Integrating Water and Soil Quality Indices for Assessing and Mapping the Sustainability Status of Agricultural Lands
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Volturno River Plain
2.1.2. Po River Plain
- (i)
- Along the Po’s riverbed, soils are flat and very deep (0.05–0.1% slope, 1–8 m a.s.l.), with a medium texture; calcareous; moderately alkaline; and good to moderate oxygen availability, classified as Fluvic Stagnic Cambisols (Calcaric, Siltic).
- (ii)
- The west area is characterized by flat and very deep soils (0.01–0.03% slope), with a fine to medium texture; calcareous; moderate alkaline; and moderate oxygen availability. Vertisols and Cambisols affected by hydromorphy (gleyic) occur in depressed areas, while Fluvic Stagnic Cambisols (Calcaric, Siltic) are typically found in secondary channel ridges and in transition zones with the current Po river ridge.
- (iii)
- The south–southeast area features flat (0.01–0.03% slope) and very deep soils with a fine texture at the surface and medium at depth, imperfect oxygen availability, extremely acidic, and saline, sometimes with an intermediate peaty horizon classified as Molli Thionic Fluvisols Thapthohistic; Hypocalcic Endogleyic Calcisols feature the small ridges between morphological depressions.
2.2. Conceptual Framework
| Parameters | Unit | File Type | Final Resolution | Reference |
| SLOPE | % | raster | 100 × 100 | [49] |
| Depth To Water (DTW) | m | raster | 100 × 100 | [50] |
| Precipitation (PCP) | mm | shape | 100 × 100 | [51] |
| Landsat Images (NDSI) | raster | 100 × 100 | [52] | |
| Available Water Content (AWC) | (10−2 cm3 cm−3) × 10 | raster | 100 × 100 | [53] |
| Soil Organic Carbon (SOC) | dg/kg | raster | 100 × 100 | |
| Cation Exchange Capacity (CEC) | mmolc/kg | raster | 100 × 100 | |
| Texture (TXT) | raster | 100 × 100 | ||
| Nitrogen (N) | cg/kg | raster | 100 × 100 | |
| Gravel | cm3/dm3 | raster | 100 × 100 |
2.3. Water Quality Index
3. Results and Discussion
3.1. SUITED Maps
3.1.1. Volturno River Plain Map
3.1.2. Po River Plain Map
3.2. Integration of WQI and SUITED Indices
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations Department for Economic and Social Affairs. WORLD POPULATION PROSPECTS 2024: Summary of Results; United Nations: New York, NY, USA, 2025; ISBN 978-92-1-003169-1. [Google Scholar]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a Cultivated Planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- United Nations. General Assembly A/RES/70/1 Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Herrick, J.E. Soil Quality: An Indicator of Sustainable Land Management? Appl. Soil Ecol. 2000, 15, 75–83. [Google Scholar] [CrossRef]
- Doran, J.W.; Parkin, T.B. Quantitative Indicators of Soil Quality: A Minimum Data Set. In SSSA Special Publications; Doran, J.W., Jones, A.J., Eds.; Wiley: Hoboken, NJ, USA, 1997; Volume 49, pp. 25–37. ISBN 978-0-89118-826-1. [Google Scholar]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; De Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil Quality—A Critical Review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil Quality: A Concept, Definition, and Framework for Evaluation (A Guest Editorial). Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef]
- El Behairy, R.A.; El Arwash, H.M.; El Baroudy, A.A.; Ibrahim, M.M.; Mohamed, E.S.; Kucher, D.E.; Shokr, M.S. How Can Soil Quality Be Accurately and Quickly Studied? A Review. Agronomy 2024, 14, 1682. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, C.; Hu, W.; Khan, K.S.; Zhao, Y.; Huang, B. Development of Soil Quality Assessment Framework: A Comprehensive Review of Indicators, Functions, and Approaches. Ecol. Indic. 2025, 172, 113272. [Google Scholar] [CrossRef]
- Gelaw, A.; Singh, B.; Lal, R. Soil Quality Indices for Evaluating Smallholder Agricultural Land Uses in Northern Ethiopia. Sustainability 2015, 7, 2322–2337. [Google Scholar] [CrossRef]
- Malakar, A.; Snow, D.D.; Ray, C. Irrigation Water Quality—A Contemporary Perspective. Water 2019, 11, 1482. [Google Scholar] [CrossRef]
- Singh, A. Soil Salinization Management for Sustainable Development: A Review. J. Environ. Manag. 2021, 277, 111383. [Google Scholar] [CrossRef]
- Tedeschi, A.; Dell’Aquila, R. Effects of Irrigation with Saline Waters, at Different Concentrations, on Soil Physical and Chemical Characteristics. Agric. Water Manag. 2005, 77, 308–322. [Google Scholar] [CrossRef]
- Machiwal, D.; Cloutier, V.; Güler, C.; Kazakis, N. A Review of GIS-Integrated Statistical Techniques for Groundwater Quality Evaluation and Protection. Environ. Earth Sci. 2018, 77, 681. [Google Scholar] [CrossRef]
- Bordbar, M.; Busico, G.; Sirna, M.; Tedesco, D.; Mastrocicco, M. A Multi-Step Approach to Evaluate the Sustainable Use of Groundwater Resources for Human Consumption and Agriculture. J. Environ. Manag. 2023, 347, 119041. [Google Scholar] [CrossRef]
- Celis, R.A.O.; Gamboa, C.H.; Pascual, J.A.; Ros, M. Conceptual and Practical Challenges of Assessing Soil Quality. Soil Use Manag. 2024, 40, e13137. [Google Scholar] [CrossRef]
- Chang, T.; Feng, G.; Paul, V.; Adeli, A.; Brooks, J.P. Soil Health Assessment Methods: Progress, Applications and Comparison. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2022; Volume 172, pp. 129–210. ISBN 978-0-323-98953-4. [Google Scholar]
- Turan, İ.D.; Dengiz, O.; Özkan, B. Spatial Assessment and Mapping of Soil Quality Index for Desertification in the Semi-Arid Terrestrial Ecosystem Using MCDM in Interval Type-2 Fuzzy Environment. Comput. Electron. Agric. 2019, 164, 104933. [Google Scholar] [CrossRef]
- Ostovari, Y.; Honarbakhsh, A.; Sangoony, H.; Zolfaghari, F.; Maleki, K.; Ingram, B. GIS and Multi-Criteria Decision-Making Analysis Assessment of Land Suitability for Rapeseed Farming in Calcareous Soils of Semi-Arid Regions. Ecol. Indic. 2019, 103, 479–487. [Google Scholar] [CrossRef]
- Richiedei, A.; Giuliani, M.; Pezzagno, M. Unveiling the Soil beyond Definitions: A Holistic Framework for Sub-Regional Soil Quality Assessment and Spatial Planning. Sustainability 2024, 16, 6075. [Google Scholar] [CrossRef]
- Mangan, P.; Pandi, D.; Haq, M.A.; Sinha, A.; Nagarajan, R.; Dasani, T.; Keshta, I.; Alshehri, M. Analytic Hierarchy Process Based Land Suitability for Organic Farming in the Arid Region. Sustainability 2022, 14, 4542. [Google Scholar] [CrossRef]
- Data and Resources. Available online: https://isric.org//explore/ (accessed on 18 December 2025).
- Liu, Y.; Zhu, Y.; Qian, Y.; Xu, W.; Wei, G.; Huang, J. High-Resolution Soil Salinity Mapping and Driving Factor Analysis at Regional Scale Using Multi-Source Remote Sensing Data. J. Hydrol. 2026, 664, 134604. [Google Scholar] [CrossRef]
- Giaccio, B.; Hajdas, I.; Isaia, R.; Deino, A.; Nomade, S. High-Precision 14C and 40Ar/39Ar Dating of the Campanian Ignimbrite (Y-5) Reconciles the Time-Scales of Climatic-Cultural Processes at 40 Ka. Sci. Rep. 2017, 7, 45940. [Google Scholar] [CrossRef]
- Rufino, F.; Busico, G.; Cuoco, E.; Darrah, T.H.; Tedesco, D. Evaluating the Suitability of Urban Groundwater Resources for Drinking Water and Irrigation Purposes: An Integrated Approach in the Agro-Aversano Area of Southern Italy. Environ. Monit. Assess. 2019, 191, 768. [Google Scholar] [CrossRef]
- Vingiani, S.; Buonanno, M.; Coraggio, S.; D’Antonio, A.; De Mascellis, R.; Di Gennaro, A.; Iamarino, M.; Langella, G.; Manna, P.; Moretti, P.; et al. Soils of the Aversa Plain (Southern Italy). J. Maps 2018, 14, 312–320. [Google Scholar] [CrossRef]
- CORINE Land Cover 2018 (Vector/Raster 100 m), Europe, 6-Yearly. Available online: https://land.copernicus.eu/en/products/corine-land-cover/clc2018 (accessed on 12 January 2026).
- Schiavo, M.; Colombani, N.; Mastrocicco, M. Modeling Stochastic Saline Groundwater Occurrence in Coastal Aquifers. Water Res. 2023, 235, 119885. [Google Scholar] [CrossRef]
- Corniello, A.; Ducci, D. Possible Sources of Nitrate in Groundwater of Acerra Area (Piana Campana). EngHydroEnv Geol. 2009, 12, 155–164. [Google Scholar]
- Rezza, C.; Albanese, S.; Ayuso, R.; Lima, A.; Sorvari, J.; De Vivo, B. Geochemical and Pb Isotopic Characterization of Soil, Groundwater, Human Hair, and Corn Samples from the Domizio Flegreo and Agro Aversano Area (Campania Region, Italy). J. Geochem. Explor. 2018, 184, 318–332. [Google Scholar] [CrossRef]
- Bove, M.A.; Ayuso, R.A.; De Vivo, B.; Lima, A.; Albanese, S. Geochemical and Isotopic Study of Soils and Waters from an Italian Contaminated Site: Agro Aversano (Campania). J. Geochem. Explor. 2011, 109, 38–50. [Google Scholar] [CrossRef]
- Regione Emilia-Romagna, U.M. 29 Emilia Romagna 1:250000. Available online: https://geoportale.regione.emilia-romagna.it/mappe (accessed on 28 December 2025).
- Regione Emilia-Romagna, U.M. 29 Emilia Romagna 1:50000. Available online: https://geoportale.regione.emilia-romagna.it/mappe (accessed on 28 December 2025).
- Amorosi, A.; Fontana, A.; Antonioli, F.; Primon, S.; Bondesan, A. Post-LGM Sedimentation and Holocene Shoreline Evolution in the NW Adriatic Coastal Area. GeoActa 2008, 7, 41–67. [Google Scholar]
- Bruno, L.; Campo, B.; Hajdas, I.; Hong, W.; Amorosi, A. Timing and Mechanisms of Sediment Accumulation and Pedogenesis: Insights from the Po Plain (Northern Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 591, 110881. [Google Scholar] [CrossRef]
- Habakaramo Macumu, P.; Gaiolini, M.; Ofori, A.; Mastrocicco, M.; Colombani, N. Additional Sources of Salinity and Heavy Metals from Plant Residues of Peaty Horizons in the Po River Lowland (Italy). Sci. Total Environ. 2024, 957, 177671. [Google Scholar] [CrossRef]
- Gerardo, R.; De Lima, I.P. Sentinel-2 Satellite Imagery-Based Assessment of Soil Salinity in Irrigated Rice Fields in Portugal. Agriculture 2022, 12, 1490. [Google Scholar] [CrossRef]
- Huggins, X.; Gleeson, T.; Famiglietti, J.S.; Reinecke, R.; Zamrsky, D.; Wagener, T.; Taylor, R.G.; Konar, M.; Ruz Vargas, C.; Porkka, M.; et al. A Review of Open Data for Studying Global Groundwater in Social–Ecological Systems. Environ. Res. Lett. 2025, 20, 093002. [Google Scholar] [CrossRef]
- Damiba, W.A.F.; Gathenya, J.M.; Raude, J.M.; Home, P.G. Soil Quality Index (SQI) for Evaluating the Sustainability Status of Kakia-Esamburmbur Catchment under Three Different Land Use Types in Narok County, Kenya. Heliyon 2024, 10, e25611. [Google Scholar] [CrossRef]
- Nath, D.; Laik, R.; Das, A.; Pramanick, B.; Peramaiyan, P.; Singh, S.K.; Kumari, V.; Jatav, S.S.; Sattar, A. Index for Refining Soil Health Assessment through Multivariate Approach under Diverse Agro-Climatic Zones in the Indo-Gangetic Basin of Bihar. Sci. Total Environ. 2024, 943, 173774. [Google Scholar] [CrossRef]
- Cao, Y.; Li, X.; Qian, X.; Gu, H.; Li, J.; Chen, X.; Shen, G. Soil Health Assessment in the Yangtze River Delta of China: Method Development and Application in Orchards. Agric. Ecosyst. Environ. 2023, 341, 108190. [Google Scholar] [CrossRef]
- Negiş, H.; Şeker, C.; Gümüş, İ.; Erci, V. Establishment of a Minimum Dataset and Soil Quality Assessment for Multiple Reclaimed Areas on a Wind-Eroded Region. Catena 2023, 229, 107208. [Google Scholar] [CrossRef]
- Li, S.; Shan, J. Adaptive Geometric Interval Classifier. ISPRS Int. J. Geo-Inf. 2022, 11, 430. [Google Scholar] [CrossRef]
- Wen, D.; Wang, J.; Ding, J.; Zhang, Z. Distribution Characteristics and Relationship Between Soil Salinity and Soil Particle Size in Ebinur Lake Wetland, Xinjiang. Land 2025, 14, 297. [Google Scholar] [CrossRef]
- Messing, I.; Hoang Fagerström, M.-H.; Chen, L.; Fu, B. Criteria for Land Suitability Evaluation in a Small Catchment on the Loess Plateau in China. Catena 2003, 54, 215–234. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Wang, S. Response of Depth-Stratified Soil Quality to Land-Use Conversion and Its Limiting Factors in Tropical Ecosystems. Land 2025, 14, 2010. [Google Scholar] [CrossRef]
- Kamal, A.; Mian, I.A.; Akbar, W.A.; Rahim, H.U.; Irfan, M.; Ali, S.; Alrefael, A.F.; Zaman, W. Effects of Soil Depth and Altitude on Soil Texture and Soil Quality Index. Appl. Ecol. Environ. Res. 2023, 21, 4135–4154. [Google Scholar] [CrossRef]
- Chirol, C.; Séré, G.; Redon, P.-O.; Chenu, C.; Derrien, D. Depth Dependence of Soil Organic Carbon Additional Storage Capacity in Different Soil Types by the 2050 Target for Carbon Neutrality. Soil 2025, 11, 149–174. [Google Scholar] [CrossRef]
- Tarquini, S.; Isola, I.; Favalli, M.; Battistini, A.; Dotta, G. TINITALY, A Digital Elevation Model of Italy with a 10 Meters Cell Size (Version 1.1); Istituto Nazionale di Geofisica e Vulcanologia (INGV): Naples, Italy, 2023. [Google Scholar] [CrossRef]
- Livello Delle Falde Acquifere|Piattaforma Nazionale Adattamento Cambiamenti Climatici. Available online: https://climadat.isprambiente.it/dati-e-indicatori/indicatori-di-impatto-dei-cambiamenti-climatici/livello-delle-falde-acquifere/ (accessed on 18 December 2025).
- Centro Funzionale Multirischi Di Protezione Civile Regione Campania. Available online: https://centrofunzionale.regione.campania.it/home (accessed on 18 December 2025).
- Landsat-5—Documentation. Available online: https://documentation.dataspace.copernicus.eu/Data/ComplementaryData/Landsat5.html (accessed on 18 December 2025).
- Poggio, L.; De Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing Soil Information for the Globe with Quantified Spatial Uncertainty. Soil 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Babiker, I.S.; Mohamed, M.A.A.; Hiyama, T. Assessing Groundwater Quality Using GIS. Water Resour. Manag. 2007, 21, 699–715. [Google Scholar] [CrossRef]
- Misstear, B.; Banks, D.; Clark, L. Water Wells and Boreholes, 1st ed.; Wiley: Hoboken, NJ, USA, 2017; ISBN 978-1-118-95170-5. [Google Scholar]
- Osorio, A.; Panico, A.; Busico, G.; Mastrocicco, M. Systematic Review on the Effects of Wastewater Chemical Composition on Crop Yield under Fertigation Practices. Sci. Total Environ. 2025, 975, 179257. [Google Scholar] [CrossRef]
- Júnior, V.V.; Carvalho, M.P.; Dafonte, J.; Freddi, O.S.; Vidal Vázquez, E.; Ingaramo, O.E. Spatial Variability of Soil Water Content and Mechanical Resistance of Brazilian Ferralsol. Soil Tillage Res. 2006, 85, 166–177. [Google Scholar] [CrossRef]
- Geng, S.; Shi, P.; Zong, N.; Zhu, W. Using Soil Survey Database to Assess Soil Quality in the Heterogeneous Taihang Mountains, North China. Sustainability 2018, 10, 3443. [Google Scholar] [CrossRef]
- Feller, C.; Beare, M.H. Physical Control of Soil Organic Matter Dynamics in the Tropics. Geoderma 1997, 79, 69–116. [Google Scholar] [CrossRef]
- Williams, A.; Hunter, M.C.; Kammerer, M.; Kane, D.A.; Jordan, N.R.; Mortensen, D.A.; Smith, R.G.; Snapp, S.; Davis, A.S. Soil Water Holding Capacity Mitigates Downside Risk and Volatility in US Rainfed Maize: Time to Invest in Soil Organic Matter? PLoS ONE 2016, 11, e0160974. [Google Scholar] [CrossRef]
- Hu, H.; Tian, F.; Hu, H. Soil Particle Size Distribution and Its Relationship with Soil Water and Salt under Mulched Drip Irrigation in Xinjiang of China. Sci. China Technol. Sci. 2011, 54, 1568–1574. [Google Scholar] [CrossRef]
- Costantini, E.A.C. Manual of Methods for Soil and Land Evaluation; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-1-57808-571-2. [Google Scholar]
- Gaiolini, M.; Sbarbati, C.; Ofori, A.; Macumu, P.H.; Gervasio, M.P.; Tamisari, E.; Vincenzi, F.; Soana, E.; Castaldelli, G.; Piscopo, V.; et al. Salt Migration and Export via Subsurface Irrigation in a Saline Reclaimed Landscape of the Po River Lowland (Italy). J. Hydrol. 2026, 664, 134563. [Google Scholar] [CrossRef]
- Gaiolini, M.; Colombani, N.; Chierici, V.; Montanari, L.; Mastrocicco, M. Numerical Modelling of Groundwater Level and Salinity Evolution in a Low-Lying Coastal Area Under Intensive Agricultural Activity. Water Resour. Manag. 2025, 39, 1747–1761. [Google Scholar] [CrossRef]
- Vittori Antisari, L.; Speranza, M.; Ferronato, C.; De Feudis, M.; Vianello, G.; Falsone, G. Assessment of Water Quality and Soil Salinity in the Agricultural Coastal Plain (Ravenna, North Italy). Minerals 2020, 10, 369. [Google Scholar] [CrossRef]






| Study Area | Parameter | Range | Study Area | Parameter | Range |
|---|---|---|---|---|---|
| Volturno river plain | Slope (%) | <2% | Volturno river plain | SOC (dg/kg) | 400–600 |
| Po river plain | <2% | Po river plain | 200–700 | ||
| Volturno river plain | Depth to water (m) | 2–20 | Volturno river plain | CEC (mmolc/kg) | 200–350 |
| Po river plain | 1 | Po river plain | 250–330 | ||
| Volturno river plain | Precipitation (mm) | 750 | Volturno river plain | Texture | Cl–l |
| Po river plain | 620 | Po river plain | SiC–Cl–l | ||
| Volturno river plain | NDSI | 0.01–0.05 | Volturno river plain | Nitrogen (cg/kg) | 250–400 |
| Po river plain | −1–0 | Po river plain | 200–700 | ||
| Volturno river plain | AWC (10−2 cm3 cm−3) × 10 | 380–500 | Volturno river plain | Gravel (cm3/dm3) | 50–100 |
| Po river plain | 100–400 | Po river plain | 70–90 |
| Study Area | Parameter | Very Low (1) | Low (2) | Medium (3) | High (4) | Very High (5) |
|---|---|---|---|---|---|---|
| Volturno river plain | Slope (%) | / | / | / | / | 0–2 |
| Po river plain | 0–2 | |||||
| Volturno river plain | DTW (m) | <1.78 | 1.78–5.68 | 5.68–7.95 | 7.95–11.84 | >11.84 |
| Po river plain | 0.12–0.01 | / | / | / | / | |
| Volturno river plain | PCP (mm) | <727.24 | 727.24–733.79 | 7333.79–739.54 | 739.54–744.97 | >744.97 |
| Po river plain | <612.20 | 612.20–625.49 | 625.49–627.66 | 627.66–628.23 | >628.23 | |
| Volturno river plain | NDSI | <0.015 | 0.015–0.024 | 0.024–0.037 | 0.037–0.053 | >0.053 |
| Po river plain | <0 | / | / | / | >0 | |
| Volturno river plain | AWC (10−2 cm3 cm−3) × 10 | <411.43 | 411.43–415.02 | 415.02–420.40 | 420.40–436.55 | >436.55 |
| Po river plain | <132.10 | 132.10–174.88 | 174.88–229.55 | 229.55–302.03 | >302.03 | |
| Volturno river plain | SOC (dg/kg) | <443.94 | 443.94–473.50 | 473.50–506.02 | 506.02–553.32 | >553.32 |
| Po river plain | <225.38 | 225.38–357.31 | 357.31–489.24 | 489.24–621.17 | >621.17 | |
| Volturno river plain | CEC (mmolc/kg) | <259.11 | 259.11–265.75 | 265.75–273.71 | 273.71–294.95 | >294.95 |
| Po river plain | <250.32 | 250.32–279.4 | 279.48–295.55 | 295.55–312.03 | >312.03 | |
| Volturno river plain | Texture | / | SiC | / | / | l/Cl |
| Po river plain | / | SiC | SiCl | / | l/Cl | |
| Volturno river plain | Nitrogen (cg/kg) | <272.58 | 272.58–285.20 | 285.20–306.83 | 306.83–341.07 | >341.07 |
| Po river plain | <243.58 | 243.58–375.45 | 375.45–507.32 | 507.32–639.19 | >639.19 | |
| Volturno river plain | Gravel (cm3/dm3) | >91.65 | 91.65–80.44 | 80.44–74.84 | 74.84–69.80 | <69.80 |
| Po river plain | >85.74 | 85.74–81.49 | 81.49–77.46 | 77.46–73.64 | <73.64 |
| Sustainability Class | Volturno River Plain | Po River Plain |
|---|---|---|
| Very High | 5.03 | 5.38 |
| High | 3.71 | 3.82 |
| Medium | 68.98 | 77.85 |
| Low | 8.16 | 10.86 |
| Very Low | 14.13 | 2.1 |
| Ionic Species | Domestic Water | Dreinage Effluent | Leachate | Reclaimed Water | Volturno Aquifer | Berra Aquifer |
|---|---|---|---|---|---|---|
| NO3− | 16.59 | 235.98 | 328.63 | 235.98 | 8.28 | 8.10 |
| Cl− | 257.50 | 358.75 | 443.16 | 358.75 | 82.47 | 3450.00 |
| SO42− | 165.10 | 348.60 | 307.20 | 348.6 | 33.46 | 1814.00 |
| K+ | 29.80 | 113.15 | 136.84 | 113.145 | 25.81 | 53.71 |
| Na+ | 135.75 | 138.36 | 345.00 | 138.355 | 76.55 | 2320.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Grilli, E.; Busico, G.; Cristofaro, M.P.D.; Mastrocicco, M.; Castaldi, S.; Panico, A. Integrating Water and Soil Quality Indices for Assessing and Mapping the Sustainability Status of Agricultural Lands. Environments 2026, 13, 108. https://doi.org/10.3390/environments13020108
Grilli E, Busico G, Cristofaro MPD, Mastrocicco M, Castaldi S, Panico A. Integrating Water and Soil Quality Indices for Assessing and Mapping the Sustainability Status of Agricultural Lands. Environments. 2026; 13(2):108. https://doi.org/10.3390/environments13020108
Chicago/Turabian StyleGrilli, Eleonora, Gianluigi Busico, Maria Pia De Cristofaro, Micòl Mastrocicco, Simona Castaldi, and Antonio Panico. 2026. "Integrating Water and Soil Quality Indices for Assessing and Mapping the Sustainability Status of Agricultural Lands" Environments 13, no. 2: 108. https://doi.org/10.3390/environments13020108
APA StyleGrilli, E., Busico, G., Cristofaro, M. P. D., Mastrocicco, M., Castaldi, S., & Panico, A. (2026). Integrating Water and Soil Quality Indices for Assessing and Mapping the Sustainability Status of Agricultural Lands. Environments, 13(2), 108. https://doi.org/10.3390/environments13020108

