Background Conditions and Mining Pollution throughout History in the Río Tinto (SW Spain)
Abstract
:1. Introduction
1.1. Acid Mine Drainage
1.2. Study Area
1.3. Present-Day Conditions in the Río Tinto
2. Objectives and Methods
3. Mining History
3.1. The Beginning of Mining
3.2. The Roman Period
3.3. Since the End of the Roman Period until 1725
3.4. The Period 1725–1849
3.5. The Period 1850–2001
4. Impact of Mining on the Río Tinto
4.1. Background Conditions
4.2. The Beginning of Mining
4.3. The Roman Period
4.4. Since the End of the Roman Period until 1725
4.5. The Period 1725–1849
4.6. The Period 1850–2001
4.7. Data from the Sedimentary Record
5. Conclusions
- 1
- The natural oxidation stage of sulphides and gossan formation by ARD. These natural processes occur very slowly, over millions of years. In the Río Tinto headwaters, natural acidic springs should exist, generating a high diversity of acidophilic eukaryotic organisms. However, this acidic water would be neutralized by water from other tributaries and the Río Tinto upstream the Ría de Huelva was of good quality. Although significantly higher than in other estuarine areas of the Gulf of Cadiz, the amounts of metals and metalloids released were small on a basin scale (in the order of a thousand times lower than today) as shown by the low levels of contaminants in the sediments of the Huelva estuary.
- 2
- The first mining operations in the third millennium BC mark the beginning of anthropogenic pollution and produce a slight rise in background levels of metals in the sediments and fossils of the estuary. In the Bronze Age, with the Tartessian civilization, exploitation increased.
- 3
- The Roman mining period was characterized by extraordinary activity considering the technology of the time. Drainage methods allow depths of 100 m to be reached. It is estimated that at this time 3.6 Mt of sulphides were extracted at Río-Tinto mine. The impact of mining on the rivers of the area has been registered by an increase of metals and metalloids in the estuarine sediments.
- 4
- After Roman times until the mid-nineteenth century, a period of low-intensity mining occurred. However, due to the longevity of the processes of acid mine drainage, acidic leachates are still produced in the old Roman mines affecting areas of the headwater of the Río Tinto. Until 1850, the water between the Peña del Hierro and Lago Cave, and also in the lower reach of the river and in its estuary, was of good quality.
- 5
- In the late nineteenth century, with the arrival of foreign investors and the major mining boom, the total degradation of the Río Tinto occurred, as with many others rivers in the IPB. Pollution levels increased significantly in parallel with mining intensity, reaching a similar state as today. Due to the high toxic concentrations of elements entering into the estuary, loss of rich fishing at the Ría of Huelva also occurred. Also, at this stage, increased levels of metals from mining in the Gulf of Cadiz have been detected. This situation has been aggravated by mining in Cerro Colorado since 1970.
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Hudson-Edwards, K.A.; Jamieson, H.E.; Lottermoser, B.G. Mine Water: Past, Present and Future. Elements 2011, 7, 375–380. [Google Scholar] [CrossRef]
- Simate, G.S.; Ndlovu, S. Acid mine drainage: Challenges and opportunities. J. Environ. Chem. Eng. 2014, 2, 1785–1803. [Google Scholar] [CrossRef]
- Younger, P.L.; Wolkersdorfer, C. Mining impacts on the fresh water environment: Technical and managerial guidelines for catchment scale management. Mine Water Environ. 2004, 23, 2–80. [Google Scholar]
- Amos, R.T.; Blowes, D.W.; Bailey, B.L.; Sego, D.C.; Smith, L.; Ritchie, A.I.M. Waste-rock hydrogeology and geochemistry. Appl. Geochem. 2015, 57, 140–156. [Google Scholar] [CrossRef]
- Younger, P. The longevity of minewater pollution: A basis for decision making. Sci. Total Environ. 1997, 194–195, 457–466. [Google Scholar] [CrossRef]
- Adamides, N.G. Rio Tinto (Iberian Pyrite Belt): A world-class mineral field reopens. App. Earth. Sci. 2013, 122, 1–15. [Google Scholar] [CrossRef]
- Tornos, F. Environment of formation and styles of volcanogenic massive sulfides: The Iberian Pyrite Belt. Ore Geol. Rev. 2006, 28, 259–307. [Google Scholar] [CrossRef]
- Sáez, R.; Pascual, E.; Toscano, M.; Almodóvar, G.R. The Iberian type of volcano-sedimentary massive sulphide deposits. Miner. Deposita 1999, 34, 549–570. [Google Scholar]
- Cánovas, C.R.; Hubbard, C.G.; Olías, M.; Nieto, J.M.; Black, S.; Coleman, M.L. Hydrochemical variations and contaminant load in the Río Tinto (Spain) during flood events. J. Hydrol. 2008, 350, 25–40. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Mine waters: Acidic to circumneutral. Elements 2011, 7, 393–398. [Google Scholar] [CrossRef]
- López-Archilla, A.I.; Marin, I.; Amils, R. Microbial community composition and ecology of an acidic aquatic environment: The Tinto River, Spain. Microb. Ecol. 2001, 41, 20–35. [Google Scholar] [PubMed]
- Zettler, L.A.A.; Gomez, F.; Zettler, E.; Keenan, G.; Amils, R.; Sogin, M.L. Eukaryotic diversity in Spain’s River of Fire. Nature. Available online: http://nematodes.org/teaching/retired_teaching/ecology4/Zettler_river_of_fire.pdf (accessed on 9 May 2002).
- González-Toril, I.; Llobet-Brossa, E.; Amann, R.; Amils, R. Microbialecology of an extreme acidic environment, the Tinto River. Appl. Environ. Microb. 2003, 69, 4853–4865. [Google Scholar] [CrossRef]
- Fernández-Remolar, D.C.; Morris, R.V.; Gruener, J.E.; Amils, R.; Knoll, A.H. The Río Tinto Basin, Spain: Mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum. Mars Earth Planet. Sci. Lett. 2005, 240, 149–167. [Google Scholar] [CrossRef]
- Amils, R.; González-Toril, E.; Fernández-Remolar, D.; Gómez, F.; Aguilera, A.; Rodríguez, N.; Malki, M.; García-Moyano, A.; Fairen, A.G.; de la Fuente, V.; Sanz, J.L. Extreme environments as Mars terrestrial analogs: The Río Tinto case. Planet Sp. Sci. 2007, 55, 370–381. [Google Scholar] [CrossRef]
- Amils, R.; Fernández-Remolar, D.; The IPBSL Team. Río Tinto: A geochemical and mineralogical terrestrial analogue of Mars. Life 2014, 4, 511–534. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, C.G. Acid Mine Drainage Generation and Transport Processes in the Tinto River, SW Spain. Ph.D. Thesis, University of Reading, Reading, UK, 2007. [Google Scholar]
- Cánovas, C.R.; Olías, M.; Nieto, J.M. Metal (loid) attenuation processes in an extremely acidic river: The Río Tinto (SW Spain). Water Air Soil Pollut. 2014, 225. [Google Scholar] [CrossRef]
- Lottermoser, B.G. Evaporative mineral precipitates from a historical smelting slag dump, Rio Tinto, Spain. Neues Jahrbuch Fur Mineralogie-Abhandlungen 2005, 181, 183–190. [Google Scholar] [CrossRef]
- Cánovas, C.R. La calidad del agua de los ríos Tinto y Odiel. Evolución Temporal y Factores Condicionantes de la Movilidad de los Metales. Ph.D. Thesis, University of Huelva, Huelva, Spain, 2008. [Google Scholar]
- Olías, M.; Cánovas, C.R.; Nieto, J.M.; Sarmiento, A.M. Evaluation of the dissolved contaminant load transported by the Tinto and Odiel rivers (South West Spain). Appl. Geochem. 2006, 21, 1733–1749. [Google Scholar] [CrossRef]
- Vicente-Martorell, J.J.; Galindo-Riaño, M.D.; García Vargas, M.; Granado-Castro, M.D. Bioavailability of heavy metals monitoring wáter, sediment and fish species from a polluted estuary. J. Hazard Mater. 2009, 162, 823–836. [Google Scholar] [CrossRef] [PubMed]
- Buckby, T.; Black, S.; Coleman, M.L.; Hodson, M.E. Fe-sulphate-rich evaporative mineral precipitates from the Río Tinto, southwest Spain. Miner. Mag. 2003, 67, 263–278. [Google Scholar] [CrossRef]
- Flores Caballero, M. Las antiguas explotaciones de Río Tinto; Instituto de Estudios Onubenses: Huelva, Spain, 1981. [Google Scholar]
- Ruiz Ballesteros, E.; Rubio de Miguel, E. Lo natural y lo contaminado, ironías del Río Tinto. In Patrimonialización de la Naturaleza, el Marco Social de las Políticas Ambientales; Oriol, B., Pascual, J.J., Vaccaro, I., Eds.; Ankulegi Antropologia Elkartea: San Sebastián, Spain, 2008; pp. 165–180. [Google Scholar]
- Sánchez-Andrea, I.; Nittel, K.; Amann, R.; Amils, R.; Sanz, J.L. Quantification of Tinto River sediment microbial communities: Importance of sulfate-reducing bacteria and their role in attenuating acid mine drainage. Appl. Environ. Microbiol. 2012, 78, 4638–4645. [Google Scholar] [CrossRef] [PubMed]
- Pérez Macías, J.A.; Delgado Domínguez, A. Ingeniería minera antigua y medieval en el suroeste ibérico. Boletín Geológico y Minero 2012, 122, 3–16. [Google Scholar]
- Gómez-Ortiz, D.; Fernández-Remolar, D.C.; Granda, A.; Quesada, C.; Granda, T.; Prieto-Ballesteros, O.; Molina, A.; Amils, R. Identification of the subsurface sulfide bodies responsible for acidity in Río Tinto source water, Spain. Earth Planet. Sci. Lett. 2014, 391, 36–41. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Baseline and premining geochemical characterization of mined sites. App. Geochem. 2015, 57, 17–34. [Google Scholar] [CrossRef]
- Nocete, F.; Alex, E.; Nieto, J.M.; Sáez, R.; Bayona, M.R. An archaelogical approach to regional environmental pollution in the south-western Iberian Peninsula related to Third Millenium B.C mining and metallurgy. J. Archaeol. Sci. 2005, 32, 1566–1576. [Google Scholar] [CrossRef]
- Carrasco Martiañez, I. Historia en la Faja Pirítica. Bocamina 2000, 5, 8–49. [Google Scholar]
- Pinedo Vara, I. Piritas de Huelva. Su Historia, Minería y Aprovechamiento; Suc. de Rivadeneyra: Madrid, Spain, 1963. [Google Scholar]
- Rothenberg, B.; García Palomero, F. The Rio Tinto enigma-no more. Inst. Archaeo. Metall. Stud. Newsl. 1986, 8, 3–5. [Google Scholar]
- Ortiz Mateo, M. Las escorias de Riotinto. De Re Metallica 2004, 2, 9–22. [Google Scholar]
- Ortiz Mateo, M.; Romero Macías, E. La metalurgia en las minas de Riotinto, desde su creación al alquiler del Marqués de Remisa (1725–1849) y obtención de indicadores ambientales del consumo de combustible en los procesos metalúrgicos. Boletín Geológico y Minero 2004, 115, 103–114. [Google Scholar]
- Ezquerra Bayo, J. Memorias Sobre las Minas Nacionales de Rio-Tinto; Viuda de D. Antonio Yenes: Madrid, Spain, 1852. [Google Scholar]
- Fernández-Posse, M.D.; Sánchez-Palencia, F.J. Riotinto: La memoria antigua desde la antigüedad. Clásicos de la Arqueología de Huelva 1996, 6, 51–97. [Google Scholar]
- Maurín, M. Huella, memoria y patrimonio territorial de la minería española. Una síntesis cartográfica. Ería 2011, 86, 187–214. [Google Scholar]
- Carrasco Martiañez, I. La Faja Pirítica Ibérica ¿Crisis terminal o renacimiento de un distrito histórico? In Metallum. La Minería Suribérica; Romero, E., Pérez Macías, J.A., Eds.; Servicio de, Publicaciones: Universidad de Huelva, Huelva, Spain, 2004; pp. 203–224. [Google Scholar]
- Delgado Domínguez, A.; Regalado Ortega, M.C. Catálogo del patrimonio minero industrial de la mina Peña de Hierro (Nerva, Huelva, España). De Re Metallica 2012, 18, 13–27. [Google Scholar]
- Moreno Bolaños, A. Mineral extraído en minas de Riotinto (1725-2002). In Río Tinto. Historia, Patrimonio Minero y Turismo Cultural; Pérez Macías, J.A., Delgado Domínguez, A., Pérez López, J.M., García Delgado, F.J., Eds.; Servicio de Publicaciones: Universidad de Huelva, Huelva, Spain, 2011; pp. 761–770. [Google Scholar]
- Essalhi, M.; Sizaret, S.; Barbanson, L.; Chen, Y.; Lagroix, F.; Demory, F.; Nieto, J.M.; Sáez, R.; Capitán, M.A. A case study of the internal structures of gossans and weathering processes in the Iberian Pyrite Belt using magnetic frabrics and paleomagnetic dating. Miner. Deposita 2011, 46, 981–999. [Google Scholar] [CrossRef] [Green Version]
- García Palomero, F. Yacimientos de la Faja Pirítica Ibérica. In Metallum. La Minería Suribérica; Romero, E.; Pérez Macías, J.A. (Eds.) Servicio de Publicaciones: Universidad de Huelva, Huelva, Spain, 2004; pp. 13–29.
- Leistel, J.M.; Marcoux, E.; Thiéblemont, D.; Quesada, C.; Sánchez, A.; Almodóvar, G.R.; Pascual, E.; Sáez, R. The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Miner. Deposita 1998, 33, 2–30. [Google Scholar] [CrossRef]
- Rosman, K.; Chisholm, W.; Hong, S.; Candelone, J.P.; Boutron, C.F. Lead from Carthaginian and Roman Spanish mines isotopically identified in Greenland ice dated from 600 B.C. to 300 A.D. Environ. Sci. Technol. 1997, 31, 3413–3421. [Google Scholar] [CrossRef]
- Hong, S.; Candelone, J.P.; Patterson, C.C.; Boutron, C.F. History of Ancient copper Smelting Pollution During Roman and Medieval Times Recorded in Greenland Ice. Science 1996, 272, 246–249. [Google Scholar] [CrossRef]
- Salkield, L.U. A Technical History of the Rio Tinto Mines: Some Notes on Exploitation from Pre-Phoenician Times to the 1950s; The Institute of Mining and Metallurgy: London, UK, 1987. [Google Scholar]
- Madoz, P. Diccionario Geográfico-Estadístico-Histórico de España y Sus Posesiones de Ultramar; Est. Literario-Tipográfico de P. Madoz y L. Sagasti: Madrid, Spain, 1850. [Google Scholar]
- Gonzalo y Tarín, J. Descripción Física, Geológica y Minera de la Provincia de Huelva; Memorias de la Comisión del Mapa Geológico de España: Madrid, Spain, 1886. [Google Scholar]
- García del Hoyo, J.J. El impacto económico de la expansión minera del siglo XIX: Efectos inducidos en el tejido productivo de la provincia de Huelva. In Patrimonio Geológico y Minero. Una Apuesta Por el Desarrollo Local Sostenible; Romero, E., Ed.; Servicio de Publicaciones, Universidad de Huelva: Huelva, Spain, 2010; pp. 57–70. [Google Scholar]
- Ferrero Blanco, M.D. Capitalismo Minero y Resistencia Rural en el Suroeste Andaluz. Río Tinto,1873–1900; Servicio de Publicaciones de la Universidad de Huelva: Huelva, Spain, 1999. [Google Scholar]
- Olías, M.; Nieto, J.M. Comment on “Identification of the subsurface sulfide bodies responsible for acidity in Río Tinto source water, Spain”. Earth Planet. Sci. Lett. 2014, 403, 456–458. [Google Scholar] [CrossRef]
- Gómez-Ortiz, D.; Fernández-Remolar, D.C.; Granda, A.; Quesada, C.; Granda, T.; Prieto-Ballesteros, O.; Molina, A.; Amils, R. Reply to Comment on “Identification of the subsurface sulfide bodies responsible for acidity in Río Tinto source water, Spain”. Earth Planet. Sci. Lett. 2014, 403, 459–462. [Google Scholar] [CrossRef]
- Cáceres, L.M.; Olías, M.; De Andrés, J.R.; Rodríguez-Vidal, J.; Clemente, L.; Galván, L.; Medina, B. Geochemistry of Quaternary sediments in terraces of the Tinto River (SW Spain): Palaeoenviromental implications. Catena 2013, 101, 1–10. [Google Scholar] [CrossRef]
- Leblanc, M.; Morales, J.A.; Borrego, J.; Elbaz-Poulichet, F. 4500 Year old mining pollution in southwestern Spain: Long-term implications for modern mining pollution. Econ. Geol. 2000, 95, 655–661. [Google Scholar]
- López-González, N.; Borrego, J.; Ruiz, F.; Carro, B.; Lozano-Soria, O.; Abad, M. Geochemical variations in estuarine sediments: Provenance and environmental changes (Southern Spain). Estuar. Coast. Shelf Sci. 2006, 67, 313–320. [Google Scholar] [CrossRef]
- Davis, R.A.; Welty, A.T.; Borrego, J.; Morales, J.A.; Pendón, J.G.; Ryan, J.G. Río Tinto estuary (Spain): 5000 Years of pollution. Environ. Geol. 2000, 39, 1107–1116. [Google Scholar] [CrossRef]
- Ruiz, F.; Borrego, J.; Gonzalez-Regalado, M.L.; López-González, N.; Carro, B.; Abad, M. Interaction between sedimentary processes, historical pollution and microfauna in the Tinto Estuary (SW Spain). Environ. Geol. 2009, 58, 779–783. [Google Scholar] [CrossRef]
- Van Geen, A.; Adkins, J.F.; Boyle, E.A.; Nelson, C.H.; Palanques, A. A 120-year record of widespread contamination from mining of the Iberian Prite Blt. Geol. 1997, 25, 291–294. [Google Scholar]
- Delgado, J.; Boski, T.; Nieto, J.M.; Pereira, L.; Moura, D.; Gomes, A.; Sousa, C.; García-Tenorio, R. Sea-level rise and anthropogenic activities recorded in the late Pleistocene/Holocene sedimentary infill of the Guadiana Estuary (SW Iberia). Quat. Sci. Rev. 2012, 33, 121–141. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olías, M.; Nieto, J.M. Background Conditions and Mining Pollution throughout History in the Río Tinto (SW Spain). Environments 2015, 2, 295-316. https://doi.org/10.3390/environments2030295
Olías M, Nieto JM. Background Conditions and Mining Pollution throughout History in the Río Tinto (SW Spain). Environments. 2015; 2(3):295-316. https://doi.org/10.3390/environments2030295
Chicago/Turabian StyleOlías, Manuel, and José Miguel Nieto. 2015. "Background Conditions and Mining Pollution throughout History in the Río Tinto (SW Spain)" Environments 2, no. 3: 295-316. https://doi.org/10.3390/environments2030295
APA StyleOlías, M., & Nieto, J. M. (2015). Background Conditions and Mining Pollution throughout History in the Río Tinto (SW Spain). Environments, 2(3), 295-316. https://doi.org/10.3390/environments2030295