Effects of Physico-Chemical Post-Treatments on the Semi-Continuous Anaerobic Digestion of Sewage Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sludge Sample
2.2. Pre and Post-Treatment Conditions
2.3. Anaerobic Digestion Tests
2.4. Analytical Methods
2.5. Statistical Analysis
3. Results
3.1. Biogas Production
3.2. Microbial Stresss during Semi-Continuous Anaerobic Digestion
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Eastman, J.A.; Ferguson, J.F. Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. J. Water Pollu. Control Fed. 1981, 53, 352–366. [Google Scholar]
- Pavlostathis, S.G.; Giraldo-Gomez, E. Kinetics of Anaerobic Treatment. Water Sci. Technol. 1991, 25, 35–59. [Google Scholar]
- Stuckey, D.C.; McCarty, P.L. Thermochemical pretreatment of nitrogenous materials to increase methane yield. Biotechnol. Bioeng. Symp. 1978, 8, 219–233. [Google Scholar]
- Stuckey, D.C.; McCarty, P.L. The Effect of Thermal Pretreatment on the Anaerobic Biodegradability and Toxicity of Waste Activated Sludge. Water Res. 1984, 18, 1343–1353. [Google Scholar] [CrossRef]
- Tiehm, A.; Nickel, K.; Neis, U. The use of ultrasound to accelerate the anaerobic digestion of sewage sludge. Water Sci. Technol. 1997, 36, 121–128. [Google Scholar] [CrossRef]
- Bougrier, C.; Albasi, C.; Delgenes, J.; Carrere, H. Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chem. Eng. Process. 2006, 45, 711–718. [Google Scholar] [CrossRef]
- Xu, G.; Chen, S.; Shi, J.; Wang, S.; Zhu, G. Combination treatment of ultrasound and ozone for improving solubilization and anaerobic biodegradability of waste activated sludge. J. Hazard. Mater. 2010, 180, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Jeong, E.; Oh, S.-E.; Shin, H.-S. Combined (alkaline+ultrasonic) pretreatment effect on sewage sludge disintegration. Water Res. 2010, 44, 3093–3100. [Google Scholar] [CrossRef] [PubMed]
- Gossett, J.M.; Stuckey, D.C.; Owen, W.F.; McCarty, P.L. Heat treatment and anaerobic digestion of refuse. J. Environ. Eng. Div. 1982, 108, 437–454. [Google Scholar]
- Takashima, M.; Kudoh, Y.; Tabata, N. Complete anaerobic digestion of activated sludge by combining membrane separation and alkaline heat post-treatment. Water Sci. Technol. 1996, 34, 477–481. [Google Scholar] [CrossRef]
- Nielsen, H.B.; Thygesen, A.; Thomsen, A.B.; Schmidt, J.E. Anaerobic digestion of waste activated sludge—Comparison of thermal pretreatments with thermal inter-stage treatments. J. Chem. Technol. Biotechnol. 2010, 86, 238–245. [Google Scholar] [CrossRef]
- Li, H.; Zou, S.; Li, C.; Jin, Y. Alkaline post-treatment for improved sludge anaerobic digestion. Bioresour. Technol. 2013, 140, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Takashima, M. Examination on Process Configurations Incorporating Thermal Treatment for Anaerobic Digestion of Sewage Sludge. J. Environ. Eng. 2008, 134, 543–549. [Google Scholar] [CrossRef]
- Battimelli, A.; Millet, C.; Delgenesm, J.P.; Moletta, R. Anaerobic digestion of waste activated sludge combined with ozone post-treatment and recycling. Water Sci. Technol. 2003, 48, 61–68. [Google Scholar] [PubMed]
- Goel, R.; Yasui, H.; Shibayama, C. High-performance closed loop anaerobic digestion using pre/post sludge ozonation. Water Sci. Technol. 2003, 47, 261–267. [Google Scholar] [PubMed]
- Rivero, J.A.C.; Madhavan, N.; Suidan, M.T.; Ginestet, P.; Audic, J.-M. Enhancement of anaerobic digestion of excess municipal sludge with thermal and/or oxidative treatment. J. Environ. Eng. 2006, 132, 638–644. [Google Scholar] [CrossRef]
- Takashima, M.; Tanaka, Y. Application of acidic thermal treatment for one- and two-stage anaerobic digestion of sewage sludge. Water Sci. Technol. 2010, 62, 2647–2654. [Google Scholar] [CrossRef] [PubMed]
- Takashima, M.; Tanaka, Y. Acidic thermal post-treatment for enhancing anaerobic digestionof sewage sludge. J. Environ. Chem. Eng. 2014, 2, 773–779. [Google Scholar] [CrossRef]
- Tian, X.; Wang, C.; Trzcinski, A.P.; Lin, L.; Ng, W.J. Interpreting the synergistic effect in combined ultrasonication–ozonation sewage sludge pre-treatment. Chemosphere 2015, 140, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Trzcinski, A.P.; Lin, L.L.; Ng, W.J. Enhancing sewage sludge anaerobic “re-digestion” with combinations of ultrasonic, ozone and alkaline treatments. J. Environ. Chem. Eng. 2016, 4, 4801–4807. [Google Scholar] [CrossRef]
- Tian, X.; Trzcinski, A.P.; Lin, L.L.; Ng, W.J. Impact of ozone assisted ultrasonication pre-treatment on anaerobic digestibility of sewage sludge. J. Environ. Sci. 2015, 33, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Wang, C.; Trzcinski, A.P.; Lin, L.; Ng, W.J. Insights on the solubilization products after combined alkaline and ultrasonic pre-treatment of sewage sludge. J. Environ. Sci. 2015, 29, 97–105. [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 22th ed.; APHA: Washington, DC, USA, 2012. [Google Scholar]
- Trzcinski, A.P.; Ganda, L.; Kunacheva, C.; Zhang, D.Q.; Lin, L.L.; Tao, G.; Lee, Y.; Ng, W.J. Characterization and biodegradability of sludge from a high rate A-stage contact tank and B-stage membrane bioreactor of a pilot-scale AB system treating municipal wastewaters. Water Sci. Technol. 2016, 74, 1716–1725. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Yang, Q.; Li, X.-M.; Chen, H.-B.; Liu, X.; Yang, G.-J.; Zeng, G.-M. Novel insights into enzymatic-enhanced anaerobic digestion of waste activated sludge by three-dimensional excitation and emission matrix fluorescence spectroscopy. Chemosphere 2013, 91, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Seng, B.; Khanal, S.K.; Visvanathan, C. Anaerobic digestion of waste activated sludge pretreated by a combined ultrasound and chemical process. Environ. Technol. 2010, 31, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Xing, Y.; Abdul Ghani, Y.; Ooi, K.-E.; Ng, S.-W. Full-scale demonstration of an ultrasonic disintegration technology in enhancing anaerobic digestion of mixed primary and thickened secondary sewage sludge. J. Environ. Eng. Sci. 2007, 6, 533–541. [Google Scholar] [CrossRef]
Parameter | Value Range |
---|---|
Total Solids (g/L) | 14.8–15.6 |
Volatile Solids (g/L) | 12.1–13.3 |
Total Suspended Solids (g/L) | 13.1–13.9 |
Volatile Suspended Solids (g/L) | 10.5–11.2 |
Total COD (g/L) | 18.9–20.2 |
Soluble COD (g/L) | 0.5–1.2 |
Operational Conditions | Condition I | Condition II | Condition III |
---|---|---|---|
Duration of the Experiment (days) | 15 | 15 | 31 |
HRT = V/Qin (days) | 10 | 10 | 20 |
Influent Flowrate, Qin (mL/d) | 100 | 100 | 50 |
Recycle Ratio, R = QR/Qin (%) | 50 | 100 | 100 |
Post-Treatment Factor, α = QR/V (%) | 5 | 10 | 5 |
Performance Parameter | Control | ULS | ULS-Ozone | ULS+ALK |
---|---|---|---|---|
Condition I: 10 days HRT, RR = 50%, α = 5% | ||||
Daily Biogas Production (mL/d) (n = 9) | 500 ± 12 | 526 ± 9 | 525 ± 12 | 541 ± 6 |
Methane Yield (mL CH4/g VSadded) (n = 9) | 256 ± 5 | 269 ± 5 | 268 ± 6 | 277 ± 3 |
Effluent TS (mg/L) (n = 5) | 11,460 ± 481 | 10,720 ± 309 | 10,830 ± 292 | 11,390 ± 392 |
Effluent TSS (mg/L) (n = 5) | 9980 ± 220 | 9710 ± 606 | 9240 ± 487 | 9840 ± 198 |
Effluent VS (mg/L) (n = 5) | 8470 ± 333 | 7940 ± 420 | 8160 ± 429 | 8140 ± 397 |
Effluent VSS (mg/L) (n = 5) | 7840 ± 219 | 7530 ± 202 | 7280 ± 394 | 7630 ± 211 |
SCOD (mg/L) (n = 5) | 182 ± 6 | 224 ± 7 | 237 ± 8 | 220 ± 7 |
CST (s) (n = 3) | 64.7 ± 4.3 | 113.8 ± 8.3 | 148.7 ± 7.4 | 128.1 ± 6.8 |
Condition II: 10 days HRT, RR = 100%, α = 10% | ||||
Daily Biogas Production (mL/d) (n = 9) | 474 ± 8 | 512 ± 9 | 498 ± 8 | 526 ± 7 |
Methane Yield (mL CH4/g VSadded) (n = 9) | 249 ± 4 | 269 ± 5 | 261 ± 4 | 276 ± 4 |
Effluent TS (mg/L) (n = 5) | 10,960 ± 378 | 10,780 ± 275 | 10,500 ± 252 | 11,300 ± 362 |
Effluent TSS (mg/L) (n = 5) | 9690 ± 368 | 9570 ± 529 | 9140 ± 608 | 9490 ± 595 |
Effluent VS (mg/L) (n = 5) | 8150 ± 406 | 7920 ± 431 | 7710 ± 222 | 7760 ± 347 |
Effluent VSS (mg/L) (n = 5) | 7740 ± 111 | 7700 ± 82 | 7310 ± 342 | 7390 ± 403 |
SCOD (mg/L) (n = 5) | 184 ± 11 | 228 ± 3 | 242 ± 3 | 234 ± 4 |
CST (s) (n = 3) | 63.1 ± 3.3 | 127.4 ± 5.4 | 143.9 ± 6.3 | 131.2 ± 5.1 |
Condition III: : 20 days HRT, RR = 100%, α = 5% | ||||
Daily Biogas Production (mL/d) (n = 11) | 279 ± 5 | 306 ± 5 | 309 ± 5 | 329 ± 7 |
Methane Yield (mL CH4/g VSadded) (n = 9) | 275 ± 5 | 301 ± 5 | 304 ± 5 | 324 ± 7 |
Effluent TS (mg/L) (n = 5) | 11,820 ± 480 | 11,320 ± 649 | 11,470 ± 160 | 12,230 ± 850 |
Effluent TSS (mg/L) (n = 5) | 10,560 ± 227 | 9850 ± 173 | 9800 ± 509 | 9860 ± 403 |
Effluent VS (mg/L) (n = 5) | 8710 ± 399 | 8160 ± 282 | 8080 ± 354 | 8210 ± 530 |
Effluent VSS (mg/L) (n = 5) | 8460 ± 393 | 7750 ± 364 | 7540 ± 531 | 7700 ± 285 |
SCOD (mg/L) (n = 5) | 225 ± 6 | 245 ± 4 | 270 ± 11 | 246 ± 4 |
CST (s) (n = 3) | 74.6 ± 4.4 | 134.8 ± 5.7 | 156 ± 5 | 143.8 ± 5.4 |
Statistical Parameter | Control | ULS | ULS-Ozone | ULS+ALK |
---|---|---|---|---|
Condition I: 10 days HRT, RR = 50%, α = 5% | ||||
Daily Biogas Production Increase (%) | - | 5.2 | 7.1 | 8.2 |
T-Test Compared to Control | - | 7.83 a | 7.65 a | 11.06 a |
T-Test Compared to ULS | - | - | 3.63 a | 7.67 a |
Decrease in Effluent VS (%) | - | 6.3 | 3.7 | 3.9 |
T-Test Compared to Control | - | −4.17 b | −2.48 c | −2.8 b |
T-Test Compared to ULS | - | 1.09 c | 0.83 c | |
Condition II: 10 days HRT, RR = 100%, α = 10% | ||||
Daily Biogas Production Increase (%) | - | 8 | 4.9 | 11.1 |
T-Test Compared to Control | - | 12.67 a | 9.44 a | 16.75 a |
T-Test Compared to ULS | - | - | −10.93 b | 5.8 a |
Decrease in Effluent VS (%) | - | 2.8 | 5.4 | 4.8 |
T-Test Compared to Control | - | −1.76 c | −3.96 b | −1.77 c |
T-Test Compared to ULS | - | - | −2.09 c | −0.61 c |
Condition III: 20 days HRT, RR = 100%, α = 5% | ||||
Daily Biogas Production Increase (%) | - | 9.8 | 10.7 | 17.8 |
T-Test Compared to Control | - | 22.6 a | 29.6 a | 24.21 a |
T-Test Compared to ULS | - | - | 1.84 c | 16.68 a |
Decrease in Effluent VS (%) | - | 6.3 | 7.2 | 5.7 |
T-Test Compared to Control | - | −5.5 b | −6.68 b | −1.96 c |
T-Test Compared to ULS | - | - | −1.21 c | 0.21 c |
Performance Parameter | Treatment (HRT, R) | ULS | ULS-Ozone | ULS+ALK |
---|---|---|---|---|
Biogas Increase (%) | Pre-treatment (10) | 20.7 | 35.9 | 24.6 |
Pre-treatment (20) | 7.7 | 25.5 | 16.6 | |
Post-treatment (10, 50%) | 5.2 | 7.1 | 8.2 | |
Post-treatment (10, 100%) | 8 | 4.9 | 11.1 | |
Post-treatment (20, 100%) | 9.8 | 10.7 | 17.8 | |
Solids Removal (%) | Pre-treatment (10) | 7.6 | 18.3 | 15.7 |
Pre-treatment (20) | 9.7 | 21.4 | 18.2 | |
Post-treatment (10, 50%) | 11.7 | 6.8 | 7.3 | |
Post-treatment (10, 100%) | 4.7 | 9.1 | 8 | |
Post-treatment (20, 100%) | 9.5 | 10.9 | 8.6 | |
Post-Digestion SCOD Concentration (mg/L) | Pre-treatment (10) | 194 to 257 | 194 to 589 | 194 to 296 |
Pre-treatment (20) | 182 to 227 | 182 to 440 | 182 to 246 | |
Post-treatment (10, 50%) | 182 to 224 | 182 to 236 | 182 to 220 | |
Post-treatment (10, 100%) | 184 to 228 | 184 to 242 | 184 to 234 | |
Post-treatment (20, 100%) | 225 to 245 | 225 to 270 | 225 to 246 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Trzcinski, A. Effects of Physico-Chemical Post-Treatments on the Semi-Continuous Anaerobic Digestion of Sewage Sludge. Environments 2017, 4, 49. https://doi.org/10.3390/environments4030049
Tian X, Trzcinski A. Effects of Physico-Chemical Post-Treatments on the Semi-Continuous Anaerobic Digestion of Sewage Sludge. Environments. 2017; 4(3):49. https://doi.org/10.3390/environments4030049
Chicago/Turabian StyleTian, Xinbo, and Antoine Trzcinski. 2017. "Effects of Physico-Chemical Post-Treatments on the Semi-Continuous Anaerobic Digestion of Sewage Sludge" Environments 4, no. 3: 49. https://doi.org/10.3390/environments4030049
APA StyleTian, X., & Trzcinski, A. (2017). Effects of Physico-Chemical Post-Treatments on the Semi-Continuous Anaerobic Digestion of Sewage Sludge. Environments, 4(3), 49. https://doi.org/10.3390/environments4030049