Evidence and Lessons Learned from Long-Term On-Farm Research on Conservation Agriculture Systems in Communities in Malawi and Zimbabwe
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Area
Country | Village | District | Latitude | Longitude | Altitude (masl) | Texture (0–30 cm) | Soil Type | Average Rainfall (mm) |
---|---|---|---|---|---|---|---|---|
Malawi | Zidyana | Nkhotakota | −13.23 | 34.24 | 535 | SCL | Luvisols | 1344 |
Zimbabwe | Zimuto | Masvingo | −19.85 | 30.88 | 1223 | S | Arenosol | 685 |
Communities | Cropping Season | |||||||||
2004/05 | 2005/06 | 2006/07 | 2007/08 | 2008/09 | 2009/10 | 2010/11 | 2011/12 | 2012/13 | 2013/14 | |
Zidyana | 1477 | 1310 | 991 | 1233 | 1547 | 1203 | 1100 | 1887 | 1222 | |
Zimuto | 408 | 1056 | 382 | 1401 | 481 | 635 | 544 | 503 | 481 |
2.2. Experimental Design
- (a)
- Conventional ridge and furrow system (CRF) with manual hoe seeding of sole maize into previously created planting ridges 75 cm apart and 25 cm in-row spacing (53,000 plants·ha−1).
- (b)
- Conservation agriculture seeded with a dibble stick with sole maize (CAM), planted on the flat in lines 75 cm apart and a 25 cm in-row spacing (53,000 plants·ha−1).
- (c)
- Conservation agriculture seeded with a dibble stick with a maize-cowpea intercrop (CAML) at the same spacings as for CAM. The intercropped cowpea was seeded between the maize rows with an interplant spacing of 25 cm (53,000 plants·ha−1).
- (a)
- Conventional mouldboard ploughed control treatment, seeded with maize (CP) in rows 90 cm apart, 60 cm in-row spacing, 2 seeds per station and a target plant population of 37,000 plants·ha−1.
- (b)
- Ripline seeded maize treatment (RI) in lines using an animal drawn ripper with the same row and in-row spacing as above.
- (c)
- Direct seeded maize (DS) with a Fitarelli animal drawn direct seeder (http://www.fitarelli.com.br/) with a row spacing of 90 cm but an in-row spacing of 30 cm with one seed per planting station (37,000 plants·ha−1).
2.3. Field Measurements
2.4. Socio-Economic Studies
2.5. Statistical Methods
3. Results
3.1. Effects of CA on Maize Grain Yield
3.2. Effects on Some Soil Quality Parameters
Treatments | Time to Pond (s) | |||
---|---|---|---|---|
2007/08 | 2008/09 | 2009/2010 | 2010/2011 | |
Zidyana | ||||
Conventional ridge tillage | 7.6 b,* | 11.6 b | ||
CA-Dibble stick sole maize | 10.5 a | 14.9 a | ||
CA-Dibble stick, maize/legume | 10.3 a | 16.2 a | ||
p | 0.01 | 0.01 | ||
LSD | 1.28 | 2.1 | ||
Zimuto | ||||
Conventional ploughing | 6.6 b,* | 3.1 b | 3.2 b | 3.0 b |
Rip-line seeding | 11.5 a | 5.5 a | 6.2 a | 5.1 a |
Direct seeding | 10.8 a | 5.4 a | 6.0 a | 5.1 a |
p | 0.01 | 0.01 | 0.01 | 0.01 |
LSD | 2.7 | 0.8 | 0.9 | 0.7 |
Treatments | Depth | Total Carbon | Total Carbon | Total Carbon |
---|---|---|---|---|
(cm) | (Mg ha−1) | (Mg ha−1) | (Mg ha−1) | |
Zidyana | 2004 | 2008 | 2011 | |
Conventional ridge tillage | 0–30 | 28.0 a,* | ||
CA-Dibble stick sole maize | 0–30 | 23.4 a | ||
CA-Dibble stick, maize/legume | 0–30 | 24.5 a | ||
Mean | 25.2 | |||
LSD | 3.8 | |||
Zimuto | ||||
Conventional ploughing | 0–20 | 6.5 a,* | 6.9 b | 6.5 b |
Rip-line seeding | 0–20 | 5.4 a | 9.5 a,b | 8.4 a |
Direct seeding | 0–20 | 5.8 a | 13.3 a | 12.8 a |
Mean | 6.5 | 9.9 | 9.3 | |
LSD | 5.2 | 4.9 | 4.3 |
3.3 Assessment of Economic Benefits
2011–2012 | 2012–2013 | 2013–2014 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Unit | CP Maize | CA+ Maize | CA+ Maize/Legume | CP Maize | CA+ Maize | CA+ Maize/Legume | CP Maize | CA+ Maize | CA+ Maize/Legume | |
Gross receipts | USD | 718.16 | 1030.67 | 1086.70 | 1054.73 | 1402.4 | 1558.51 | 1414.88 | 1661.67 | 1623.94 |
Variable costs (VC) | ||||||||||
Seed | USD | 45.45 | 45.45 | 45.45 | 47.92 | 47.92 | 103.42 | 45.45 | 45.45 | 87.01 |
Fertiliser | USD | 265.45 | 265.45 | 265.45 | 294.42 | 294.42 | 294.42 | 265.45 | 265.45 | 265.45 |
Herbicides & Pesticides | USD | 0.00 | 47.27 | 25.97 | 0.00 | 58.30 | 50.54 | 0.00 | 47.27 | 25.97 |
Labour | ||||||||||
Land clearing | Days/ha | 1.00 | 0.50 | 0.68 | 1.00 | 0.60 | 0.60 | 1.00 | 1.00 | 1.00 |
Land preparation | Days/ha | 32.05 | 0.00 | 0.00 | 29.00 | 0.00 | 0.00 | 31.00 | 0.00 | 0.00 |
Sowing | Days/ha | 3.00 | 2.00 | 3.00 | 4.17 | 2.00 | 2.00 | 3.00 | 1.50 | 3.00 |
basal fertiliser | Days/ha | 1.62 | 1.62 | 1.62 | 1.62 | 0.82 | 1.62 | 1.62 | 1.62 | 1.62 |
Mulching | Days/ha | 0.00 | 5.00 | 5.00 | 0.00 | 6.75 | 6.65 | 0.00 | 3.33 | 4.54 |
Herbicide application | Days/ha | 0.00 | 0.60 | 0.56 | 0.00 | 0.63 | 0.63 | 0.00 | 1.00 | 1.00 |
Pesticide application | Days/ha | 0.00 | 0.00 | 0.00 | 0.00 | 0.21 | 0.00 | 0.00 | 0.00 | 0.00 |
Thinning and gap filling | Days/ha | 0.21 | 0.33 | 0.15 | 0.25 | 0.17 | 0.25 | 0.00 | 0.00 | 0.00 |
Weeding1 | Days/ha | 10.00 | 2.00 | 2.00 | 12.00 | 2.00 | 2.00 | 11.25 | 1.67 | 3.33 |
Weeding2 | Days/ha | 6.00 | 6.00 | 6.00 | 3.09 | 4.25 | 4.00 | 3.33 | 0.00 | 1.67 |
Weeding3 | Days/ha | 2.00 | 1.00 | 1.00 | 1.60 | 0.75 | 0.25 | 3.33 | 0.00 | 0.00 |
Top dressing | Days/ha | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.25 | 1.00 | 1.00 | 1.00 |
Harvest and threshing | Days/ha | 6.57 | 6.46 | 6.46 | 8.48 | 10.50 | 11.35 | 8.05 | 10.96 | 10.57 |
Total labour | Days/ha | 63.45 | 26.51 | 27.47 | 62.22 | 28.68 | 29.60 | 63.58 | 22.08 | 27.73 |
Labour unit price | USD | 1.40 | 1.40 | 1.40 | 1.40 | 1.40 | 1.40 | 1.40 | 1.40 | 1.40 |
Labour costs | USD/ha | 90.80 | 37.90 | 39.30 | 89.00 | 41.00 | 42.40 | 91.00 | 31.60 | 39.70 |
Total VC | USD/ha | 401.71 | 396.12 | 376.19 | 431.38 | 441.68 | 490.75 | 401.90 | 389.78 | 418.13 |
Gross Margin | USD/ha | 316.44 | 634.55 | 710.51 | 623.35 | 960.69 | 1067.77 | 1012.97 | 1271.88 | 1205.81 |
2009–2010 | 2010–2011 | 2011–2012 | 2012–2013 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit | CP | Ripper | DSeeder | CP | Ripper | DSeeder | CP | Ripper | DSeeder | CP | Ripper | DSeeder | |
Gross receipts | USD | 97.30 | 289.92 | 182.02 | 141.96 | 378.17 | 278.36 | 376.58 | 562.28 | 751.27 | 271.00 | 680.85 | 770.80 |
Variable costs (VC) | |||||||||||||
Seed | USD | 66.00 | 66.00 | 66.00 | 76.00 | 76.00 | 76.00 | 60.00 | 60.00 | 60.00 | 76.00 | 76.00 | 76.00 |
Fertiliser | USD | 243.50 | 243.50 | 243.50 | 216.40 | 216.40 | 216.40 | 215.00 | 215.00 | 215.00 | 216.40 | 216.40 | 216.40 |
Labour | |||||||||||||
Pre-season weeding | Days/ha | 0.00 | 3.20 | 2.23 | 0.00 | 3.20 | 2.23 | 0.00 | 3.00 | 2.00 | 0.00 | 3.00 | 2.00 |
Land preparation | Days/ha | 3.19 | 0.99 | 1.45 | 3.19 | 1.00 | 1.45 | 3.19 | 1.00 | 1.50 | 3.00 | 1.00 | 1.45 |
Basal fertilizer | Days/ha | 1.08 | 1.15 | 0.00 | 1.08 | 1.15 | 0.00 | 1.00 | 1.15 | 0.00 | 1.08 | 1.20 | 0.00 |
Seeding | Days/ha | 2.71 | 3.00 | 1.00 | 2.71 | 3.00 | 1.00 | 3.00 | 3.00 | 1.00 | 3.00 | 2.00 | 1.00 |
First weeding | Days/ha | 8.75 | 6.90 | 14.60 | 6.94 | 10.63 | 10.63 | 11.15 | 7.23 | 6.77 | 8.50 | 12.80 | 12.60 |
Second weeding | Days/ha | 1.02 | 6.15 | 8.76 | 4.16 | 6.38 | 6.38 | 6.69 | 4.34 | 4.06 | 8.60 | 8.90 | 7.70 |
Third weeding | Days/ha | 0.38 | 5.00 | 5.84 | 2.78 | 4.25 | 4.25 | 4.46 | 2.89 | 2.71 | 5.80 | 5.70 | 5.60 |
Top dressing | Days/ha | 1.69 | 1.84 | 1.81 | 1.69 | 1.84 | 1.81 | 2.00 | 2.00 | 2.00 | 1.30 | 1.70 | 1.10 |
Mulching | Days/ha | 0.00 | 7.00 | 7.00 | 0.00 | 7.00 | 7.00 | 0.00 | 7.00 | 7.03 | 0.00 | 4.00 | 4.00 |
Harvest and threshing | Days/ha | 1.22 | 3.95 | 2.41 | 1.74 | 4.80 | 3.45 | 4.74 | 7.06 | 9.43 | 2.70 | 6.76 | 7.65 |
Total labour | Days/ha | 20.03 | 39.17 | 45.09 | 24.28 | 43.24 | 38.19 | 36.24 | 38.67 | 36.51 | 33.98 | 47.06 | 43.10 |
Labour unit price | USD | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 4.00 | 4.00 | 4.00 |
Labour costs | USD/ha | 60.09 | 117.50 | 135.27 | 72.84 | 129.71 | 114.58 | 108.71 | 116.01 | 109.54 | 135.94 | 188.22 | 172.41 |
Total VC | USD/ha | 369.59 | 427.00 | 444.77 | 365.24 | 422.11 | 406.98 | 383.71 | 391.01 | 384.54 | 428.34 | 480.62 | 464.81 |
Gross margin | USD/ha | −272.29 | −137.08 | −262.75 | −223.28 | −43.94 | −128.63 | −7.13 | 171.27 | 366.73 | −157.34 | 200.23 | 305.99 |
3.4. Farmer Perceived Challenges
Technical Challenges | Operational Challenges | Institutional Challenges |
---|---|---|
Inadequate amounts of crop residues Low crop productivity Habitual burning Livestock grazing | Management intensity Often CA is more demanding than farmers’ conventional practice | Unstable input/output markets Increases in prices for inputs Decreases in prices for outputs |
Greater weed pressure No-till lead to more weed densities initially Limited effectiveness of herbicides on sandy soils | Labour shortage Initial labour needed to match the larger management intensity | Unavailability of good quality legume seed Legume seeds often recycled for many years Limited variety of legume crops |
Crop choice Root crops under CA | Herbicides Not available and affordable locally. Inadequate herbicides use experience Limited effectiveness with some weeds | Unavailability of credit for inputs No funds to purchase fertilisers, improved seed and herbicides |
Termites attack On yield at physiological maturityon crop residues | Equipment Direct seeder is very expensive Not available locally | Knowledge and capacity Farmers lack the knowledge on new management steps Extension officers are trained on outdated technical knowledge |
Pest and diseases At some sites, the incidence of white grubs was observed Fungal diseases may be carried over through residues | Land constraints How to introduce diversified crop rotations when the land holding size of farmers is too small to ensure food security with non-cereal crops |
4. Discussion
4.1. Effects of CA on Maize Productivity and Soil Relations
4.2. Socio-economic Evaluation and Farmer Perceptions
5. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Thierfelder, C.; Rusinamhodzi, L.; Ngwira, A.R.; Mupangwa, W.; Nyagumbo, I.; Kassie, G.T.; Cairns, J.E. Conservation agriculture in southern Africa: Advances in knowledge. Renew. Agric. Food Syst. 2014. [Google Scholar] [CrossRef]
- Cairns, J.E.; Hellin, J.; Sonder, K.; Araus, J.L.; MacRobert, J.F.; Thierfelder, C.; Prasanna, B. Adapting maize production to climate change in sub-Saharan Africa. Food Security 2013, 5, 345–360. [Google Scholar] [CrossRef]
- Wall, P.C.; Thierfelder, C.; Ngwira, A.; Govaerts, B.; Nyagumbo, I.; Baudron, F. Conservation agriculture in eastern and southern Africa. In Conservation Agriculture: Global Prospects and Challenges; Jat, R.A., Sahrawat, K.L., Kassam, A.H., Eds.; CABI: Wallingford Oxfordshire OX10 8DE, UK, 2013. [Google Scholar]
- Kassam, A.; Friedrich, T.; Shaxson, F.; Pretty, J. The spread of conservation agriculture: Justification, sustainability and uptake. Int. J. Agric. Sustain. 2009, 7, 292–320. [Google Scholar] [CrossRef]
- Wall, P.C. Tailoring conservation agriculture to the needs of small farmers in developing countries: An analysis of issues. J. Crop Improv. 2007, 19, 137–155. [Google Scholar] [CrossRef]
- Thierfelder, C.; Wall, P.C. Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil Tillage Res. 2009, 105, 217–227. [Google Scholar] [CrossRef]
- Thierfelder, C.; Wall, P.C. Rotations in conservation agriculture systems of Zambia: Effects on soil quality and water relations. Exp. Agric. 2010, 46, 309–325. [Google Scholar] [CrossRef]
- Mazvimavi, K.; Twomlow, S.; Belder, P.; Hove, L. An Assessment of the Sustainable Uptake of Conservation Farming in Zimbabwe; Global Theme on Agroecosystems Report no. 39; International Crops Research Institute for the Semi-Arid Tropics: Bulawayo, Zimbabwe, 2008; p. 60. [Google Scholar]
- Ngwira, A.R.; Thierfelder, C.; Lambert, D.M. Conservation agriculture systems for Malawian smallholder farmers: Long-term effects on crop productivity, profitability and soil quality. Renew. Agric. Food Syst. 2013, 28, 350–363. [Google Scholar] [CrossRef]
- Thierfelder, C.; Matemba-Mutasa, R.; Rusinamhodzi, L. Yield response of maize (Zea mays L.) to conservation agriculture cropping system in southern Africa. Soil Tillage Res. 2015, 146, 230–242. [Google Scholar] [CrossRef]
- Nyamangara, J.; Nyengerai, K.; Masvaya, E.; Tirivavi, R.; Mashingaidze, N.; Mupangwa, W.; Dimes, J.; Hove, L.; Twomlow, S. Effect of conservation agriculture on maize yield in the semi-arid areas of Zimbabwe. Exp. Agric. 2014, 50, 159–177. [Google Scholar] [CrossRef]
- Nyamangara, J.; Marondedze, A.; Masvaya, E.; Mawodza, T.; Nyawasha, R.; Nyengerai, K.; Tirivavi, R.; Nyamugafata, P.; Wuta, M. Influence of basin-based conservation agriculture on selected soil quality parameters under smallholder farming in Zimbabwe. Soil Use Manag. 2014, 30, 550–559. [Google Scholar] [CrossRef]
- Mupangwa, W.; Twomlow, S.; Walker, S. The influence of conservation tillage methods on soil water regimes in semi-arid southern Zimbabwe. Phys. Chem. Earth Parts A/B/C 2008, 33, 762–767. [Google Scholar] [CrossRef]
- Andersson, J.A.; D’Souza, S. From adoption claims to understanding farmers and contexts: A literature review of conservation agriculture (CA) adoption among smallholder farmers in southern Africa. Agric. Ecosyst. Environ. 2014, 187, 116–132. [Google Scholar] [CrossRef]
- Grabowski, P.P.; Kerr, J.M. Resource constraints and partial adoption of conservation agriculture by hand-hoe farmers in Mozambique. Int. J. Agric. Sustain. 2014, 12, 37–53. [Google Scholar] [CrossRef]
- Grabowski, P.P.; Kerr, J.M.; Haggblade, S.; Kabwe, S. Determinants of Adoption of Minimum Tillage by Cotton Farmers in Eastern Zambia; Michigan State University, Department of Agricultural, Food, and Resource Economics: East Lansing, USA, 2014. [Google Scholar]
- Arslan, A.; McCarthy, N.; Lipper, L.; Asfaw, S.; Cattaneo, A. Adoption and intensity of adoption of conservation farming practices in Zambia. Agric. Ecosyst. Environ. 2014, 187, 72–86. [Google Scholar] [CrossRef]
- Morris, M.L. Fertilizer Use in African Agriculture: Lessons Learned and Good Practice Guidelines; World Bank Publications: Washington, DC, USA, 2007. [Google Scholar]
- Vanlauwe, B.; Wendt, J.; Giller, K.; Corbeels, M.; Gerard, B.; Nolte, C. A fourth principle is required to define conservation agriculture in sub-Saharan Africa: The appropriate use of fertilizer to enhance crop productivity. Field Crops Res. 2014, 155, 10–13. [Google Scholar] [CrossRef]
- Valbuena, D.; Erenstein, O.; Homann-Kee Tui, S.; Abdoulaye, T.; Claessens, L.; Duncan, A.J.; Gérard, B.; Rufino, M.C.; Teufel, N.; van Rooyen, A.; et al. Conservation agriculture in mixed crop–livestock systems: Scoping crop residue trade-offs in sub-Saharan Africa and south Asia. Field Crops Res. 2012, 132, 175–184. [Google Scholar] [CrossRef]
- Mueller, J.P.; Pezo, D.A.; Benites, J.; Schlaepfer, N.P. Conflicts between conservation agriculture and livestock over utilization of crop residues. In Conservation Agriculture: A Worldwide Challenge; Garcia-Torres, L., Benites, J., Martinez-Vilela, A., Eds.; ECAF/FAO: Cordoba, Spain, 2001; pp. 211–225. [Google Scholar]
- Mupangwa, W.; Twomlow, S.; Walker, S. Reduced tillage, mulching and rotational effects on maize (Zea mays L.), cowpea (Vigna unguiculata (Walp) L.) and sorghum (Sorghum bicolor L. (Moench)) yields under semi-arid conditions. Field Crops Res. 2012, 132, 139–148. [Google Scholar] [CrossRef]
- Muoni, T.; Rusinamhodzi, L.; Rugare, J.T.; Mabasa, S.; Mangosho, E.; Mupangwa, W.; Thierfelder, C. Effect of herbicide application on weed flora under conservation agriculture in Zimbabwe. Crop Prot. 2014, 66, 1–7. [Google Scholar] [CrossRef]
- Muoni, T.; Rusinamhodzi, L.; Thierfelder, C. Weed control in conservation agriculture systems of Zimbabwe: Identifying economical best strategies. Crop Prot. 2013, 53, 23–28. [Google Scholar] [CrossRef]
- Mhlanga, B.; Cheesman, S.; Maasdorp, B.; Muoni, T.; Mabasa, S.; Mangosho, E.; Thierfelder, C. Weed community responses to rotations with cover crops in maize-based conservation agriculture systems of Zimbabwe. Crop Prot. 2015, 69, 1–8. [Google Scholar] [CrossRef]
- Nyamangara, J.; Mashingaidze, N.; Masvaya, E.N.; Nyengerai, K.; Kunzekweguta, M.; Tirivavi, R.; Mazvimavi, K. Weed growth and labor demand under hand-hoe based reduced tillage in smallholder farmers’ fields in Zimbabwe. Agric. Ecosyst. Environ. 2014, 187, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Mashingaidze, N.; Madakadze, C.; Twomlow, S.; Nyamangara, J.; Hove, L. Crop yield and weed growth under conservation agriculture in semi-arid Zimbabwe. Soil Tillage Res. 2012, 124, 102–110. [Google Scholar] [CrossRef]
- Erenstein, O.; Sayre, K.; Wall, P.; Hellin, J.; Dixon, J. Conservation agriculture in maize- and wheat-based systems in the (sub)tropics: Lessons from adaptation initiatives in south asia, Mexico, and southern Africa. J. Sustain. Agric. 2012, 36, 180–206. [Google Scholar] [CrossRef]
- Dowswell, C.R.; Paliwal, R.L.; Cantrell, R.P. Maize in the Third World; Westview Press: Colorado, USA, 1996. [Google Scholar]
- Thierfelder, C.; Mutenje, M.; Mujeyi, A.; Mupangwa, W. Where is the limit? Lessons learned from long-term conservation agriculture research in Zimuto communal area, Zimbabwe. Food Security 2014, 15–31. [Google Scholar] [CrossRef]
- FAOSTAT. Maize Grain Yield. Available online: www.faostat.org (accessed on 16 November 2014).
- Levy, S. Starter Packs: A Strategy to Fight Hunger in Developing Countries?: Lessons from the Malawi Experience 1998–2003; CABI: Wallingford, UK, 2005. [Google Scholar]
- Holden, S.T.; Lunduka, R.W. Who benefit from Malawi’s targeted farm input subsidy program? Forum Dev. Stud. 2013, 40, 1–25. [Google Scholar] [CrossRef]
- Tittonell, P.; Vanlauwe, B.; de Ridder, N.; Giller, K.E. Heterogeneity of crop productivity and resource use efficiency within smallholder kenyan farms: Soil fertility gradients or management intensity gradients? Agric Syst. 2007, 94, 376–390. [Google Scholar] [CrossRef]
- Friedrich, T.; Derpsch, R.; Kassam, A. Overview of the Global Spread of Conservation Agriculture. Field Act. Sci. Rep. Special Issue. 2012, 6. Available online: http://factsreports.revues.org/1941 (accessed on 6 November 2012).
- Derpsch, R.; Friedrich, T.; Kassam, A.; Hongwen, L. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng. 2010, 3, 1–25. [Google Scholar]
- Bolliger, A.; Magid, J.; Amado, T.J.C.; Scora Neto, F.; Dos Santos Ribeiro, M.D.F.; Calegari, A.; Ralisch, R.; De Neergaard, A. Taking stock of the Brazilian “zero-till revolution”: A review of landmark research an farmers’ practice. Adv. Agron. 2006, 91, 47–110. [Google Scholar]
- Ngwira, A.R.; Aune, J.B.; Mkwinda, S. On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi. Field Crops Res. 2012, 132, 149–157. [Google Scholar] [CrossRef]
- Ngwira, A.; Johnsen, F.H.; Aune, J.B.; Mekuria, M.; Thierfelder, C. Adoption and extent of conservation agriculture practices among smallholder farmers in Malawi. J. Soil Water Conserv. 2014, 69, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Thierfelder, C.; Chisui, J.L.; Gama, M.; Cheesman, S.; Jere, Z.D.; Bunderson, W.T.; Eash, N.S.; Ngwira, A.; Rusinamhodzi, L. Maize-based conservation agriculture systems in Malawi: Long-term trends in productivity. Field Crop Res. 2013, 142, 47–57. [Google Scholar] [CrossRef]
- Muoni, T.; Mhlanga, B. Weed management in Zimbabwean smallholder conservation agriculture farming sector. Asian J. Agric. Rural Dev. 2014, 4, 267–276. [Google Scholar]
- Thierfelder, C.; Wall, P.C. Effects of conservation agriculture on soil quality and productivity in contrasting agro-ecological environments of Zimbabwe. Soil Use Manag. 2012, 28, 209–220. [Google Scholar] [CrossRef]
- Ellert, B.H.; Bettany, J.R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 1995, 75, 529–538. [Google Scholar] [CrossRef]
- Verhulst, N.; Kienle, F.; Sayre, K.D.; Deckers, J.; Raes, D.; Limon-Ortega, A.; Tijerina-Chavez, L.; Govaerts, B. Soil quality as affected by tillage-residue management in a wheat-maize irrigated bed planting system. Plant Soil 2011, 340, 453–466. [Google Scholar] [CrossRef]
- Ried, K. Interpreting and understanding meta-analysis graphs: A practical guide. Aust. Family Phys. 2006, 35, 635–638. [Google Scholar]
- Derpsch, R. Conservation tillage, no-tillage and related technologies. In Conservation Agriculture; Garcia-Torres, L., Benites, J., Martinez-Vilela, A., Holgado-Cabrera, A., Eds.; Kluwer Academic Publishers: Dordrecht, Boston, London, UK, 2003; pp. 181–190. [Google Scholar]
- Landers, J.N. How and why the Brazilian zero tillage explosion occurred. In Proceedings of the 10th International Soil Conservation Organisazation Meeting, West Lafayette, IN, USA, 24–29 May 1999; pp. 29–39.
- Thierfelder, C. Soil Crusting and Sealing in Cropping Systems of the Colombian Andes; Hohenheimer Bodenkundliche Hefte, No. 70; University of Hohenheim: Stuttgart, Germany, 2003; pp. 1–194. [Google Scholar]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; Van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Thierfelder, C.; Wall, P.C. Investigating conservation agriculture (CA) systems in Zambia and Zimbabwe to mitigate future effects of climate change. J. Crop Improv. 2010, 24, 113–121. [Google Scholar] [CrossRef]
- Powlson, D.S.; Stirling, C.M.; Jat, M.; Gerard, B.G.; Palm, C.A.; Sanchez, P.A.; Cassman, K.G. Limited potential of no-till agriculture for climate change mitigation. Nature Clim. Chang. 2014, 4, 678–683. [Google Scholar] [CrossRef]
- Giller, K.E.; Witter, E.; Corbeels, M.; Tittonell, P. Conservation agriculture and smallholder farming in Africa: The heretic’s view. Field Crops Res. 2009, 114, 23–34. [Google Scholar] [CrossRef]
- Govaerts, B.; Verhulst, N.; Castellanos-Navarrete, A.; Sayre, K.D.; Dixon, J.; Dendooven, L. Conservation agriculture and soil carbon sequestration: Between myth and farmer reality. Crit. Rev. Plant Sci. 2009, 28, 97–122. [Google Scholar] [CrossRef]
- Corbeels, M.; de Graaff, J.; Ndah, T.H.; Penot, E.; Baudron, F.; Naudin, K.; Andrieu, N.; Chirat, G.; Schuler, J.; Nyagumbo, I. Understanding the impact and adoption of conservation agriculture in Africa: A multi-scale analysis. Agric. Ecosyst. Environ. 2014, 187, 155–170. [Google Scholar] [CrossRef]
- Bunderson, W.T.; Thierfelder, C.; Jere, Z.D.; Gama, M.; Museka, R.; Ng’oma, S.W.D.; Paul, J.M.; Mwale, B.M.; Chisui, J.L. Building resilience to climate change in Malawi: Trends in crop yields under conservation agriculture and factors affecting adoption. In Paper Presented at the 1st African Congress of Conservation Agriculture; ACT: Lusaka, Zambia, 2014. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thierfelder, C.; Bunderson, W.T.; Mupangwa, W. Evidence and Lessons Learned from Long-Term On-Farm Research on Conservation Agriculture Systems in Communities in Malawi and Zimbabwe. Environments 2015, 2, 317-337. https://doi.org/10.3390/environments2030317
Thierfelder C, Bunderson WT, Mupangwa W. Evidence and Lessons Learned from Long-Term On-Farm Research on Conservation Agriculture Systems in Communities in Malawi and Zimbabwe. Environments. 2015; 2(3):317-337. https://doi.org/10.3390/environments2030317
Chicago/Turabian StyleThierfelder, Christian, William Trent Bunderson, and Walter Mupangwa. 2015. "Evidence and Lessons Learned from Long-Term On-Farm Research on Conservation Agriculture Systems in Communities in Malawi and Zimbabwe" Environments 2, no. 3: 317-337. https://doi.org/10.3390/environments2030317
APA StyleThierfelder, C., Bunderson, W. T., & Mupangwa, W. (2015). Evidence and Lessons Learned from Long-Term On-Farm Research on Conservation Agriculture Systems in Communities in Malawi and Zimbabwe. Environments, 2(3), 317-337. https://doi.org/10.3390/environments2030317