Adoption and the Role of Fertilizer Trees and Shrubs as a Climate Smart Agriculture Practice: The Case of Salima District in Malawi
Abstract
:1. Introduction
1.1. Research Background
1.2. Previous Studies
2. Methodology
2.1. Study Area
2.2. Data Sources
2.3. Theoretical Framework
= Pr {(ε1i − ε0i) > β1 F(X1i) − β0 F(X0i)}
= F(Hi’α)
2.4. Empirical Models
2.5. Choice of Variables
3. Results and Discussion
3.1. The Roles of Fertilizer Tree Species in Adaptation to Climate Change
3.2. Descriptive Statistics
3.3. Empirical Results
Tobit Model Output
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Inter-Governmental Panel for Conventions on Climate Change. The IPCC’s Fifth Assessment Report: What’s in it for Africa? IPCC: Genf, Switzerland, 2008. [Google Scholar]
- FAO. Climate-Smart Agriculture: Policies, Practices and Financing for Food Security, Adaptation and Mitigation. In Proceedings of the Hague Conference on Agriculture, Food Security and Climate Change, Hague, The Netherlands, 31 October–5 November 2010; Available online: http://www.fao.org/fileadmin/user_upload/newsroom/docs/the-hague-conference-fao-paper.pdf (accessed on 25 September 2015).
- Ajayi, O.; Akinnifesi, F.; Mullila-Mitti, J.; Dewolf, J.; Matakala, P.; Kwesiga, F. Adoption, profitability, impacts and scaling-up of agroforestry technologies in southern African countries. In Ecological Basis of Agroforestry; Batish, D., Kohli, R., Jose, S., Singh, H., Eds.; Taylor and Francis Group: Boca Raton, FL, USA, 2008. [Google Scholar]
- Chigwada, J. Adverse Impacts of Climate Change and Development Challenges: Integrating Adaptation in Policy and Development in Malawi; Zero Regional Environment Organisation: Harare, Zimbabwe, 2004. [Google Scholar]
- Phiri, P.I.; Jumbe, C.B.; Kanyanda, S.; Thangalimodzi, L. Unravelling strategic choices towards droughts and floods’ adaptation in Southern Malawi. Int. J. Disaster Risk Reduct. 2012. [Google Scholar] [CrossRef]
- Kaczan, D.; Arslan, A.; Lipper, L. Climate-Smart Agriculture: A Review of Current Practice of Agroforestry and Conservation Agriculture in Malawi and Zambia; United Nations Food and Agriculture Organization: Rome, Italy, 2013; Available online: http://www.fao.org/docrep/019/ar715e/ar715e.pdf (accessed on 23 October 2015).
- Jones, E.G. Climate-Smart Smallholder Agriculture: What’s Different. IFAD Occasional Paper, 3. 2010. Available online: https://www.donorplatform.org/files/content/Media/Agenda_2030/Latest/SAFIN/IFAD_CSA.pdf (accessed on 6 August 2015).
- Ekpo, F.E.; Asuquo, M.E. Agroforestry Practice as Adaptation Tools to Climate Change Hazards in Itu LGA, Akwa Ibom State, Nigeria. Glob. J. Hum. Soc. Sci. Geogr. Environ. GeoSci. 2012, 12, 2012. [Google Scholar]
- Garrity, D.; Akinnifesi, F.; Ajayi, O.; Weldesemayat, S.; Mowo, J.; Kalinganire, A.; Larwanou, M.; Bayala, J. Evergreen Agriculture: A robust approach to sustainable food security in Africa. Food Secur. 2010, 2, 197–214. [Google Scholar] [CrossRef]
- Lundgren, B.O.; Raintree, J.B. Sustained agroforestry. In Agricultural Research for Development: Potentials and Challenges in Asia; Nestel, B., Ed.; ISNAR: Hague, The Netherlands, 1982; pp. 37–49. [Google Scholar]
- Bunderson, W.T.; Jere, Z.D.; Hayes, I.M.; Phombeya, H.S.K. Landcare Practices in Malawi; Malawi Agroforestry Extension Project; Publication No 42; Department of Land Resources Conservation, Ministry of Agriculture, Government of Malawi: Lilongwe, Malawi, 2002. [Google Scholar]
- ICRAF. Agroforestry Food Security Project in Malawi: Annual Report, 2010; ICRAF: Lilongwe, Malawi, 2011. [Google Scholar]
- Mafongoya, P.L.; Chintu, R.; Chirwa, T.S.; Matibini, J.; Chikale, S. Tephrosia species and Provenances for improved fallows in southern Africa. Agrofor. Syst. 2003, 59, 279–288. [Google Scholar] [CrossRef]
- Government of Malawi. State of Environment Report. Ministry of Environment Energy and Natural Resources; Government of Malawi: Lilongwe, Malawi, 2012.
- Lin, B.B. The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agro ecosystems. Agric. For. Meteorol. 2010, 150, 510–518. [Google Scholar] [CrossRef]
- Sanchez, P.A. Science in Agroforestry. Agrofor. Syst. 1995, 30, 5–55. [Google Scholar] [CrossRef]
- Rao, K.P.C.; Verchot, L.V.; Laarman, J. Adaptation to Climate Change through Sustainable Management and Development of Agroforestry Systems. SAT e-J. 2007, 4, 1–30. [Google Scholar]
- Verchot, L.V.; Mackensen, J.; Kandji, S.; Noordwijk, M.; Tomich, T.; Ong, C.; Albrecht, A.; Bantilan, C.; Anupama, K.V.; Palm, C. Opportunities for Linking Adaptation and Mitigation in Agroforestry Systems; World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2006. [Google Scholar]
- Jamala, G.Y.; Shehu, H.E.; Yidau, J.J.; Joel, L. Factors Influencing Adoption of Agroforestry among Smallholder Farmers in Toungo, Southeastern, Adamawa State, Nigeria. IOSR J. Environ. Sci. Toxicol. Food Technol. 2013, 6, 66–72. [Google Scholar]
- Thangata, P.; Alavalapati, J. Agroforestry adoption in southern Malawi: The case of mixed intercropping of Gliricidia sepium and maize. Agric. Syst. 2003, 78, 57–71. [Google Scholar] [CrossRef]
- Ajayi, O.C.; Akinnifesi, F.K.; Gudeta, S.; Chakeredza, S. Adoption of Renewable Soil Fertility Replenishment Technologies in Southern African Region: Lessons Learnt and the Way Forward. Nat.Resour. Forum 2007, 31, 306–317. [Google Scholar] [CrossRef]
- National Statistics Office (NSO). Population Projections for Malawi Report; National Statistics Office: Zomba, Malawi, 2010.
- Government of Malawi. Malawi Food Security Update; Ministry of Agriculture and Food Security: Lilongwe, Malawi, 2011.
- Ben-Akiva, M.E.; Lerman, S.R. Discrete Choice Analysis: Theory and Application to Travel Demand; MIT Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Tobin, J. Estimation of relationships for limited dependent variables. Econometrica 1958, 26, 24–36. [Google Scholar] [CrossRef]
- Pattanayak, S.K.; Mercer, D.E.; Sill, E.O.; Yung, J.C.; Cassingham, K. Taking Stock of Agroforestry Adoption Studies; Research Triangle Institute: Durham, NC, USA, 2002; Available online: https://www.rti.org/sites/default/files/resources/rtipaper_02_04.pdf (accessed on 5 March 2015).
- Wafuke, S. Adoption of Agroforestry Technologies among Small Scale Farmers in Nzoia Location, Lugari District, Kenya. Master’s Thesis, Egerton University, Nakuru, Kenya, 2012. [Google Scholar]
- Nkamleu, G.B.; Manyong, V.M. Factors Affecting the Adoption of Agroforestry Practices by Farmers in Cameroon. Small 2005, 4, 135–148. [Google Scholar]
- Parwada, C.; Gadzirayi, C.T.; Muriritirwa, W.T.; Mwenye, D. Adoption of Agro-Forestry Technologies among Smallholder Farmers: A Case of Zimbabwe. J. Dev. Agric. Econ. 2010, 2, 351–358. [Google Scholar]
- Salam, M.A.; Noguchi, T.; Koike, M. Understanding why farmers plant trees in their homestead, Agroforestry in Bangladeshi. J. Agrofor. Syst. 2000, 50, 77–93. [Google Scholar] [CrossRef]
- Lambert, O.; Ozioma, A.F. Adoption of Improved Agroforestry Technologies among Contact Farmers in Imo State, Nigeria. Asian J. Agric. Rural Dev. 2011, 2, 1–9. [Google Scholar]
- Phiri, E.; Verplancke, H.; Kwesiga, F.; Mafongoya, P. Water Balance and Maize Yield following Sesbania sesban Fallow in eastern Zambia. Agrofor. Syst. 2003, 59, 197–205. [Google Scholar] [CrossRef]
- Adesina, A.; Zinnah, M. Technology characteristics, farmers’ perceptions and adoption decisions: A Tobit model application in Sierra Leone. Agric. Econ. 1993, 9, 297–311. [Google Scholar] [CrossRef]
- Mulatu, F.Z.; Mammo, M.; Worku, Z. Determinants of agroforestry technology adoption in Eastern Cape Province, South Africa. Dev. Stud. Res. 2014, 1, 382–394. [Google Scholar] [CrossRef]
- Asfaw, S.; McCarthy, N.; Lipper, L.; Arslan, A.; Cattaneo, A.; Kachulu, M. Climate Variability, Adaptation Strategies and Food Security in Malawi; ESA Working Paper, 14-08; FAO: Rome, Italy, 2014. [Google Scholar]
- Montagnini, F.; Nair, P.K.R. Carbon sequestration: An underexploited environmental benefit of agroforestry systems. Agrofor. Syst. 2004, 61, 281–295. [Google Scholar] [CrossRef]
- Nkonya, E.; Schroeder, T.; Norman, D. Factors affecting adoption of improved maize seed and fertiliser in Northern Tanzania. J. Agric. Econ. 1997, 48, 1–12. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; The Free Press: New York, NY, USA, 2003. [Google Scholar]
- Mercer, D.E. Adoption of agroforestry innovations in the tropics: A review. Agrofor. Syst. 2003, 61, 311–328. [Google Scholar]
Variable | Sign | Description |
---|---|---|
GENDER | - | Dummy variable: 1 = male, 0 = female headed household. Gender of a household head significantly influenced agroforestry adoption [27]. |
EDUCATION | + | Measure: Attainment of formal education (primary, secondary and tertiary level). Education enhances adoption of agroforestry [28]. |
LABOUR | + | Labor: Person-days allocated to farming activities in a season. Tree growing needs labor and many smallholder farmers rely on household labor. Therefore, labor availability influences adoption [29]. |
LANDSIZE | + | Landholding size: The total land the farmer has. Landholding size can influence agroforestry adoption [30]. |
EXTENSION | + | Number of contacts between the extension officer and the farmers in a week. Farmers’ contact with extension agents helps them to pursue new practices [31]. |
EXPOSURE | + | Measure: The number of years the farmer has taken to evaluate the possible benefits of the technology [32]. |
HHAGE | - | The age of household head (years) can influence production and adoption [3]. |
TENURE | + | Dummy variable: 1 = owned land, 0 = land not owned. Ownership enhances tenure security can enhance agroforestry adoption [32]. |
AGE | - | Measure: The age of the household head in the farming household. Farmers become more risk averse with age [33]. |
Fertilizer Trees and Shrubs Species | Roles of Fertilizer Trees and Shrubs Species (n = 154) | |||||||
---|---|---|---|---|---|---|---|---|
Soil Fertility | Prevent Erosion | Shade | Source of Food | Feed | Fuel Wood | Fence | Total | |
Sesbania sesban | 0.7 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.4 |
Tephrosia vogelii | 8.8 | 1.4 | 1.4 | 0.7 | 0.0 | 0.0 | 0.7 | 13.0 |
Cajanus cajan | 11.6 | 2.0 | 7.5 | 13.6 | 0.0 | 0.0 | 0.0 | 34.7 |
Leucena leucocephala | 0.0 | 2.0 | 0.0 | 0.7 | 1.4 | 0.7 | 0.0 | 4.8 |
Gliricidia sepium | 21.5 | 7.5 | 6.8 | 0.0 | 0.0 | 0.0 | 1.4 | 37.2 |
Acacia polyacantha | 0.7 | 0.7 | 2.0 | 0.0 | 0.0 | 1.4 | 0.0 | 4.8 |
Senna siamea | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.1 | 0.0 | 4.1 |
Total | 43.3 | 14.3 | 19.7 | 15.0 | 1.4 | 4.2 | 2.1 | 100 |
Socio-Economic Factors | Sample Size = 250 | |||
---|---|---|---|---|
χ2 | df | p-Value | Phi/Cramer’s V | |
Main Occupation | 4.459 | 2 | 0.108 ns | 0.134 |
Slope | 2.041 | 2 | 0.360 ns | 0.052 |
Primary Education | 0.213 | 1 | 0.645 ns | −0.028 |
Secondary Education | 8.859 | 1 | 0.003 ** | −0.188 |
Tenure | 9.872 | 2 | 0.007 ** | 0.199 |
Variable | Adopters | Non-Adopters | Total |
---|---|---|---|
Household size | 2.15 ns | 1.99 ns | 2.09 |
(0.91) | (0.64) | (0.82) | |
Age of household head | 39.79 * | 42.51 * | 39.07 |
(13.37) | (15.44) | (14.42) | |
Land size (hectares) | 1.30 ** | 1.05 ** | 1.2 |
(2.31) | (1.32) | (2.01) | |
Exposure to agroforestry (years) | 5.73 *** | 4.32 *** | 5.15 |
(3.68) | (2.41) | (3.33) | |
Extension contact (per month) | 5.68 ** | 4.33 ** | 5.16 |
(3.29) | (4.09) | (3.67) |
Variable | Description | Coeff | Std. Error | p-Value |
---|---|---|---|---|
Age | Years | 0.0103 | 0.0121 | 0.394 |
Gender | Dummy (1 Male, 0 Female) | −0.3822 | 0.2882 | 0.186 |
Land size | Hectares | 1.2685 | 0.1798 | 0.000 *** |
Secondary Education | Dummy (1 Yes, 0 Otherwise) | 1.2022 | 0.05272 | 0.023 ** |
Primary Education | Dummy (1 Yes, 0 Otherwise) | 0.8662 | 0.8412 | 0.073 * |
Extension | Number of visits per week | 0.0508 | 0.0345 | 0.143 |
Exposure | Years | 0.1721 | 0.0361 | 0.000 *** |
Non-Household Labor | Dummy (1 Owned, 0 Otherwise) | −0.0041 | 0.0019 | 0.039 ** |
Land Ownership | Man-days to farming | 1.5244 | 0.6875 | 0.028 ** |
Slope | Slope of the field | 0.3443 | 0.2538 | 0.176 |
Constant | Constant | −4.8204 | 1.1017 | 0.000 *** |
Sigma | Sigma | 1.6414 | 1.1017 | |
Observations (n) = 248 | ||||
Log likelihood = −297.801 | ||||
LR chi2 (10) = 107.57 | ||||
Prob > chi2 = 0.000 | ||||
Pseudo R2 = 0.1530 |
Variable | Description | E(y) dy/dx | E(y*) dy/dx | p-Value | X |
---|---|---|---|---|---|
Age | Years | 0.0038 | 0.0025 | 0.394 | 40.927 |
Gender | Dummy (1 Male, 0 Female) | −0.1441 | −0.0925 | 0.201 | 0.7621 |
Land size | Hectares | 0.4610 | 0.3083 | 0.000 *** | 1.2035 |
Secondary Education | Dummy (1 Yes, 0 Otherwise) | 0.4499 | 0.2856 | 0.026 ** | 0.4476 |
Primary Education | Dummy (1 Yes, 0 Otherwise) | 0.3215 | 0.2080 | 0.077 * | 0.4435 |
Extension | Number of visits per week | 0.0185 | 0.0124 | 0.141 | 5.1452 |
Exposure | Years | 0.0626 | 0.0418 | 0.000 *** | 5.1492 |
Total labor | Man-days to farming | −0.0015 | −0.0010 | 0.038 ** | 116.919 |
Land Ownership | Dummy (1 Owned, 0 Otherwise) | 0.4375 | 0.3304 | 0.004 *** | 0.9435 |
Slope | Slope of the field | 0.1270 | 0.0835 | 0.182 | 0.3871 |
E(y) = 1.3095 | |||||
E(y*) = 0.4999 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musa, F.B.; Kamoto, J.F.M.; Jumbe, C.B.L.; Zulu, L.C. Adoption and the Role of Fertilizer Trees and Shrubs as a Climate Smart Agriculture Practice: The Case of Salima District in Malawi. Environments 2018, 5, 122. https://doi.org/10.3390/environments5110122
Musa FB, Kamoto JFM, Jumbe CBL, Zulu LC. Adoption and the Role of Fertilizer Trees and Shrubs as a Climate Smart Agriculture Practice: The Case of Salima District in Malawi. Environments. 2018; 5(11):122. https://doi.org/10.3390/environments5110122
Chicago/Turabian StyleMusa, Frank B., Judith F. M. Kamoto, Charles B. L. Jumbe, and Leo C. Zulu. 2018. "Adoption and the Role of Fertilizer Trees and Shrubs as a Climate Smart Agriculture Practice: The Case of Salima District in Malawi" Environments 5, no. 11: 122. https://doi.org/10.3390/environments5110122
APA StyleMusa, F. B., Kamoto, J. F. M., Jumbe, C. B. L., & Zulu, L. C. (2018). Adoption and the Role of Fertilizer Trees and Shrubs as a Climate Smart Agriculture Practice: The Case of Salima District in Malawi. Environments, 5(11), 122. https://doi.org/10.3390/environments5110122