carbonic anhydrase in a foam bioreactor. Environ. Technol. 2016, 37, 3186–3192. [Google Scholar] [CrossRef] [PubMed]
- Lebotte, M.J.; Pierce, B.E. Microbiology Laboratory Theory and Application, 3rd ed.; Morton Publishing: Englewood, CO, USA, 2016; pp. 326–389. ISBN 978-1617314773. [Google Scholar]
- Bsoul, A.A.; Magnina, J.P.; Commenges-Bernolea, N.; Gondrexona, N.; Willison, J.; Petriera, C. Effectiveness of ultrasound for the destruction of Mycobacterium sp. strain (6PY1). Ultrason. Sonochem. 2010, 17, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Guo, H.; Li, Z.; Zhao, J.; Yun, Y. Experimental study on the disinfection efficiencies of a continuous-flow ultrasound/ultraviolet baffled reactor. Ultrason. Sonochem. 2015, 27, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Ohrdes, H.; Ille, I.; Twiefel, J.; Wallaschek, J.; Noqueira, R.; Rosenwinkel, K. A control system for ultrasound devices utilized for inactivating E. coli in wastewater. Ultrason. Sonochem. 2018, 40, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Naddeo, N.; Landi, M.; Belgiorno, V.; Napoli, R. Wastewater disinfection by combination of ultrasound and ultraviolet irradiation. J. Hazard. Mater. 2009, 168, 925–992. [Google Scholar] [CrossRef] [PubMed]
- Verdonk, G.; Willemse, M.; Hoefs, S.; Cremers, G.; Van den Heuvel, E. The Most Probable Limit of Detection (MPL) for rapid microbiological methods. J. Microbiol. Methods 2010, 82, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Goldman, E.; Green, L.H. Practical Handbook of Microbiology, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 208–236. ISBN 1466587393. [Google Scholar]
- Novak, M.; Pfeiffer, T.; Lenski, R.E.; Sauer, U.; Bonhoeffer, S. Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli. Am. Nat. 2006, 168, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Li, J.G.; Lalman, J.A.; Biswas, N. Biodegradation of Red B dye Bacillys sp. OY1-2. Environ. Technol. 2004, 25, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Glymph, T. Wastewater Microbiology a Handbook for Operators, 2nd ed.; American Water Works Association: Denver, CO, USA, 2011; pp. 25–36, ISSN-11 161300012X; ISSN-09 9781613000120. [Google Scholar]
- Ramalho, R.S. Introduction to Wastewater Treatment Processes, 2nd ed.; Academic Press: Quebec, QC, Canada, 2012; pp. 20–61. ISBN 0-12-576550-9. [Google Scholar]
- Master, M.; Ela, P. Introduction to Environmental Engineering and Science, 3th ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2008; pp. 256–279. ISBN 0131481932. [Google Scholar]
- Saxena, G.; Bharagava, R.; Kaithwas, G.; Raj, A. Microbial indicators, pathogens and methods for their monitoring in water environment. J. Water Health 2015, 13, 319–339. [Google Scholar] [CrossRef] [PubMed]
- Water Environments Federation; American Society of Civil Engineers; Envrionmental and Water Resources Institute. Design of Municpal Wastewater Treatment Plants, 5th ed.; McGraw-Hill: New York, NY, USA, 2009; pp. 502–526. ISBN 0071663584. [Google Scholar]
- Hadjianghelou, A.; Darakas, E. Survival of faecal coliforms in diluted sewage. Int. J. Environ. Stud. 2000, 58, 71–83. [Google Scholar] [CrossRef]
- Koivunen, J.; Siitonen, A.; Heinonen-Tanski, H. Elimination of enteric bacteria in biological-chemical wastewater treatment and tertiary filtration units. Water Res. 2003, 37, 690–698. [Google Scholar] [CrossRef]
- Payment, P.; Plante, R.; Cejka, P. Removal of indicator bacteria, human enteric viruses, Giardia Cysts, and Cryptosporidium oocysts at a large wastewater primary treatment facility. Can. J. Microbiol. 2001, 47, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, O.; Moletta, R. Treatment of organic pollution in industrial saline wastewater: A literature review. Water Res. 2006, 40, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Mezule, L.T. A simple technique for water disinfection with hydrodynamic cavitation: Effect on survival of Escherichia coli. Desalination 2009, 248, 152–159. [Google Scholar] [CrossRef]
- Jyoti, K.; Pandit, A. Effect of cavitation on chemical disinfection efficiency. Water Res. 2004, 38, 2248–2257. [Google Scholar] [CrossRef] [PubMed]
- United States Envrionmental Protection Agency. Laws & Regulations. Available online: https://www.epa.gov/regulatory-information-topic/regulatory-information-topic-water#drinking (accessed on 5 February 2018).
- Ashokkumar, M. The characterization of acoustic cavitation bubbles–An overview. Ultrason. Sonochem. 2011, 18, 864–872. [Google Scholar] [CrossRef] [PubMed]
- Naddeo, V.; Belgiorno, V.; Landi, M.; Zarra, T.; Napoli, R.M.A. Effect of sonolysis on waste activated sludge solubilisation and anaerobic biodegradability. Desalination 2009, 249, 762–767. [Google Scholar] [CrossRef]
- Neis, U.; Blume, T. Ultrasonic disinfection of wastewater effluents for high-quality reuse. Water Sci. Technol. Water Supply 2003, 3, 261–267. [Google Scholar]
- Macauley, J.J.; Qiang, Z.; Adams, C.D.; Surampalli, R.; Mormile, M.R. Disinfection of swine wastewater using chlorine, ultraviolet light and ozone. Water Res. 2006, 40, 2017–2026. [Google Scholar] [CrossRef] [PubMed]
- Oriya Electricity and Lighting Ltd. Available online: http://www.oria.co.il/?categoryId=85627&itemId=189434 (accessed on 15 March 2018).
- Mizuta, K.; Shimda, M. Benchmarking energy consumption in municipal wastewater treatment plants in Japan. Water Sci. Technol. 2010, 62, 2256–2262. [Google Scholar] [CrossRef] [PubMed]
Microorganism | Growth Medium | Temperature for Growth (°C) | ||||
---|---|---|---|---|---|---|
Medium | Brand | Composition per 1000 mL | Method | Dilution | ||
B. subtilis | Nutrient Broth | Difco | Meat extract (dehydrated) 3.0 g | Serial dilutions | 1 × 101–1 × 107 | 38 |
Peptone 5.0 g | ||||||
Nutrient Agar | Difco | Meat extract (dehydrated) 3.0 g | Spread plate | 1 × 101–1 × 107 | 38 | |
Peptone 5.0 g | ||||||
Agar 15.0 g | ||||||
E. coli | Medium EC | Difco | Tryptose 20.0 g | Most Probable Number | 1 × 101–1 × 108 | 44.5 (Double boiler) |
Lactose 5.0 g | ||||||
Mixture of bile salts 1.5 g | ||||||
Dibasic potassium phosphate (K2HPO4) 4.0 g | ||||||
Monobasic potassium phosphate (KH2PO4) 1.5 g | ||||||
Sodium chloride (NaCl) 5.0 g | ||||||
Total coliforms | Lactose Broth | Difco | Peptone 10.0 g | Presumptive test | 1 × 101–1 × 108 | 38 |
Lactose 10.0 g | ||||||
Meat extract 6.0 g | ||||||
Brilliant Green Bile Broth | Merck | Peptone 10.0 g | Confirmative test | Only the dilutions that tested positive in the previous test | 38 | |
Lactose 10.0 g | ||||||
Ox-bile (dehydrated) 20.0 g | ||||||
Bright green (1% m/m in aqueous solution) 13 cm3 | ||||||
Fecal coliforms | Lactose Broth | Difco | Peptone 10.0 g | Presumptive test | 1 × 101–1 × 108 | 38 |
Lactose 10.0 g | ||||||
Meat extract 6.0 g | ||||||
Medium EC | Merck | Tryptose 20.0 g | Confirmative test | Only the dilutions that tested positive in the previous test | 44.5 (Double boiler) | |
Lactose 5.0 g | ||||||
Mixture of bile salts 1.5 g | ||||||
Dibasic potassium phosphate (K2HPO4) 4.0 g | ||||||
Monobasic potassium phosphate (KH2PO4) 1.5 g | ||||||
Sodium chloride (NaCl) 5.0 g |
Sampling Time (h) | Total Coliform (MPN/100 mL) | Fecal Coliform (MPN/100 mL) | Total Suspended Solids, mg/L | Volatile Suspended Solids, mg/L |
---|---|---|---|---|
07:00 a.m. | 4.60 × 106 ± 2.30 × 105 | 4.60 × 106 ± 2.30 × 105 | 91.3 ± 12.3 | 80.7 ± 10.3 |
10:00 a.m. | 1.50 × 104 ± 2.60 × 103 | 1.50 × 104 ± 2.60 × 103 | 57.4 ± 9.6 | 41.4 ± 7.6 |
01:00 p.m. | 7.00 × 103 ± 9.00 × 102 | 4.00 × 103 ± 4.60 × 102 | 41.2 ± 5.3 | 33.9 ± 5.6 |
04:00 p.m. | 2.40 × 105 ± 9.40 × 103 | 9.30 × 104 ± 2.30 × 103 | 58.5 ± 6.8 | 46.1 ± 7.2 |
07:00 p.m. | 1.50 × 105 ± 6.20 × 103 | 1.50 × 105 ± 7.50 × 103 | 81.2 ± 9.8 | 51.6 ± 9.4 |
Sonication Time (min) | Coliform | Escherichia coli | Bacillus subtilis | |||||
---|---|---|---|---|---|---|---|---|
Total | Fecal | |||||||
A | B | A | B | A | B | C | D | |
0 | 2.80 × 106 | 6.45 | 2.80 × 106 | 6.45 | 2.53 × 106 | 6.4 | 2.15 × 106 | 6.32 |
15 | 2.14 × 106 | 6.34 | 3.67 × 105 | 5.56 | 3.57 × 104 | 4.55 | 1.45 × 103 | 3.16 |
30 | 4.83 × 104 | 4.68 | 7.53 × 103 | 3.88 | <3.00 × 101 | 0.48 | 0.00 | NA |
45 | <3.00 × 101 | 0.48 | <3.00 × 101 | 0.48 | <3.00 × 101 | 0.48 | 0.00 | NA |
60 | <3.00 × 101 | 0.48 | <3.00 × 101 | 0.48 | <3.00 × 101 | 0.48 | 0.00 | NA |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amabilis-Sosa, L.E.; Vázquez-López, M.; Rojas, J.L.G.; Roé-Sosa, A.; Moeller-Chávez, G.E. Efficient Bacteria Inactivation by Ultrasound in Municipal Wastewater. Environments 2018, 5, 47. https://doi.org/10.3390/environments5040047
Amabilis-Sosa LE, Vázquez-López M, Rojas JLG, Roé-Sosa A, Moeller-Chávez GE. Efficient Bacteria Inactivation by Ultrasound in Municipal Wastewater. Environments. 2018; 5(4):47. https://doi.org/10.3390/environments5040047
Chicago/Turabian StyleAmabilis-Sosa, Leonel Ernesto, Monserrat Vázquez-López, Juan L. García Rojas, Adriana Roé-Sosa, and Gabriela E. Moeller-Chávez. 2018. "Efficient Bacteria Inactivation by Ultrasound in Municipal Wastewater" Environments 5, no. 4: 47. https://doi.org/10.3390/environments5040047
APA StyleAmabilis-Sosa, L. E., Vázquez-López, M., Rojas, J. L. G., Roé-Sosa, A., & Moeller-Chávez, G. E. (2018). Efficient Bacteria Inactivation by Ultrasound in Municipal Wastewater. Environments, 5(4), 47. https://doi.org/10.3390/environments5040047