Adsorption of Phenol from Aqueous Solution Utilizing Activated Carbon Prepared from Catha edulis Stem
Abstract
1. Introduction
2. Materials and Methods
2.1. Adsorbent Preparation
2.2. Adsorbent Characterization
2.2.1. Proximate Analysis
2.2.2. Scanning Electron Microscope (SEM)
2.2.3. Fourier Transport Infrared Radiation (FTIR)
2.2.4. Brunauer–Emmett–Teller (BET) Surface Area
2.3. Experimental Design and Batch Adsorption Optimization
2.4. Adsorption Isotherm
2.5. Adsorption Kinetics
3. Results and Discussions
3.1. Adsorbent Characteristics
3.1.1. Proximate Analysis
3.1.2. FTIR
3.1.3. BET Surface Area
3.1.4. SEM
3.2. Batch Adsorption Performances
3.3. Interaction Effects
3.3.1. pH and Adsorbent Dosage
3.3.2. Contact Time and Adsorbent Dosage
3.3.3. Contact Time and pH
3.4. Adsorption Isotherm
3.5. Adsorption Kinetics
3.6. Comparative Analysis
3.7. Limitations of the Work
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villegas, L.G.C.; Mashhadi, N.; Chen, M.; Mukherjee, D.; Taylor, K.E.; Biswas, N. A short review of techniques for phenol removal from wastewater. Curr. Pollut. Rep. 2016, 2, 157–167. [Google Scholar] [CrossRef]
- Otto, M. Phenol-soluble modulins. Int. J. Med. Microbiol. 2014, 304, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Bibi, A.; Bibi, S.; Abu-Dieyeh, M.; Al-Ghouti, M.A. Towards sustainable physiochemical and biological techniques for the remediation of phenol from wastewater: A review on current applications and removal mechanisms. J. Clean. Prod. 2023, 417, 137810. [Google Scholar] [CrossRef]
- Pavithra, K.G.; Sundarrajan, P.; Arun, J.; Brindhadevi, K.; Le, Q.H.; Pugazhendhi, A. A review on recent advancements in extraction, removal and recovery of phenols from phenolic wastewater: Challenges and future outlook. Environ. Res. 2023, 237, 117005. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, S.; Ali, H.; Singh, S.; Kansal, S.K. Valorization of Lignocellulosic Biomass into High-Value Chemicals: Forging a Route towards the Circular Economy. In Energy Materials; CRC Press: Boca Raton, FL, USA, 2024; pp. 98–133. [Google Scholar]
- Ganeshan, P.; Gowd, S.C.; Vigneswaran, V.S.; Rajendran, K. Scope for commercialization and market analysis of bio-based alcohols, fuels, and chemicals. In Higher Alcohols Production Platforms; Elsevier: Amsterdam, The Netherlands, 2024; pp. 305–319. [Google Scholar]
- Sun, J.; Mu, Q.; Kimura, H.; Murugadoss, V.; He, M.; Du, W.; Hou, C. Oxidative degradation of phenols and substituted phenols in the water and atmosphere: A review. Adv. Compos. Hybrid Mater. 2022, 5, 627–640. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, M.S. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules 2021, 27, 233. [Google Scholar] [CrossRef]
- Adetunji, C.O.; Olaniyan, O.T.; Igere, B.E.; Ekundayo, T.C.; Anani, O.A.; Bodunrinde, R.E.; Olisaka, F.N.; Inobeme, A.; Uwadiae, E.O.; Obayagbona, O.N. Microbial Degradation of Chlorophenolic Compounds. In Recent Advances in Microbial Degradation; Springer: Berlin/Heidelberg, Germany, 2021; pp. 313–349. [Google Scholar]
- Aguilar-Aguilar, A.; de Leon-Martinez, L.D.; Forgionny, A.; Soto, N.Y.A.; Mendoza, S.R.; Zarate-Guzman, A.I. A systematic review on the current situation of emerging pollutants in Mexico: A perspective on policies, regulation, detection, and elimination in water and wastewater. Sci. Total Environ. 2023, 905, 167426. [Google Scholar] [CrossRef]
- Ramos, R.L.; Moreira, V.R.; Amaral, M.C.S. Phenolic compounds in water: Review of occurrence, risk, and retention by membrane technology. J. Environ. Manag. 2024, 351, 119772. [Google Scholar] [CrossRef]
- Khan, A.; Ali, J.; Jamil, S.U.U.; Zahra, N.; Tayaba, T.B.; Iqbal, M.J.; Waseem, H. Removal of micropollutants. In Environmental Micropollutants; Elsevier: Amsterdam, The Netherlands, 2022; pp. 443–461. [Google Scholar]
- Bui, X.T.; Vo, T.P.T.; Ngo, H.H.; Guo, W.S.; Nguyen, T.T. Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. Sci. Total Environ. 2016, 563, 1050–1067. [Google Scholar] [CrossRef]
- Ayach, J.; El Malti, W.; Duma, L.; Lalevée, J.; Al Ajami, M.; Hamad, H.; Hijazi, A. Comparing Conventional and Advanced Approaches for Heavy Metal Removal in Wastewater Treatment: An In-Depth Review Emphasizing Filter-Based Strategies. Polymers 2024, 16, 1959. [Google Scholar] [CrossRef]
- Fawzy, M.E.; Ahmed, H.M.; Nassar, H.F. Advanced Treatment Technologies for Pollutants Removal in Wastewater. Key Eng. Mater. 2024, 983, 99–115. [Google Scholar] [CrossRef]
- Ajao, A. Conventional and Advanced Treatment Technologies for Microplastics in Water Treatment Facilities Conventional and Advanced Treatment Technologies for Microplastics in Water Treatment Facilities. Preprints 2024. [Google Scholar] [CrossRef]
- Yazdani, R.; Harirchi, S.; Lak, M.; Mirshafiei, M.; Nojoumi, S.A.; Ramezani, M.; Rasekh, B.; Yazdian, F. 5 Recent Advances in Conventional and Modern Wastewater Treatment Approaches. In Microbial Nexus for Sustainable Wastewater Treatment; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Bie, Y. Study on Adsorption Properties of Activated Carbon for Advanced Treatment of Chemical Wastewater. Highlights Sci. Eng. Technol. 2024, 83, 627–632. [Google Scholar] [CrossRef]
- Mokhbi, Y.; Ghiaba, Z.; Akchiche, Z.; Ghedamsi, R.; Recioui, B. Study of the adsorption mechanism of certain dyes from wastewater on commercial activated carbon using the Langmuir and Freundlich methods. Stud. Eng. Exact Sci. 2024, 5, e5789. [Google Scholar] [CrossRef]
- Werheni, R.; Riahi, K.; Medini, M.; Khelifi, N.; Hassen, A. Activated date carbon: A sustainable solution for Pentachlorophenol adsorption in reused wastewater. J. OASIS Agric. Sustain. Dev. 2024, 6, 139–148. [Google Scholar] [CrossRef]
- Singh, D. Insights into Adsorbents: Activated Carbon for Effective Adsorption. Jabirian J. Biointerface Res. Pharm. Appl. Chem. 2024, 1, 11–21. [Google Scholar] [CrossRef]
- Ullah, S.; Shah, S.S.A.; Altaf, M.; Hossain, I.; El Sayed, M.E.; Kallel, M.; El-Bahy, Z.M.; Rehman, A.U.; Najam, T.; Nazir, M.A. Activated carbon derived from biomass for wastewater treatment: Synthesis, application and future challenges. J. Anal. Appl. Pyrolysis 2024, 179, 106480. [Google Scholar] [CrossRef]
- Patil, P.; Jeppu, G.; Vallabha, M.S.; Girish, C.R. Enhanced adsorption of phenolic compounds using biomass-derived high surface area activated carbon: Isotherms, kinetics and thermodynamics. Environ. Sci. Pollut. Res. 2024, 31, 67442–67460. [Google Scholar] [CrossRef]
- Cho, E.-J.; Lee, C.-G.; Park, S.-J. Adsorption of phenol on kenaf-derived biochar: Studies on physicochemical and adsorption characteristics and mechanism. Biomass Convers. Biorefin. 2024, 14, 9621–9638. [Google Scholar] [CrossRef]
- Lee, C.G.; Hong, S.H.; Hong, S.G.; Choi, J.W.; Park, S.J. Production of Biochar from Food Waste and its Application for Phenol Removal from Aqueous Solution. Water Air Soil Pollut. 2019, 230, 70. [Google Scholar] [CrossRef]
- Jaria, G.; Calisto, V.; Esteves, V.I.; Otero, M. Overview of relevant economic and environmental aspects of waste-based activated carbons aimed at adsorptive water treatments. J. Clean. Prod. 2022, 344, 130984. [Google Scholar] [CrossRef]
- Fernández Pérez, F.S.; Lorié González, A.F.; Arias Gallardo, A.I. Algunas consideraciones farmacológicas y medicolegales relativas al consumo de Catha edulis Forsk (Khat). Rev. Cubana Estomatol. 2008, 45, 1–6. [Google Scholar]
- Gabriel, T.; Wondu, K.; Dilebo, J. Valorization of khat (Catha edulis) waste for the production of cellulose fibers and nanocrystals. PLoS ONE 2021, 16, e0246794. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Hu, J.; Liu, Z.; Liang, M. Progress and research trends on Catha edulis (Vahl) Endl.(Catha edulis): A review and bibliometric analysis. Front. Pharmacol. 2021, 12, 705376. [Google Scholar] [CrossRef]
- Fito, J.; Said, H.; Feleke, S.; Worku, A. Fluoride removal from aqueous solution onto activated carbon of Catha edulis through the adsorption treatment technology. Environ. Syst. Res. 2019, 8, 1–10. [Google Scholar] [CrossRef]
- Gezahegn Degefe, G.D.; Seyoum Mengistou, S.M.; Said Mohammed, S.M. Physico chemical evaluation of coffee husk, wastes of enset (Enset ventricosum), vegetable and khat (Catha edulis) through vermicomposting employing an epigeic earthworm Dendrobaena veneta (Rosa, 1886). Afr. J. Biotechnol. 2016, 15, 20. [Google Scholar]
- Fito, J.; Abewaa, M.; Mengistu, A.; Angassa, K.; Ambaye, A.D.; Moyo, W.; Nkambule, T. Adsorption of methylene blue from textile industrial wastewater using activated carbon developed from Rumex abyssinicus plant. Sci. Rep. 2023, 13, 5427. [Google Scholar] [CrossRef]
- Nafisyah, E.; Arrisujaya, D.; Susanti, E. The utilization of water hyacinth (Eichhornia crassipes) harvested from the phytoremediation process as activated carbon in Cr (VI) adsorption. IOP Conf. Ser. Earth Environ. Sci. 2023, 1211, 12019. [Google Scholar] [CrossRef]
- Ananpreechakorn, W.; Seetawan, T. Synthesis and Characterization of Activated Carbon from Water Hyacinth. J. Phys. Conf. Ser. 2021, 2013, 12025. [Google Scholar] [CrossRef]
- Abewaa, M.; Arka, A.; Haddis, T.; Mengistu, A.; Takele, T.; Adino, E.; Abay, Y.; Bekele, N.; Andualem, G.; Girmay, H. Results in Engineering Hexavalent chromium adsorption from aqueous solution utilizing activated carbon developed from Rumex abyssinicus. Results Eng. 2024, 22, 102274. [Google Scholar] [CrossRef]
- Teweldebrihan, M.D.; Gnaro, M.A. The application of magnetite biochar composite derived from parthenium hysterophorus for the adsorption of methylene blue from aqueous solution. Front. Environ. Sci. 2024, 12, 1375437. [Google Scholar] [CrossRef]
- Abewaa, M.; Adino, E.; Mengistu, A. Heliyon Preparation of Rumex abyssinicus based biosorbent for the removal of methyl orange from aqueous solution. Heliyon 2023, 9, e22447. [Google Scholar] [CrossRef] [PubMed]
- Zangi, R. Breakdown of Langmuir Adsorption Isotherm in Small Closed Systems. Langmuir 2024, 40, 3900–3910. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.; Wen, Z.; Zhao, N.; Li, T.; Zhao, W. Adsorption Process Optimization and Adsorbent Evaluation Based on Langmuir Isotherm Model. Langmuir 2023, 39, 16404–16414. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.K.; Kini, S.; Prabhu, B.; Jeppu, G.P. A simplified modeling procedure for adsorption at varying pH conditions using the modified Langmuir–Freundlich isotherm. Appl. Water Sci. 2023, 13, 29. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J. A novel monolayer adsorption kinetic model based on adsorbates “infect” adsorbents inspired by epidemiological model. Water Res. 2024, 253, 121313. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J. A Unified Adsorption Kinetic Model Inspired by Epidemiological Model: Based on Adsorbates “Infect” Adsorbents. Langmuir 2024, 40, 15569–15579. [Google Scholar] [CrossRef]
- Ezzati, R.; Azizi, M.; Ezzati, S. A theoretical approach for evaluating the contributions of pseudo-first-order and pseudo-second-order kinetics models in the Langmuir rate equation. Vacuum 2024, 222, 113018. [Google Scholar] [CrossRef]
- Ezzati, R.; Ezzati, S.; Azizi, M. Exact solution of the Langmuir rate equation: New Insights into pseudo-first-order and pseudo-second-order kinetics models for adsorption. Vacuum 2024, 220, 112790. [Google Scholar] [CrossRef]
- Sulaiman, N.S.; Mohamad Amini, M.H.; Danish, M.; Sulaiman, O.; Hashim, R.; Demirel, S.; Demirel, G.K. Characterization and Ofloxacin Adsorption Studies of Chemically Modified Activated Carbon from Cassava Stem. Materials 2022, 15, 5117. [Google Scholar] [CrossRef]
- Worku, Z.; Tibebu, S.; Nure, J.F.; Tibebu, S.; Moyo, W.; Ambaye, A.D.; Nkambule, T.T.I. Adsorption of chromium from electroplating wastewater using activated carbon developed from water hyacinth. BMC Chem. 2023, 17, 85. [Google Scholar] [CrossRef] [PubMed]
- Schwantes, D.; Gonçalves, A.C.; Fuentealba, D.; Hornos Carneiro, M.F.; Tarley, C.R.T.; Prete, M.C. Removal of chlorpyrifos from water using biosorbents derived from cassava peel, crambe meal, and pinus bark. Chem. Eng. Res. Des. 2022, 188, 142–165. [Google Scholar] [CrossRef]
- Sulaiman, N.S.; Hashim, R.; Mohamad Amini, M.H.; Danish, M.; Sulaiman, O. Optimization of activated carbon preparation from cassava stem using response surface methodology on surface area and yield. J. Clean. Prod. 2018, 198, 1422–1430. [Google Scholar] [CrossRef]
- Xue, H.; Wang, X.; Xu, Q.; Dhaouadi, F.; Sellaoui, L.; Seliem, M.K.; Lamine, A.B.; Belmabrouk, H.; Bajahzar, A.; Bonilla-Petriciolet, A. Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: A comparative study by experimental and advanced modeling analysis. Chem. Eng. J. 2022, 430, 132801. [Google Scholar] [CrossRef]
- Fito, J.; Tibebu, S.; Nkambule, T.T.I. Optimization of Cr (VI) removal from aqueous solution with activated carbon derived from Eichhornia crassipes under response surface methodology. BMC Chem. 2023, 17, 4. [Google Scholar] [CrossRef]
- Abatal, M.; Anastopoulos, I.; Giannakoudakis, D.A.; Olguin, M.T. Carbonaceous material obtained from bark biomass as adsorbent of phenolic compounds from aqueous solutions. J. Environ. Chem. Eng. 2020, 8, 103784. [Google Scholar] [CrossRef]
- Othmani, A.; Magdouli, S.; Kumar, P.S.; Kapoor, A.; Chellam, P.V.; Gökkuş, Ö. Agricultural waste materials for adsorptive removal of phenols, chromium (VI) and cadmium (II) from wastewater: A review. Environ. Res. 2022, 204, 111916. [Google Scholar] [CrossRef]
- Fierro, V.; Torné-Fernández, V.; Montané, D.; Celzard, A. Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous Mesoporous Mater. 2008, 111, 276–284. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Johir, M.A.H.; Sornalingam, K. Sorptive removal of phenolic endocrine disruptors by functionalized biochar: Competitive interaction mechanism, removal efficacy and application in wastewater. Chem. Eng. J. 2018, 335, 801–811. [Google Scholar] [CrossRef]
- Waleed, H.; Hudaib, B.; Al-Harahsheh, M.; Allawzi, M. Synthesis and Characterization of a Modified Silica/Cellulose Acetate Nanocomposite Ultrafiltration Membrane for Phenol Removal from Wastewater. Sep. Purif. Technol. 2025, 353, 128391. [Google Scholar] [CrossRef]
- Ayoob, H.W.; Ridha, A.M.; Jassim, A.A.; Taieh, N.K.; Homod, R.Z.; Mohammed, H.I. Enhanced adsorption of phenol using graphene oxide-bentonite nanocomposites: Synthesis, characterisation, and optimisation. J. Mol. Liq. 2024, 395, 123833. [Google Scholar] [CrossRef]
- El Abbadi, S.; El Moustansiri, H.; Douma, M.; Bouazizi, A.; Arfoy, B.; Calvo, J.I.; Tijani, N. Enhancing the performance of alumina-pillared clay for phenol removal from water solutions and polyphenol removal from olive mill wastewater: Characterization, kinetics, adsorption performance, and mechanism. J. Water Process Eng. 2024, 63, 105432. [Google Scholar] [CrossRef]
- Tran, H.N. Improper estimation of thermodynamic parameters in adsorption studies with distribution coefficient KD (qe/C e) or Freundlich constant (KF): Considerations from the derivation of dimensionless thermodynamic equilibrium constant and suggestions. Adsorpt. Sci. Technol. 2022, 2022, 5553212. [Google Scholar] [CrossRef]
- Chang, T.; Bi, Y.; Jing, L.; Liu, X.; Fan, M.; Yao, S.; Feng, L.; Zhao, Y. Simultaneous adsorption of acid and flavonoids from hawthorn juice onto resins. J. Food Eng. 2021, 291, 110195. [Google Scholar] [CrossRef]
- Yousefi, M.; Arami, S.M.; Takallo, H.; Radfard, M.; Soleimani, H.; Mohammadi, A.A. Human and Ecological Risk Assessment: An International Modification of pumice with HCl and NaOH enhancing its fluoride adsorption capacity: Kinetic and isotherm studies. Hum. Ecol. Risk Assess. 2018, 25, 1508–1520. [Google Scholar] [CrossRef]
- Fito, J.; Abewaa, M.; Nkambule, T. Magnetite-impregnated biochar of parthenium hysterophorus for adsorption of Cr(VI) from tannery industrial wastewater. Appl. Water Sci. 2023, 13, 1–23. [Google Scholar] [CrossRef]
- Ashour, M.; Alprol, A.E.; Khedawy, M.; Abualnaja, K.M.; Mansour, A.T. Equilibrium and kinetic modeling of crystal violet dye adsorption by a marine diatom, skeletonema costatum. Materials 2022, 15, 6375. [Google Scholar] [CrossRef]
- Bullen, J.C.; Saleesongsom, S.; Gallagher, K.; Weiss, D.J. A revised pseudo-second-order kinetic model for adsorption, sensitive to changes in adsorbate and adsorbent concentrations. Langmuir 2021, 37, 3189–3201. [Google Scholar] [CrossRef]
- Bujdák, J. Adsorption kinetics models in clay systems. The critical analysis of pseudo-second order mechanism. Appl. Clay Sci. 2020, 191, 105630. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, X.; Deng, J.; Li, C.; Sun, K.; Luo, X.; Yuan, S. Adsorption and mechanism study for phenol removal by 10% CO2 activated bio-char after acid or alkali pretreatment. J. Environ. Manag. 2023, 348, 119317. [Google Scholar] [CrossRef]
- Soleimani, B.; Shahrak, M.N.; Walton, K.S. The influence of different functional groups on enhancing CO2 capture in metal-organic framework adsorbents. J. Taiwan Inst. Chem. Eng. 2024, 163, 105638. [Google Scholar] [CrossRef]
- Salahshoori, I.; Jorabchi, M.N.; Ghasemi, S.; Golriz, M.; Wohlrab, S.; Khonakdar, H.A. An in silico study of sustainable drug pollutants removal using carboxylic acid functionalized-MOF nanostructures (MIL-53 (Al)-(COOH) 2): Towards a greener future. Desalination 2023, 559, 116654. [Google Scholar] [CrossRef]
- Hussain, N.; Asif, M.; Shafaat, S.; Khan, M.S.; Riaz, N.; Iqbal, M.; Javed, A.; Butt, T.A.; Shaikh, A.J.; Bilal, M. Multilayer adsorption of reactive orange 16 dye onto Fe2O3/ZnO hybrid nanoadsorbent: Mechanistic insights from kinetics, isotherms and dynamic light scattering studies. J. Chem. Technol. Biotechnol. 2025, 100, 50–66. [Google Scholar] [CrossRef]
- Juturu, R.; Murty, V.R.; Selvaraj, R. Efficient adsorption of Cr (VI) onto hematite nanoparticles: ANN, ANFIS modelling, isotherm, kinetic, thermodynamic studies and mechanistic insights. Chemosphere 2024, 349, 140731. [Google Scholar] [CrossRef]
- Dehmani, Y.; Lamhasni, T.; Mohsine, A.; Tahri, Y.; Lee, H.; Lgaz, H.; Alrashdi, A.A.; Abouarnadasse, S. Adsorption removal of phenol by oak wood charcoal activated carbon. Biomass Convers. Biorefin. 2024, 14, 8015–8027. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, H.; Zheng, Y.; Zhang, Y.; Cui, Y. Direct activation of petroleum pitch-based mesoporous carbon for phenol adsorption. Colloids Surfaces A Physicochem. Eng. Asp. 2024, 702, 135020. [Google Scholar] [CrossRef]
- Melo, J.M.; Lütke, S.F.; Igansi, A.V.; Franco, D.S.P.; Vicenti, J.R.M.; Dotto, G.L.; Pinto, L.A.A.; Cadaval, T.R.S., Jr.; Felipe, C.A.S. Mass transfer and equilibrium modelings of phenol adsorption on activated carbon from olive stone. Colloids Surf. A Physicochem. Eng. Asp. 2024, 680, 132628. [Google Scholar] [CrossRef]
- Aljubiri, S.M.; Younes, A.A.O.; Alosaimi, E.H.; Abdel-Daiem, M.M.; Abdel-Salam, E.T.; El-Shwiniy, W.H. Efficient Removal of Phenol Red Dye from Polluted Water Using Sustainable Low-Cost Sewage Sludge Activated Carbon: Adsorption and Reusability Studies. Molecules 2024, 29, 5865. [Google Scholar] [CrossRef]
- Khoj, M.A. Fabrication of silica/calcium alginate nanocomposite based on rice husk ash for efficient adsorption of phenol from water. RSC Adv. 2024, 14, 24322–24334. [Google Scholar] [CrossRef]
Variable | Unit | Lower (−) | Higher (+) |
---|---|---|---|
pH | - | 2 | 10 |
Contact time | min | 30 | 60 |
Adsorbent dosage | g/100 mL | 0.05 | 0.1 |
Phenol concentration | mg/L | 100 | 200 |
Run | pH | Adsorbent Dosage (g/100 mL) | Initial Phenol Concentration (mg/L) | Contact Time (min) | Removal Efficiency (%) |
---|---|---|---|---|---|
1 | 10 | 0.1 | 200 | 60 | 84.8 |
2 | 10 | 0.1 | 100 | 60 | 87.5 |
3 | 2 | 0.05 | 200 | 30 | 66.9 |
4 | 10 | 0.05 | 100 | 60 | 72.1 |
5 | 10 | 0.05 | 200 | 60 | 69.4 |
6 | 2 | 0.1 | 100 | 30 | 84.9 |
7 | 2 | 0.05 | 200 | 60 | 77.3 |
8 | 2 | 0.1 | 200 | 30 | 82.3 |
9 | 10 | 0.1 | 200 | 30 | 74.4 |
10 | 10 | 0.1 | 100 | 30 | 77.1 |
11 | 2 | 0.1 | 100 | 60 | 99.9 |
12 | 2 | 0.1 | 200 | 60 | 92.8 |
13 | 2 | 0.05 | 100 | 30 | 69.6 |
14 | 2 | 0.05 | 100 | 60 | 79.9 |
15 | 10 | 0.05 | 100 | 30 | 61.6 |
16 | 10 | 0.05 | 200 | 30 | 58.9 |
Isotherm | Parameters | Values |
---|---|---|
Langmuir | R2 | 0.95 |
Qmax (mg/g) | 208.33 | |
KL (L/mg) | 0.453 | |
RL | 0.0216 | |
Freundlich | R2 | 0.93 |
n | 3.69 | |
1/n | 0.2708 | |
KF (L/mg) | 89.63 | |
Temkin | A (L/g) | 89.58 |
B (J/mol | 0.271 | |
R2 | 0.94 | |
Dubinin–Radushkevich (D-R) | K (mol2/J2) | 2.04 × 10−7 |
Qmax (mg/g) | 156. | |
R2 | 0.63 |
Kinetics Model | Parameters | Values |
---|---|---|
Pseudo-first-order | R2 | 0.993 |
K1 | 0.0278 min−1 | |
Qe | 32.1 mg/g | |
Pseudo-second-order | R2 | 0.9997 |
K2 | 0.5999 g/mg·min | |
Qe | 203.87 mg/g |
S.No | Adsorbent | Maximum Adsorption Capacity (mg/g) | Reference |
---|---|---|---|
1. | Oak wood activated carbon | 250 | [70] |
2. | Petroleum pitch activated carbon | 189.96 | [71] |
3. | Olive stone activated carbon | 120 | [72] |
4. | Graphene oxide-bentonite nanocomposites | 46.43 | [56] |
5. | Alumina-pillared clay | 30.61 | [57] |
6. | Sewage sludge-derived activated carbon | 122.72 | [73] |
7. | Silica/calcium alginate nanocomposite | 100.55 | [74] |
8. | Catha edulis-based activated carbon | 208.5 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teweldebrihan, M.D.; Gnaro, M.A.; Dinka, M.O. Adsorption of Phenol from Aqueous Solution Utilizing Activated Carbon Prepared from Catha edulis Stem. Environments 2025, 12, 314. https://doi.org/10.3390/environments12090314
Teweldebrihan MD, Gnaro MA, Dinka MO. Adsorption of Phenol from Aqueous Solution Utilizing Activated Carbon Prepared from Catha edulis Stem. Environments. 2025; 12(9):314. https://doi.org/10.3390/environments12090314
Chicago/Turabian StyleTeweldebrihan, Meseret Dawit, Mikiyas Abewaa Gnaro, and Megersa Olumana Dinka. 2025. "Adsorption of Phenol from Aqueous Solution Utilizing Activated Carbon Prepared from Catha edulis Stem" Environments 12, no. 9: 314. https://doi.org/10.3390/environments12090314
APA StyleTeweldebrihan, M. D., Gnaro, M. A., & Dinka, M. O. (2025). Adsorption of Phenol from Aqueous Solution Utilizing Activated Carbon Prepared from Catha edulis Stem. Environments, 12(9), 314. https://doi.org/10.3390/environments12090314