Ecological Footprint of Biological Resource Consumption in a Typical Area of the Green for Grain Project in Northwestern China
Abstract
:1. Introduction
2. Study Area and Research Methods
2.1. The Study Area
2.2. Research Methods and Data Collection
3. Results and Discussion
3.1. Specific Consumption Process of the EF of Biological Resources
Biological Land Type | Per Capita Area | Equivalence Factor | Per Capita EFs | Proportion (%) |
---|---|---|---|---|
Per capita EF of biological resource production in Guyuan City | ||||
Cultivated land | 0.3304 | 1.84 | 0.6079 | 92.29 |
Grass | 0.3607 | 0.10 | 0.0361 | 5.48 |
Forest | 0.0215 | 0.68 | 0.0146 | 2.22 |
Water body | 0.0003 | 0.19 | 0.00006 | 0.01 |
Total EF demand | 0.65866 | 100 | ||
Per capita EF of sales of products in Guyuan City | ||||
Cultivated land | 0.1071 | 1.84 | 0.1971 | 86.45 |
Grass | 0.3040 | 0.10 | 0.0304 | 13.33 |
Forest | 0.0008 | 0.68 | 0.0005 | 0.22 |
Total EF demand | 0.2280 | 100 | ||
Per capita EF of purchased products in Guyuan City | ||||
Cultivated land | 0.0463 | 1.84 | 0.0852 | 89.59 |
Grass | 0.0416 | 0.10 | 0.0041 | 4.31 |
Forest | 0.0045 | 0.68 | 0.0031 | 3.26 |
Water body | 0.0144 | 0.19 | 0.0027 | 2.84 |
Total EF demand | 0.0951 | 100 |
3.2. EFs of Biological Products
3.2.1. EFs of Biological Products on Different Types of Biologically Productive Land
Types of Biological Resource Production | Food and Cooking Oil | Vegetables | Meat and Eggs | Aquatic Products | Fruit | Firewood |
---|---|---|---|---|---|---|
Production | 0.4063 | 0.1003 | 0.1374 | 0.00005 | 0.0034 | 0.0112 |
Outflow | 0.1297 | 0.0475 | 0.0503 | 0 | 0.0005 | 0 |
Inflow | 0.0302 | 0.0405 | 0.0187 | 0.0027 | 0.0030 | 0 |
Per capita EF | 0.3068 | 0.0933 | 0.1058 | 0.0028 | 0.0059 | 0.0112 |
Proportion (%) | 58.36 | 17.75 | 20.12 | 0.52 | 1.12 | 2.13 |
3.2.2. The EF from Biological Production Consumption before and after the Green for Grain Project
3.3. Comparison of Supply and Demand of Biological Production’s EFs before and after the Project
3.3.1. The Final EFs and BC of Bio-Resource Consumption before and after the Green for Grain Project
EFs | Biological Land Type | Cultivated Land | Grass | Forest | Waters | |||||
---|---|---|---|---|---|---|---|---|---|---|
Demand of EFs | Per capita area (ha/cap) | 1998 | 0.4821 | 0.5773 | 0.0993 | — | The total EF | |||
2012 | 0.2696 | 0.0983 | 0.0252 | 0.0147 | ||||||
Equivalence factor | 1998 | 1.89 | 0.03 | 0.56 | 0.32 | |||||
2012 | 1.84 | 0.10 | 0.68 | 0.19 | ||||||
Per capita EF (ha/cap) | 1998 | 0.9112 | 0.0173 | 0.0556 | — | 0.9841 | ||||
2012 | 0.4961 | 0.0098 | 0.0171 | 0.0028 | 0.5258 | |||||
Supply of EFs (BC)) | Per capita area (ha/cap) | 1998 | 0.3420 | 0.2714 | 0.0892 | 0.0002 | The total supply area | The biodiversity protection | The total available area | |
2012 | 0.2302 | 0.1436 | 0.2016 | 0.0003 | ||||||
Equivalence factor | 1998 | 1.89 | 0.03 | 0.56 | 0.32 | |||||
2012 | 1.84 | 0.10 | 0.68 | 0.19 | ||||||
Yield factor | 1998 | 1 | 1 | 1 | 1 | |||||
2012 | 1 | 1 | 1 | 1 | ||||||
Per capita BC (ha/cap) | 1998 | 0.6464 | 0.0081 | 0.0499 | 0.0001 | 0.7045 | 0.0944 | 0.6101 | ||
2012 | 0.4235 | 0.0144 | 0.1371 | 0.0001 | 0.5751 | 0.0771 | 0.4980 |
3.3.2. The Differences in EF and BC in Biologically Productive Land Types before and after the Green for Grain Project
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wackernagel, M.; Onisto, L.; Linares, A.C.; Falfán, I.S.L.; García, J.M.; Guerrero, A.I.S.; Guerrero, M.G.S. Ecological Footprints of Nations: How Much Nature Do They Use? How Much Nature Do They Have? Commissioned by the Earth Council for the Rio+5 Forum; The International Council for Local Environmental Initiatives: Toronto, Canada, 1997. [Google Scholar]
- Wackernagel, M.; Onisto, L.; Bello, P.; Linares, A.C.; López Falfán, I.S.; Garcı́a, J.M.; Suárez Guerrero, A.I.; Suárez Guerrero, M.G. National natural capital accounting with the ecological footprint concept. Ecol. Econ. 1999, 29, 375–390. [Google Scholar] [CrossRef]
- William, E.R. Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Environ. Urban 1992, 4, 121–130. [Google Scholar] [CrossRef]
- Wackenagel, M.; William, E.R. Our Ecological Footprint: Reducing Human Impact on the Earth; New Society Publishers: Gabriola Island, BC, Canada, 1996. [Google Scholar]
- WWF. Living Planet Report 2008; WWF-WorldWide Fund For Nature (formerly World Wildlife Fund): Gland, Switzerland, 2008. [Google Scholar]
- Scotti, M.; Bondavalli, C.; Bodini, A. Ecological Footprint as a tool for local sustainability: The municipality of Piacenza (Italy) as a case study. Environ. Impact Assess. Rev. 2009, 29, 39–50. [Google Scholar] [CrossRef]
- William, R.; Wackernagel, M. Urban Ecological Footprints: Why cities cannot be sustainable and why they are a key to sustainability. Environ. Impact Assess. Rev. 1996, 16, 223–248. [Google Scholar] [CrossRef]
- Xu, Z.-M.; Zhang, Z.-Q.; Chen, G.-D.; Chen, D.-J. Ecological footprint calculation and development capacity analysis of China in 1999. Chin. J. Appl. Ecol. 2003, 14, 280–285. [Google Scholar]
- Chen, D.-J.; Xu, Z.-M.; Chen, G.-D.; Zhang, Z.-Q. Ecological footprint in Northwest China. J. Glaciol. Geocryol. 2001, 23, 164–169. [Google Scholar]
- Zhang, Z.-Q.; Xu, Z.-M.; Chen, G.-D.; Chen, D.-J. The ecological footprints of the 12 provinces of West China in 1999. Acta Geogr. Sin. 2001, 56, 599–610. [Google Scholar]
- Guo, X.-R.; Yang, J.-R.; Mao, X.-Q. Calculation and analysis of urban ecological footprint: A case study of Guangzhou. Geogr. Res. 2003, 22, 654–662. [Google Scholar]
- Collins, A.; Flynn, A.; Wiedmann, T.; Barrett, J. The environmental impacts of consumption at a subnational level. J. Ind. Ecol. 2006, 3, 9–24. [Google Scholar] [CrossRef]
- Kissinger, M.; Sussman, C.; Moore, J.; Rees, W.E. Accounting for the ecological footprint of materials in consumer goods at the urban scale. Sustainability 2013, 5, 1960–1973. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, Z.-Q.; Wang, H.-H.; Zou, F.-C. Ecological footprint analysis of one country based on “city hectare” model. J. Anhui Agric. Sci. 2010, 38, 11867–11870. [Google Scholar]
- Hu, H.-X.; He, W.; Shen, H.; Wang, Y. Evaluation and prediction of sustainable development of the “Two Circles” in Hubei Province. Resour. Environ. Yangtze Basin 2010, 4, 351–359. [Google Scholar]
- He, W.; Hu, H.-X.; Shen, H.; Wang, Y.; Xu, F.-L. Dynamic analysis of ecological footprint of biological resource: A case study of the “Two Circles” in Hubei Province. China Popul. Resour. Environ. 2011, 21, 167–174. [Google Scholar]
- Wu, Z.-Y.; Peng, H. The rational development and utilization of biological resources, and effective protection of biological diversity. World Sci.-Tech. R. D. 1996, 1, 24–30. [Google Scholar]
- Borucke, M.; Moore, D.; Cranston, G.; Gracey, K.; Iha, K.; Larson, J.; Lazarus, E.; Morales, J. C.; Wackernagel, M.; Galli, A. Accounting for demand and supply of the biosphere’s regenerative capacity: The National Footprint Accounts’ underlying methodology and framework. Ecol. Indic. 2013, 24, 518–533. [Google Scholar] [CrossRef]
- Cuadra, M.; Bjrklund, J. Assessment of economic and ecological carrying capacity of agricultural crops in Nicaragua. Ecol. Indic. 2007, 7, 133–149. [Google Scholar] [CrossRef]
- Bicknell, K.B.; Ball, R.J.; Cullen, R.; Bigsby, H.R. New methodology for the ecological footprint with an application to the New Zealand economy. Ecol. Econ. 1998, 27, 149–160. [Google Scholar] [CrossRef]
- Lenzen, M.; Murray, S.A. A modified ecological footprint method and its application to Australia. Ecol. Econ. 2001, 37, 229–255. [Google Scholar] [CrossRef]
- Turner, K.; Lenzen, M.; Wiedmann, T.; Barrett, J. Examining the global environmental impact of regional consumption activities—Part 1: A technical note on combining input-output and Ecological Footprint analysis. Ecol. Econ. 2007, 62, 37–44. [Google Scholar] [CrossRef]
- Galli, A.; Weinzettel, J.; Cranston, G.; Ercin, E. A footprint family extended MRIO model to support Europe’s transition to a One Planet Economy. Sci. Tot. Environ. 2013, 461 462, 813–818. [Google Scholar] [CrossRef]
- Nguyen, H.X.; Yamamoto, R. Modification of ecological footprint evaluation method to include non-renewable resource consumption using thermodynamic approach. Resour. Conserv. Recycl. 2007, 51, 870–884. [Google Scholar] [CrossRef]
- Liu, M.; Hu, Y.-M.; Chang, Y.; Zhang, W.-G.; Zhang, W. Modification of ecological footprint assessment based on emergy: A case study in the Upper Reach of Minjiang River. J. Nat. Resour. 2008, 23, 447–457. [Google Scholar]
- Chen, C.-F.; Wang, H.-Y.; Xiao, D.-N.; Wang, D.-Q. Comparison of sustainable development status in Heilongjiang Province based on traditional ecological footprint method and emergy ecological footprint method. Chin. J. Appl. Ecol. 2008, 19, 2544–2549. [Google Scholar]
- Wang, M.-Q.; Wang, J.-D.; Liu, J.-S.; Zhao, W.; Gu, K.-K. Application of the emergetic ecological footprint method to Heilongjiang and Yunnan provinces and analysis. J. Nat. Resour. 2009, 21, 73–81. [Google Scholar]
- Zhang, H.-Y.; Liu, W.-D.; Lin, Y.-X.; Shan, N.-N.; Wang, S.-Z. A modified ecological footprint analysis to a sub-national area: The case study of Zhejiang province. Acta Ecol. Sin. 2009, 29, 2738–2748. [Google Scholar]
- Wu, K.-Y.; Wang, L.-J. Accounting discrepancies of ecological footprint based on global hectare and national hectare. China Popul. Resour. Environ. 2007, 17, 80–83. [Google Scholar]
- Pan, Y.; Zhen, L.; Yang, L. Preliminary study on the effects of ecological conservation on material benefits of local residents in Guyuan City, Ningxia Hui Autonomous Region. Arid Zone Res. 2012, 29, 553–560. [Google Scholar]
- Zhen, L.; Cao, S.-Y.; Cheng, S.-K.; Xie, G.-D.; Wei, Y.-J.; Liu, X.-L.; Li, F. Arable land requirements based on food consumption patterns: Case study in rural Guyuan District, Western China. Ecol. Econ. 2010, 69, 1443–1453. [Google Scholar] [CrossRef]
- Giljum, S.; Burger, E.; Hinterberger, F.; Lutter, S.; Bruckner, M. A comprehensive set of resource use indicators from the micro to the macro level. Resour. Conserv. Recyl. 2011, 55, 300–308. [Google Scholar] [CrossRef]
- Liu, X.-L. Consumption of Ecosystem Goods and Services: With a Case Study in Jinghe Watershed of Northwestern China; University of Chinese academy of sciences: Beijing, China, 2009. [Google Scholar]
- Chen, F. Agricultural Ecology; Meteorolgy Press: Beijing, Chnia, 1998; p. 159. [Google Scholar]
- Yang, L. Analysis of Landscape Pattern and Its Driving Forces in Jinghe Region, China; University of Chinese academy of sciences: Beijing, China, 2006. [Google Scholar]
- Yang, L. The Impact of Ecosystem Services Change on Human Well-being in Jinghe Region, China; University of Chinese academy of science: Beijing, China, 2011. [Google Scholar]
- Chen, C.-C. Study on the Ecosystem Carrying Capacity in Jinghe River Basin; University of Chinese academy of sciences: Beijing, China, 2008. [Google Scholar]
- Wei, Y.-J. Multi-functionality of Land Use in Jinghe Region of Northwestern China; University of Chinese academy of sciences: Beijing, China, 2010. [Google Scholar]
Appendix
Agricultural Products | Biomass (103 kg) | Caloric Value (103 J/kg) | Total Calories (106 J) | Land Categories |
---|---|---|---|---|
Wheat | 190,378 | 16,138.98 | 3,072,506,734.44 | Cropland |
Barley | 2526 | 16,205.86 | 40,936,002.36 | Cropland |
Other grains | 2459 | 15,800.4 | 38,853,183.6 | Cropland |
Pea (broad bean) | 24,615 | 17,138 | 421,851,870 | Cropland |
Other legumes | 15,154 | 16,700 | 253,071,800 | Cropland |
Maize | 119,266 | 16,444.12 | 1,961,224,415.92 | Cropland |
Millet | 1043 | 15,800.4 | 16,479,817.2 | Cropland |
Oat | 1877 | 15,800.4 | 29,657,350.8 | Cropland |
Buckwheat | 6887 | 15,800.4 | 108,817,354.8 | Cropland |
Proso millet | 11,780 | 15,800.4 | 186,128,712 | Cropland |
Potato | 228,665 | 5,709.88 | 1,305,649,710.2 | Cropland |
Rapeseed | 93 | 26,334 | 2,449,062 | Cropland |
Flaxseed | 44,633 | 15,906.24 | 709,943,209.92 | Cropland |
Hempseed | 611 | 21,766.43 | 13,299,288.73 | Cropland |
Helianthus | 17,408 | 41,858.52 | 728,673,116.16 | Cropland |
Hemp | 11 | 14,462.8 | 159,090.8 | Cropland |
Tobacco leaf | 751 | 15,925.8 | 11,960,275.8 | Cropland |
Medical material | 9655 | 17,263.4 | 166,678,127 | Cropland |
Vegetable | 267,642 | 1463 | 391,560,246 | Cropland |
Melon | 50,819 | 1,061.72 | 53,955,548.68 | Cropland |
Other crops | 272,921 | 2,173.6 | 593,221,085.6 | Cropland |
Pork | 15,205 | 25,038.2 | 380,705,831 | Cropland |
Beef | 15,361 | 13,731.3 | 210,926,499.3 | Grassland |
Mutton | 8971 | 13,731.3 | 123,183,492.3 | Grassland |
Poultry meat | 2126 | 6,863.56 | 14,591,928.56 | Cropland |
Milk | 4301 | 2,842.4 | 12,225,162.4 | Grassland |
Goat wool | 40 | 5016 | 200,640 | Grassland |
Sheep wool | 1148 | 5016 | 5,758,368 | Grassland |
Cashmere | 5 | 5016 | 25,080 | Grassland |
Honey | 643 | 20,958.52 | 13,476,328.36 | Cropland |
Egg | 6715 | 8,790.54 | 59,028,476.1 | Cropland |
Pod (kg) | 20,100 | 15,925.8 | 320,108,580 | Cropland |
Fruit | 6642 | 3300 | 21,918,600 | Cropland |
Chinese wolfberry | 9000 | 18,360 | 165,240,000 | Forest |
Nursery stock | 201,705.4 | 16,744 | 3,377,355,217.6 | Forest |
Aquatic products | 336 | 5450 | 1,831,200 | Water body |
Land Categories | Total Calories (109 J) | Total Land Area (ha) | Average Prolificacy (109 J/ha) | Equivalence Factor |
---|---|---|---|---|
Cropland | 10,916,905.746 | 357,747.4 | 30.51568063 | 1.84 |
Forest | 3,542,595.218 | 313,449.9 | 11.30194873 | 0.68 |
Grassland | 352,319.242 | 222,108.4 | 1.586249136 | 0.10 |
Water body | 1831.200 | 594 | 3.082828283 | 0.19 |
Area land | 14,813,651.406 | 893,899.7 | 16.57193824 | 1.00 |
Agricultural Products | Biomass (103 kg) | Caloric Value (103 J/kg) | Total Caloric (106 J) | Land Categories |
---|---|---|---|---|
Wheat | 248,131 | 16,138.98 | 4,004,581,246 | Cropland |
Barley | 2916 | 16,205.86 | 47,256,287.76 | Cropland |
Other grains | 3760 | 15,800.4 | 59,409,504 | Cropland |
Pea (broad bean) | 27,577 | 17,138 | 472,614,626 | Cropland |
Rice | 1908 | 15,934.16 | 30,402,377.28 | Cropland |
Maize | 163,480 | 16,444.12 | 2,688,284,738 | Cropland |
Millet | 5089 | 15,800.4 | 80,408,235.6 | Cropland |
Jowar | 540 | 15,800.4 | 8,532,216 | Cropland |
Buckwheat | 5343 | 15,800.4 | 84,421,537.2 | Cropland |
Proso millet | 17,012 | 15,800.4 | 268,796,404.8 | Cropland |
Soybean | 1760 | 21,025.4 | 37,004,704 | Cropland |
Potato | 172,571 | 5,709.88 | 985,359,701.5 | Cropland |
Rapeseed | 185 | 26,334 | 4,871,790 | Cropland |
Flaxseed | 36,056 | 15,906.24 | 573,515,389.4 | Cropland |
Hempseed | 180 | 21,766.43 | 3,917,957.4 | Cropland |
Helianthus | 5439 | 41,858.52 | 227,668,490.3 | Cropland |
Hemp | 305 | 14,462.8 | 4,411,154 | Cropland |
Sugar beet | 109,858 | 2,792.24 | 306,749,901.9 | Cropland |
Tobacco leaf | 485 | 15,925.8 | 7,724,013 | Cropland |
Medical material | 327 | 17,263.4 | 5,645,131.8 | Cropland |
Vegetable | 144,824 | 1463 | 211,877,512 | Cropland |
Melon | 85,514 | 1,061.72 | 90,791,924.08 | Cropland |
Pork | 12,914 | 25,038.2 | 323,343,314.8 | Cropland |
Beef | 6238 | 13,731.3 | 85,655,849.4 | Grassland |
Mutton | 3011 | 13,731.3 | 41,344,944.3 | Grassland |
Poultry meat | 1250 | 6,863.56 | 8,579,450 | Cropland |
Rabbit meat | 15 | 5,195.74 | 77,936.1 | Grassland |
Goat wool | 73 | 5016 | 366,168 | Grassland |
Sheep wool | 1032 | 5016 | 5,176,512 | Grassland |
Cashmere | 21 | 5016 | 105,336 | Grassland |
Honey | 158 | 20,958.52 | 3,311,446.16 | Cropland |
Egg | 4506 | 8,790.54 | 39,610,173.24 | Cropland |
Pod (kg) | 312 | 15,925.8 | 4,968,849.6 | Cropland |
Milk | 138 | 2842.4 | 392,251.2 | Grassland |
Aquatic products | 630 | 5450 | 3,433,500 | Water body |
Apple | 9847 | 1841.77 | 18,135,909.19 | Forest |
Pear | 2100 | 2060.74 | 4,327,554 | Forest |
Jujube | 17 | 5106.74 | 86,814.58 | Forest |
Grape | 456 | 2260.36 | 1,030,724.16 | Forest |
Other fruits | 9507 | 2202.86 | 20,942,590.02 | Forest |
Chinese wolfberry | 489 | 18,360 | 8,978,040 | Forest |
Nut | 85 | 31,253.86 | 2,656,578.1 | Forest |
Pepper | 26 | 10,799.5 | 280,787 | Forest |
Nursery stock | 45,140.13 | 16,744 | 755,826,336.7 | Forest |
Wood | 7.2003 | 12,310.1 | 88,636.41303 | Forest |
Land Categories | Total Calories (109 J) | Total Land Area (ha) | Average Prolificacy (109 J/ha) | Equivalence Factor |
---|---|---|---|---|
Cropland | 10,584,058.076 | 648,781 | 16.31376085 | 1.89 |
Forest | 812,353.9702 | 169,183 | 4.801628829 | 0.56 |
Grassland | 133,118.997 | 514,779 | 0.258594459 | 0.03 |
Water body | 3,433.500 | 1247 | 2.75340818 | 0.32 |
Area land | 11,532,964.543 | 1,333,990 | 8.645465515 | 1.00 |
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Zhen, L.; Sun, C.-Z.; Du, B.-Z.; Wang, C. Ecological Footprint of Biological Resource Consumption in a Typical Area of the Green for Grain Project in Northwestern China. Environments 2015, 2, 44-60. https://doi.org/10.3390/environments2010044
Hu J, Zhen L, Sun C-Z, Du B-Z, Wang C. Ecological Footprint of Biological Resource Consumption in a Typical Area of the Green for Grain Project in Northwestern China. Environments. 2015; 2(1):44-60. https://doi.org/10.3390/environments2010044
Chicago/Turabian StyleHu, Jie, Lin Zhen, Chuan-Zhun Sun, Bing-Zhen Du, and Chao Wang. 2015. "Ecological Footprint of Biological Resource Consumption in a Typical Area of the Green for Grain Project in Northwestern China" Environments 2, no. 1: 44-60. https://doi.org/10.3390/environments2010044
APA StyleHu, J., Zhen, L., Sun, C. -Z., Du, B. -Z., & Wang, C. (2015). Ecological Footprint of Biological Resource Consumption in a Typical Area of the Green for Grain Project in Northwestern China. Environments, 2(1), 44-60. https://doi.org/10.3390/environments2010044