Harnessing Opportunities, Constraints, and Implications of Integrating Environmental Conservation with Sustainable Ruminant Production
Abstract
1. Introduction
2. Overview of Ruminant Livestock Production
2.1. Diversity of Ruminants
2.2. Ruminant Livestock Production Systems
2.3. Integration of Ruminant Production Systems and Planetary Boundaries
2.4. Landscape Management and Biodiversity Benefits of Ruminants
3. Environmental Impact of Conventional Ruminant Production
3.1. Greenhouse Gas Emission
3.2. Water and Land Use, Pollution and Biodiversity Loss
4. Environmental Conservation and Its Relevance to Ruminant Production
5. Opportunities for Integrating Environmental Conservation and Ruminant Production
5.1. Sustainable Grazing Systems
5.2. Improved Feed and Nutrition Strategies
5.3. Animal Genetics and Breeding
5.4. Climate-Resilient Ruminants
5.5. Climate-Smart Livestock Approaches
5.6. Manure Management and Nutrient Recycling
6. Constraints and Challenges
6.1. Socioeconomic Constraints
6.2. Technical Constraints
6.3. Policy and Market Constraints
6.4. Global Emission Estimates and Discrepancies
7. Implications for Sustainable Ruminant Production and Environmental Conservation
7.1. Environmental Implications
7.2. Socioeconomic Benefits
7.3. Livelihood Benefits
7.4. Policy Implications
7.5. Emission Quantitative Accuracy and Implications
8. Future Directions for Integrating Environmental Conservation with Sustainable Ruminant Production
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palangi, V.; Taghizadeh, A.; Abachi, S.; Lackner, M. Strategies to Mitigate Enteric Methane Emissions in Ruminants: A Review. Sustainability 2022, 14, 13229. [Google Scholar] [CrossRef]
- Frazier, A.N.; Beck, M.R.; Waldrip, H.; Kozie, J.A. Connecting the Ruminant Microbiome to Climate Change: Insights from Current Ecological and Evolutionary Concepts. Front. Microbiol. 2024, 15, 1503315. [Google Scholar] [CrossRef]
- Joy, A.; Dunshea, F.R.; Leury, B.J.; Clarke, I.J.; Digiacomo, K.; Chauhan, S.S. Resilience of Small Ruminants to Climate Change and Increased Environmental Temperature: A Review. Animals 2020, 10, 867. [Google Scholar] [CrossRef]
- Scholtz, M.M.; Jordaan, F.J.; Chabalala, N.T.; Pyoos, G.M.; Mamabolo, M.J.; Neser, F.W.C. A Balanced Perspective on the Contribution of Extensive Ruminant Production to Greenhouse Gas Emissions in Southern Africa. Afr. J. Range Forage Sci. 2023, 40, 107–113. [Google Scholar] [CrossRef]
- Ripple, W.J.; Smith, P.; Haberl, H.; Montzka, S.A.; Mcalpine, C.; Boucher, D.H. Ruminants, Climate Change and Climate Policy. Nat. Clim. Chang. 2014, 4, 2–5. [Google Scholar] [CrossRef]
- Godde, C.M.; Mason-D’Croz, D.; Mayberry, D.E.; Thornton, P.K.; Herrero, M. Impacts of Climate Change on the Livestock Food Supply Chain; a Review of the Evidence. Glob. Food Secur. 2021, 28, 100488. [Google Scholar] [CrossRef]
- Bowles, N.; Alexander, S.; Hadjikakou, M. The Livestock Sector and Planetary Boundaries: A “limits to Growth’’ Perspective with Dietary Implications. Ecol. Econ. 2019, 160, 128–136. [Google Scholar] [CrossRef]
- Li, C.; Pradhan, P.; Wu, X.; Li, Z.; Liu, J.; Hubacek, K.; Chen, G. Livestock Sector Can Threaten Planetary Boundaries without Regionally Differentiated Strategies. J. Environ. Manag. 2024, 370, 122444. [Google Scholar] [CrossRef] [PubMed]
- Rockström, J.; Chapin, F.S., III; Lenton, T.M.; De Wit, C.A.; Van Der Leeuw, S.; Rodhe, H.; Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; et al. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; et al. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, J.H.; et al. A Safe Operating Space for Humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef]
- Richardson, K.; Steffen, W.; Lucht, W.; Bendtsen, J.; Cornell, S.E.; Donges, J.F.; Drüke, M.; Fetzer, I.; Bala, G.; von Bloh, W.; et al. Earth beyond Six of Nine Planetary Boundaries. Sci. Adv. 2023, 9, eadh2458. [Google Scholar] [CrossRef] [PubMed]
- Meier, T.; Schade, S.; Forner, F.; Eberle, U. Bridging Nutritional and Environmental Sustainability within Planetary Boundaries in Food Life Cycle Assessments: SWOT Review and Development of the Planet Health Conformity Index. Sustainability 2024, 16, 10658. [Google Scholar] [CrossRef]
- Cholewinska, P.; Górniak, W.; Wojnarowski, K. Impact of Selected Environmental Factors on Microbiome of the Digestive Tract of Ruminants. BMC Vet. Res. 2021, 17, 25. [Google Scholar] [CrossRef]
- Sabia, E.; Braghieri, A.; Vignozzi, L.; Paolino, R.; Cosentino, C.; Di Trana, A.; Pacelli, C. Carbon Footprint of By-Product Concentrate Feed: A Case Study. Environments 2025, 12, 42. [Google Scholar] [CrossRef]
- Du, Y.; Ge, Y.; Chang, J. Global Strategies to Minimize Environmental Impacts of Ruminant Global Strategies to Minimize Environmental Impacts of Ruminant Production. Annu. Rev. Anim. Biosci. 2022, 10, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Bocquier, F.; Gonza, E. Sustainability of Ruminant Agriculture in the New Context: Feeding Strategies and Features of Animal Adaptability into the Necessary Holistic Approach. Animal 2010, 4, 1258–1273. [Google Scholar] [CrossRef]
- Place, S.E. Examining the Role of Ruminants in Sustainable Food Systems. Grass Forage Sci. 2024, 79, 135–143. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation (FAO). Transforming the Livestock Sector through the Sustainable Development Goals; Food and Agriculture Organisation (FAO): Rome, Italy, 2018. [Google Scholar]
- van Zanten, H.H.E.; Mollenhorst, H.; Klootwijk, C.W.; van Middelaar, C.E.; de Boer, I.J.M. Global Food Supply: Land Use Efficiency of Livestock Systems. Int. J. Life Cycle Assess. 2016, 21, 747–758. [Google Scholar] [CrossRef]
- Mottet, A.; de Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On Our Plates or Eating at Our Table? A New Analysis of the Feed/Food Debate. Glob. Food Secur. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Mlambo, V.; Mnisi, C.M. Optimizing Ruminant Production Systems for Sustainable Intensification, Human Health, Food Security and Environmental Stewardship. Outlook Agric. 2019, 48, 85–93. [Google Scholar] [CrossRef]
- Nunes, L.J.R. The Rising Threat of Atmospheric CO2: A Review on the Causes, Impacts, and Mitigation Strategies. Environments 2023, 10, 66. [Google Scholar] [CrossRef]
- Swanepoel, P.A.; Smit, H.P. Integration of Livestock into Conservation Agriculture Systems in the Mediterranean Climate Region of South Africa. Afr. J. Range Forage Sci. 2025, 42, 57–65. [Google Scholar] [CrossRef]
- Dhar, A.R. Building Climate-Resilient Food Systems through the Water—Energy—Food—Environment Nexus. Environments 2025, 12, 167. [Google Scholar] [CrossRef]
- Thornton, P.K.; Herrero, M. The Inter-Linkages Between Rapid Growth in Livestock Production, Climate Change, and the Impacts on Water Resources, Land Use, and Deforestation; World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Gamage, A.; Gangahagedara, R.; Subasinghe, S.; Gamage, J.; Guruge, C.; Senaratne, S.; Randika, T.; Rathnayake, C.; Hameed, Z.; Madhujith, T.; et al. Advancing Sustainability: The Impact of Emerging Technologies in Agriculture. Curr. Plant Biol. 2024, 40, 100420. [Google Scholar] [CrossRef]
- Khalil, M.I.; Osborne, B.A.; Wingler, A. Towards Net Zero Emissions without Compromising Agricultural Sustainability: What Is Achievable? Nutr. Cycl. Agroecosyst. 2024, 128, 283–291. [Google Scholar] [CrossRef]
- Akinmoladun, O.F.; Muchenje, V.; Fon, F.N.; Mpendulo, C.T. Small Ruminants: Farmers’ Hope in a World Threatened by Water Scarcity. Animals 2019, 9, 456. [Google Scholar] [CrossRef]
- Bakker, S.; Macheka, L.; Eunice, L.; Koopmanschap, E.; Bosch, D.; Hennemann, I.; Roosendaal, L. Food System Interventions with Climate Change and Nutrition Co-Benefits Reading Guide; Wageningen Centre for Development Innovation: Wageningen, The Netherlands, 2021. [Google Scholar]
- Mohamed-Brahmi, A.; Ameur, M.; Mekki, I.; Tenza-peral, A.; Nasraoui, M. Analysis of Management Practices and Breeders’ Perceptions of Climate Change’s Impact to Enhance the Resilience of Sheep Production Systems: A Case Study in the Tunisian. Animals 2024, 14, 885. [Google Scholar] [CrossRef]
- Mupfiga, S.; Katiyatiya, C.L.F.; Chikwanha, O.C.; Molotsi, A.H.; Dzama, K.; Mapiye, C. Meat Production, Feed and Water Efficiencies of Selected South African Sheep Breeds. Small Rumin. Res. 2022, 214, 106746. [Google Scholar] [CrossRef]
- Perez, S.; Calvo, J.H.; Calvete, C.; Joy, M.; Lobón, S. Mitigation and Animal Response to Water Stress in Small Ruminants. Anim. Front. 2023, 13, 81–88. [Google Scholar] [CrossRef]
- Pahlane, N.; Chikwanha, O.C.; Katiyatiya, C.L.F.; Mahachi, L.N.; Molotsi, A.H.; Marume, U.; Mapiye, C. Water Balance, Physiological, Productive and Economic Performance of South African Lamb Breeds Offered Limited Amounts of Drinking Water under Feedlot Conditions. Small Rumin. Res. 2025, 251, 107575. [Google Scholar] [CrossRef]
- Chikwanha, O.C.; Mupfiga, S.; Olagbegi, B.R.; Katiyatiya, C.L.F.; Molotsi, A.H.; Abiodun, B.J.; Dzama, K.; Mapiye, C. Impact of Water Scarcity on Dryland Sheep Meat Production and Quality: Key Recovery and Resilience Strategies. J. Arid Environ. 2021, 190, 104511. [Google Scholar] [CrossRef]
- Bautista-Garfias, C.R.; Castañeda-Ramírez, G.S.; Estrada-Reyes, Z.M.; Soares, F.E.d.F.; Ventura-Cordero, J.; González-Pech, P.G.; Morgan, E.R.; Soria-Ruiz, J.; López-Guillén, G.; Aguilar-Marcelino, L. A Review of the Impact of Climate Change on the Epidemiology of Gastrointestinal Nematode Infections in Small Ruminants and Wildlife in Tropical Conditions. Pathogens 2022, 11, 148. [Google Scholar] [CrossRef] [PubMed]
- Pulina, G.; Francesconi, A.H.D.; Stefanon, B.; Sevi, A.; Calamari, L.; Lacetera, N.; Dell’Orto, V.; Pilla, F.; Marsan, P.A.; Mele, M.; et al. Sustainable Ruminant Production to Help Feed the Planet. Ital. J. Anim. Sci. 2017, 16, 140–171. [Google Scholar] [CrossRef]
- Anim-Jnr, A.S.; Sasu, P.; Bosch, C.; Mabiki, F.P.; Frimpong, Y.O.; Emmambux, M.N.; Greathead, H.M.R. Sustainable Small Ruminant Production in Low- and Middle-Income African Countries: Harnessing the Potential of Agroecology. Sustainability 2023, 15, 15326. [Google Scholar] [CrossRef]
- Rust, J.M. The Impact of Climate Change on Extensive and Intensive Livestock Production Systems. Anim. Front. 2019, 9, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Banda, L.J.; Tanganyika, J. Livestock Provide More than Food in Smallholder Production Systems of Developing Countries. Anim. Front. 2021, 11, 7–14. [Google Scholar] [CrossRef]
- Silva, S.R.; Sacarr, L.; Almeida, M.; Ribeiro, D.M.; Guedes, C.; Gonz, R.; Pereira, A.F.; Zaralis, K.; Geraldo, A.; Tzamaloukas, O.; et al. Extensive Sheep and Goat Production: The Role of Novel Technologies towards Sustainability and Animal Welfare. Animals 2022, 12, 885. [Google Scholar] [CrossRef]
- Sere, C.; Steinfeld, H. World Livestock Production Systems: Current Status, Issues and Trends; Food and Agriculture Organization of the United Nations: Rome, Italy, 1995. [Google Scholar]
- Thornton, P.K.; van de Steeg, J.; Notenbaert, A.; Herrero, M. The Impacts of Climate Change on Livestock and Livestock Systems in Developing Countries: A Review of What We Know and What We Need to Know. Agric. Syst. 2009, 101, 113–127. [Google Scholar] [CrossRef]
- Msangi, S.; Enahoro, D.; Herrero, M.; Magnan, N.; Havlik, P. Integrating Livestock Feeds and Production Systems into Agricultural Multi-Market Models: The Example of IMPACT. Food Policy 2014, 49, 365–377. [Google Scholar] [CrossRef][Green Version]
- Gerbens-Leenes, P.W.; Mekonnen, M.M.; Hoekstra, A.Y. The Water Footprint of Poultry, Pork and Beef: A Comparative Study in Different Countries and Production Systems. Water Resour. Ind. 2013, 1–2, 25–36. [Google Scholar] [CrossRef]
- Magona, C.; Hassen, A.; Tesfamariam, E.; Mengistu, M. Assessing Extensive Pasture-Based Beef Production in South Africa under Future Climate Change Conditions Assessing Extensive Pasture-Based Beef Production in South Africa under Future Climate Change Conditions. Agric. Syst. 2025, 229, 104431. [Google Scholar] [CrossRef]
- Slayi, M.; Zhou, L.; Nyambo, P.; Jaja, I.F.; Muchaku, S. Communally Established Cattle Feedlots as a Sustainable Livelihood Option for Climate Change Resilience and Food Security in Sub-Saharan Africa: A Systematic Review. Front. Sustain. Food Syst. 2024, 7, 1325233. [Google Scholar] [CrossRef]
- Semwogerere, F.; Katiyatiya, C.L.F.; Chikwanha, O.C.; Marufu, M.C.; Mapiye, C. Bioavailability and Bioefficacy of Hemp By-Products in Ruminant Meat Production and Preservation: A Review. Front. Vet. Sci. 2020, 7, 572906. [Google Scholar] [CrossRef]
- Mahachi, L.N.; Chikwanha, O.C.; Katiyatiya, C.L.F.; Marufu, M.C.; Aremu, A.O.; Mapiye, C. Sericea Lespedeza (Lespedeza Juncea Var. Sericea) for Sustainable Small Ruminant Production: Feed, Helminth Suppressant and Meat Preservation Capabilities. Anim. Feed Sci. Technol. 2020, 270, 114688. [Google Scholar] [CrossRef]
- Uushona, T.; Chikwanha, O.C.; Tayengwa, T.; Katiyatiya, C.L.F.; Strydom, P.E.; Mapiye, C. Nutraceutical and Preservative Potential of Acacia Mearnsii and Acacia Dealbata Leaves for Ruminant Production and Product Quality Enhancement. J. Agric. Sci. 2021, 159, 743–756. [Google Scholar] [CrossRef]
- Mapiye, C.; Semwogerere, F.; Nyikadzino, L.; Mwale, M.; Christopher, M. Indigenous Ethno-Nutraceutical Plants: Potential Game-Changers for the Dual Management of Ruminant Helminths and Undernutrition in Sub-Saharan Africa. J. Ethnopharmacol. 2025, 351, 120077. [Google Scholar] [CrossRef] [PubMed]
- Bouwman, A.F.; Van der Hoek, K.W.; Eickhout, B.; Soenario, I. Exploring Changes in World Ruminant Production Systems. Agric. Syst. 2005, 84, 121–153. [Google Scholar] [CrossRef]
- Monteiro, A.G.L.; Faro, A.M.C.d.F.; Peres, M.T.P.; Batista, R.; Poli, C.H.E.C.; Villalba, J.J. The Role of Small Ruminants on Global Climate Change. Acta Sci. Anim. Sci. 2018, 40, e43124. [Google Scholar] [CrossRef]
- Schlecht, E.; Turner, M.D.; Hülsebusch, C.G.; Buerkert, A.; Gordon, I.J.; Moritz, M. Managing Rangelands without Herding? Insights from Africa and Beyond. Front. Sustain. Food Syst. 2020, 4, 549954. [Google Scholar] [CrossRef]
- Primi, R.; Bernabucci, G.; Evangelista, C.; Viola, P.; Girotti, P.; Spina, R.; Compagnucci, S.; Ronchi, B. Ecosystem Services Linked to Extensive Sheep and Goat Farming in Mountain Areas: A Global Literature Analysis Using Text Mining and Topic Analysis. Animals 2025, 15, 350. [Google Scholar] [CrossRef] [PubMed]
- Nugrahaeningtyas, E.; Lee, J.; Park, K. Greenhouse Gas Emissions from Livestock: Sources, Estimation, and Mitigation. J. Anim. Sci. Technol. 2024, 66, 1083–1098. [Google Scholar] [CrossRef]
- Reijnders, L. Climate-Neutral Agriculture? Environments 2023, 10, 72. [Google Scholar] [CrossRef]
- Tseten, T.; Sanjorjo, R.A.; Kwon, M.; Kim, S. Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals. J. Microbiol. Biotechnol. 2022, 32, 269–277. [Google Scholar] [CrossRef]
- Lagrange, S.; Beauchemin, K.A.; MacAdam, J.; Villalba, J.J. Grazing Diverse Combinations of Tanniferous and Non-Tanniferous Legumes: Implications for Beef Cattle Performance and Environmental Impact. Sci. Total Environ. 2020, 746, 140788. [Google Scholar] [CrossRef]
- Black, J.L.; Davison, T.M.; Box, I. Methane Emissions from Ruminants in Australia: Mitigation Potential and Applicability of Mitigation Strategies. Animals 2021, 11, 951. [Google Scholar] [CrossRef]
- Morgavi, D.P.; Cantalapiedra-hijar, G.; Eugène, M.; Martin, C.; Noziere, P.; Popova, M.; Ortigues-marty, I.; Muñoz-tamayo, R.; Ungerfeld, E.M. Review: Reducing Enteric Methane Emissions Improves Energy Metabolism in Livestock: Is the Tenet Right? Animal 2023, 17, 100830. [Google Scholar] [CrossRef]
- Lambo, M.T.; Ma, H.; Liu, R.; Dai, B.; Zhang, Y.; Li, Y. Review: Mechanism, Effectiveness, and the Prospects of Medicinal Plants and Their Bioactive Compounds in Lowering Ruminants’ Enteric Methane Emission. Animal 2024, 18, 101134. [Google Scholar] [CrossRef]
- Mahachi, L.N.; Chikwanha, O.C.; Katiyatiya, C.L.F.; Marufu, M.C.; Aremu, A.O.; Mapiye, C. Effects of Substituting Sericea Lespedeza for Lucerne on Nutrient Digestibility and Utilization in Feedlot Lambs. Small Rumin. Res. 2023, 222, 106955. [Google Scholar] [CrossRef]
- Zaman, M.; Kleineidam, K.; Bakken, L.; Berendt, J.; Bracken, C.; Cai, Z.; Chang, S.X.; Clough, T.; Dawar, K.; Ding, W.X.; et al. Methane Production in Ruminant. In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options Using Nuclear and Related Techniques; Springer International Publishing: Cham, Switzerland, 2021; pp. 177–211. ISBN 9783030553968. [Google Scholar]
- Opio, C.; Gerber, P.; Mottet, A.; Falcucci, A.; Tempio, G.; MacLeod, M.; Vellinga, T.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from Ruminant Supply Chains; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Graham, M.W.; Butterbach-Bahl, K.; du Toit, C.J.L.; Korir, D.; Leitner, S.; Merbold, L.; Mwape, A.; Ndung’u, P.W.; Pelster, D.E.; Rufino, M.C.; et al. Research Progress on Greenhouse Gas Emissions from Livestock in Sub-Saharan Africa Falls Short of National Inventory Ambitions. Front. Soil Sci. 2022, 2, 927452. [Google Scholar] [CrossRef]
- Schils, R.L.M.; Eriksen, J.; Ledgard, S.F.; Vellinga, T.V.; Kuikman, P.J.; Luo, J.; Petersen, S.O.; Velthof, G.L. Strategies to Mitigate Nitrous Oxide Emissions from Herbivore Production Systems. Animal 2013, 7, 29–40. [Google Scholar] [CrossRef]
- Amon, B.; Çinar, G.; Anderl, M.; Dragoni, F. Inventory Reporting of Livestock Emissions: The Impact of the IPCC 1996 and 2006 Guidelines. Environ. Res. Lett. 2021, 16, 075001. [Google Scholar] [CrossRef]
- Parlasca, M.; Qaim, M. Meat Consumption and Sustainability. Annu. Rev. Resource Econ. 2022, 14, 17–41. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M. The Water Footprint of Humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A Global Assessment of the Water Footprint of Farm Animal Products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef]
- Wisser, D.; Grogan, D.S.; Lanzoni, L.; Tempio, G.; Cinardi, G.; Prusevich, A.; Glidden, S. Water Use in Livestock Agri-Food Systems and Its Contribution to Local Water Scarcity: A Spatially Distributed Global Analysis. Water 2024, 16, 1681. [Google Scholar] [CrossRef]
- Bhagat, S.; Soni, A.; Yadav, G.; Santra, A.; Mishra, S.; Khune, V.; Dubey, A.; Yadav, A.; Banjare, S. The Water Footprint of Livestock Production System and Livestock Products: A Dark Area: A Review. Int. J. Fauna Biol. Stud. 2020, 7, 83–88. [Google Scholar]
- Doreau, M.; Corson, M.S.; Wiedemann, S.G. Water Use by Livestock: A Global Perspective for a Regional Issue? Anim. Front. 2012, 2, 9–16. [Google Scholar] [CrossRef]
- Barsotti, M.P.; de Almeida, R.G.; Macedo, M.C.M.; Gomes, R.d.C.; Palhares, J.C.P.; Mazzetto, A.; Dickhoefer, U. A Pathway for Decreasing the Water Footprint from Grazing-Based Beef Production Systems in the Tropics. Agric. Syst. 2025, 222, 104192. [Google Scholar] [CrossRef]
- Dong, S.; Shang, Z.; Gao, J.; Boone, R.B. Enhancing Sustainability of Grassland Ecosystems through Ecological Restoration and Grazing Management in an Era of Climate Change on Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2020, 287, 106684. [Google Scholar] [CrossRef]
- Zonderland-Thomassen, M.A.; Lieffering, M.; Ledgard, S.F. Water Footprint of Beef Cattle and Sheep Produced in New Zealand: Water Scarcity and Eutrophication Impacts. J. Clean. Prod. 2014, 73, 253–262. [Google Scholar] [CrossRef]
- Bortoli, M.; Hollas, C.E.; Steinmetz, R.L.R.; Coldebella, A.; Kunz, A.; Cunha, A.; de Pra, M.C.; Soares, H.M. Water Reuse as a Strategy for Mitigating Atmospheric Emissions and Protecting Water Resources for the Circularity of the Swine Production Chain. J. Clean. Prod. 2022, 345, 131127. [Google Scholar] [CrossRef]
- Montes, F.; Meinen, R.; Dell, C.; Rotz, A.; Hristov, A.N.; Oh, J.; Waghorn, G.; Gerber, P.J.; Henderson, B.; Makkar, H.P.S.; et al. SPECIAL TOPICS-Mitigation of Methane and Nitrous Oxide Emissions from Animal Operations: I. A Review of Manure Management Mitigation Options. J. Anim. Sci. 2013, 91, 5070–5094. [Google Scholar] [CrossRef]
- Sahlin, K.R.; Gordon, L.J.; Lindborg, R.; Piipponen, J.; Van Rysselberge, P.; Rouet-leduc, J. An Exploration of Biodiversity Limits to Grazing Ruminant Milk and Meat Production. Nat. Sustain. 2024, 7, 1160–1170. [Google Scholar] [CrossRef]
- Chenchouni, H.; Merdas, S.; Kouba, Y.; Mostephaoui, T.; Farhi, Y.; Neffar, S. Multiscale Partitioning Effects of Livestock Grazing Management on Plant Community Composition and Diversity in Arid Rangelands. J. Environ. Manag. 2025, 373, 123670. [Google Scholar] [CrossRef]
- Xi, G.; Ma, C.; Ji, F.; Huang, H.; Zhang, H.; Guo, Z.; Zhang, X.; Zhao, S.; Xie, Y. Spatial and Temporal Dynamics of Livestock Grazing Intensity in the Selinco Region: Towards Sustainable Grassland Management. J. Clean. Prod. 2024, 473, 143541. [Google Scholar] [CrossRef]
- Schillings, J.; Holohan, C.; Lively, F.; Arnott, G.; Russell, T. The Potential of Virtual Fencing Technology to Facilitate Sustainable Livestock Grazing Management. Animal 2024, 18, 101231. [Google Scholar] [CrossRef]
- O’Grady, A.P.; Mendham, D.S.; Mokany, K.; Smith, G.S.; Stewart, S.B.; Harrison, M.T. Grazing Systems and Natural Capital: Influence of Grazing Management on Natural Capital in Extensive Livestock Production Systems. Nat.-Based Solut. 2024, 6, 100181. [Google Scholar] [CrossRef]
- Teague, R.; Kreuter, U. Managing Grazing to Restore Soil Health, Ecosystem Function, and Ecosystem Services. Front. Sustain. Food Syst. 2020, 4, 534187. [Google Scholar] [CrossRef]
- Smith, N. Environmental Sustainability in Livestock Production. Int. J. Livest. Policy 2023, 2, 26–38. [Google Scholar] [CrossRef]
- Nwobodo, C.E.; Nwokolo, B.; Iwuchukwu, J.C.; Ohagwu, V.A.; Ozioko, R.I. Determinants of Ruminant Farmers’ Use of Sustainable Production Practices for Climate Change Mdaptation and Mitigation in Enugu State, Nigeria. Front. Vet. Sci. 2022, 9, 735139. [Google Scholar] [CrossRef]
- Britten, N.; Mahendran, S. Environmental Sustainability and Ruminant Production: A UK Veterinary Perspective. Vet. Rec. 2024, 196, e4703. [Google Scholar] [CrossRef]
- Bashiru, H.A.; Oseni, S.O. Simplified Climate Change Adaptation Strategies for Livestock Development in Low-and Middle-Income Countries. Front. Sustain. Food Syst. 2025, 9, 1566194. [Google Scholar] [CrossRef]
- Garrett, R.D.; Niles, M.T.; Gil, J.D.B.; Gaudin, A.; Chaplin-Kramer, R.; Assmann, A.; Assmann, T.S.; Brewer, K.; de Faccio Carvalho, P.C.; Cortner, O.; et al. Social and Ecological Analysis of Commercial Integrated Crop Livestock Systems: Current Knowledge and Remaining Uncertainty. Agric. Syst. 2017, 155, 136–146. [Google Scholar] [CrossRef]
- Paul, B.K.; Epper, C.A.; Tschopp, D.J.; Long, C.T.M.; Tungani, V.; Burra, D.; Hok, L.; Phengsavanh, P.; Douxchamps, S. Crop-Livestock Integration Provides Opportunities to Mitigate Environmental Trade-Offs in Transitioning Smallholder Agricultural Systems of the Greater Mekong Subregion. Agric. Syst. 2022, 195, 103285. [Google Scholar] [CrossRef]
- Aryal, J.P.; Sapkota, T.B.; Rahut, D.B.; Marenya, P.; Stirling, C.M. Climate Risks and Adaptation Strategies of Farmers in East Africa and South Asia. Sci. Rep. 2021, 11, 10489. [Google Scholar] [CrossRef] [PubMed]
- Araya, T.; Ochsner, T.E.; Mnkeni, P.N.S.; Hounkpatin, K.O.L.; Amelung, W. Challenges and Constraints of Conservation Agriculture Adoption in Smallholder Farms in Sub-Saharan Africa: A Review. Int. Soil Water Conserv. Res. 2024, 12, 828–843. [Google Scholar] [CrossRef]
- Maree, E.; Blignaut, J.; Gilliland, J.; Lee, M.R.F.; Manzano, P.; Mccosker, T.; Toit, L.; Truter, W.; Weinheimer, B.; Polkinghorne, R. Ruminant Livestock Farmers and Industry Are Leading Innovation to Deliver Human Nutrition and Improved Environmental Outcomes through Sector Lifecycle Collaboration: A Review of Case Studies. Anim. Front. 2025, 15, 55–71. [Google Scholar] [CrossRef]
- Baronti, S.; Ungaro, F.; Maienza, A.; Ugolini, F.; Lagomarsino, A.; Agnelli, A.E.; Calzolari, C.; Pisseri, F.; Robbiati, G.; Vaccari, F.P. Rotational Pasture Management to Increase the Sustainability of Mountain Livestock Farms in the Alpine Region. Reg. Environ. Chang. 2022, 22, 50. [Google Scholar] [CrossRef]
- Assan, N.; Muteyo, E.; Moyo, M.; Chisoro, P. A Review of Grassland Ecosystems as Carbon Sinks: Opportunities and Challenges for Climate-Smart Land Use and Agriculture. Int. J. Res. Innov. Appl. Sci. 2025, 10, 1040–1076. [Google Scholar] [CrossRef]
- Castro-Nunez, A.; Buritica, A.; Holmann, F.; Ngaiwi, M.; Quintero, M.; Solarte, A.; Gonzalez, C. Unlocking Sustainable Livestock Production Potential in the Colombian Amazon through Paddock Division and Gender Inclusivity. Sci. Rep. 2024, 14, 13644. [Google Scholar] [CrossRef]
- Rivero, M.J.; Lee, M.R.F. A Perspective on Animal Welfare of Grazing Ruminants and Its Relationship with Sustainability. Anim. Prod. Sci. 2022, 62, 1739–1748. [Google Scholar] [CrossRef]
- Morenz, A.B.d.S.; de Carvalho, C.A.B.; Carnevalli, R.A.; Morenz, D.A.; de Barros, I.; Lulu, J.; Moustacas, V.S.; Xavier, D.B. Dairy Cows on Integrated Livestock-Forestry System in the Tropics. Agrofor. Syst. 2024, 98, 1079–1090. [Google Scholar] [CrossRef]
- Abeni, F. Effects of Extrinsic Factors on Some Rumination Patterns: A Review. Front. Anim. Sci. 2022, 3, 1047829. [Google Scholar] [CrossRef]
- Rapiya, M.; Truter, W.; Ramoelo, A. The Integration of Land Restoration and Biodiversity Conservation Practices in Sustainable Food Systems of Africa: A Systematic Review. Sustainability 2024, 16, 8951. [Google Scholar] [CrossRef]
- Li, T.; Zhang, X.; Zou, M.; Chen, J.; Hou, F. Grazing Management of Cultivated Grassland with Different Weed Proportions Optimizes Soil Nutrient Status and Improves Forage Yield and Nutritional Quality. Field Crop. Res. 2025, 331, 110018. [Google Scholar] [CrossRef]
- Xi, G.; Ma, C.; Xie, Y.; Guo, Z.; Bao, T.; Zhang, X.; Liu, Y.; Wang, H. Spatialization Method of Monitoring Grazing Intensity: A Case-Study of the Tibet Selinco Basin, Qinghai-Tibet Plateau. Land Degrad. Dev. 2023, 34, 1311–1322. [Google Scholar] [CrossRef]
- Xu, L.; Li, D.; Wang, D.; Ye, L.; Nie, Y.; Fang, H.; Xue, W.; Bai, C.; Van Ranst, E. Achieving the Dual Goals of Biomass Production and Soil Rehabilitation with Sown Pasture on Marginal Cropland: Evidence from a Multi-Year Field Experiment in Northeast Inner Mongolia. Front. Plant Sci. 2022, 13, 985864. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Xie, Y.; Duan, H.; Wang, X.; Bie, Q.; Guo, Z.; He, L.; Qin, W. Spatial Quantification Method of Grassland Utilization Intensity on the Qinghai-Tibetan Plateau: A Case Study on the Selinco Basin. J. Environ. Manage. 2022, 302, 114073. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Siddique, K.H.M. Research and Developmental Issues in Dryland Agriculture; Springer International Publishing: Cham, Switzerland, 2017; ISBN 9783319479286. [Google Scholar]
- Losapio, G.; De Moraes, C.; Nickels, V.; Tscheulin, T.; Zouros, N. The Effects of Shrub Encroachment on Arthropod Communities Depend on Grazing History. Glob. Ecol. Conserv. 2024, 50, e02819. [Google Scholar] [CrossRef]
- Gusha, B.; Palmer, A.R.; Zondani, T.C. Assessing Livestock Grazing Distribution in Communal Rangelands of the Eastern Cape, South Africa: Towards Monitoring Livestock Movements in Rangelands. Land 2023, 12, 760. [Google Scholar] [CrossRef]
- Rapiya, M.; Mndela, M.; Ramoelo, A. Sustainable Food Systems through Livestock—Pasture Integration. Agriculture 2025, 15, 967. [Google Scholar] [CrossRef]
- Rapiya, M.; Mndela, M.; Truter, W.; Ramoelo, A. Assessing the Economic Viability of Sustainable Pasture and Rangeland Management Practices: A Review. Agriculture 2025, 15, 690. [Google Scholar] [CrossRef]
- Katiyatiya, C.L.F.; Majaha, J.; Chikwanha, O.C.; Dzama, K.; Kgasago, N.; Mapiye, C. Drought’s Implications on Agricultural Skills in South Africa. Outlook Agric. 2022, 51, 293–302. [Google Scholar] [CrossRef]
- Zenda, M. A Systematic Literature Review on the Impact of Climate Change on the Livelihoods of Smallholder Farmers in South Africa. Heliyon 2024, 10, e38162. [Google Scholar] [CrossRef] [PubMed]
- Fushai, F.; Chitura, T.; Oke, O.E. Climate-Smart Livestock Nutrition in Semi-Arid Southern African Agricultural Systems. Front. Vet. Sci. 2025, 12, 1507152. [Google Scholar] [CrossRef]
- Sheoran, S.; Dey, A.; Sindhu, S. Reduction of Methane and Nitrogen Emission and Improvement of Feed Efficiency, Rumen Fermentation, and Milk Production through Strategic Supplementation of Eucalyptus (Eucalyptus citriodora) Leaf Meal in the Diet of Lactating Buffalo (Bubalus bubalis). Environ. Sci. Pollut. Res. 2023, 30, 125510–125525. [Google Scholar] [CrossRef]
- Giamouri, E.; Zisis, F.; Mitsiopoulou, C.; Christodoulou, C.; Pappas, A.C.; Simitzis, P.E.; Kamilaris, C.; Galliou, F.; Manios, T.; Mavrommatis, A.; et al. Sustainable Srategies for Greenhouse Gas Emission Reduction in Small Ruminants Farming. Sustainability 2023, 15, 4118. [Google Scholar] [CrossRef]
- Toro-Mujica, P.; González-Ronquillo, M. Editorial: Feeding and Nutritional Strategies to Reduce Livestock Greenhouse Gas Emissions. Front. Vet. Sci. 2021, 8, 717426. [Google Scholar] [CrossRef] [PubMed]
- Nedelkov, K.; Angelova, T.; Krastanov, J.; Mihaylova, M. Feeding Strategies to Reduce Methane Emissions: A Review. Bulg. J. Agric. Sci. 2024, 30, 28–36. [Google Scholar]
- Soto, I.; Barnes, A.; Balafoutis, A.; Beck, B.; Sánchez, B.; Vangeyte, J.; Fountas, S.; Van der Wal, T.; Eory, V.; Gómez-Barbero, M. The Contribution of Precision Agriculture Technologies to Farm Productivity and the Mitigation of Greenhouse Gas Emissions in the EU; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Króliczewska, B.; Pecka-Kiełb, E.; Bujok, J. Strategies Used to Reduce Methane Emissions from Ruminants: Controversies and Issues. Agriculture 2023, 13, 602. [Google Scholar] [CrossRef]
- Loza, C.; Verma, S.; Wolffram, S.; Susenbeth, A.; Blank, R.; Taube, F.; Loges, R.; Hasler, M.; Kluß, C.; Malisch, C.S. Assessing the Potential of Diverse Forage Mixtures to Reduce Enteric Methane Emissions in Vitro. Animals 2021, 11, 1126. [Google Scholar] [CrossRef] [PubMed]
- Devendra, C.; Sevilla, C.C. Availability and Use of Feed Resources in Crop-Animal Systems in Asia. Agric. Syst. 2002, 71, 59–73. [Google Scholar] [CrossRef]
- Kennady, V.; Chakraborty, S.; Biswal, J.; Rahman, H. Sustainable Livestock Production: A Systematic Review of Different Constraints Associated with Sustainable Livestock Production. Eur. J. Agric. Food Sci. 2023, 5, 1–11. [Google Scholar] [CrossRef]
- Pfukwa, T.M.; Chikwanha, O.C.; Katiyatiya, C.L.F.; Fawole, O.A.; Manley, M.; Mapiye, C. Southern African Indigenous Fruits and Their Byproducts: Prospects as Food Antioxidants. J. Funct. Foods 2020, 75, 104220. [Google Scholar] [CrossRef]
- Mushunje, L.H.; Marandure, T.; Chikwanha, O.C.; Bennett, J.; Hawkins, H.J.; Palmer, A.R.; Wu, L.; M.C, M.; Mapiye, C. Supplementation of Acacia Dealbata versus Acacia Mearnsii Leaf-Meal Has Potential to Maintain Growth Performance of Lambs Grazing Low-Quality Communal Rangelands in South Africa. Trop. Anim. Health Prod. 2024, 56, 152. [Google Scholar] [CrossRef]
- Chisoro, P.; Mazizi, B.; Jaja, I.F.; Assan, N.; Nkukwana, T. Sustainable Utilization of Wild Fruits and Respective Tree Byproducts as Partial Feed Ingredients or Supplements in Livestock Rations. Front. Anim. Sci. 2025, 6, 1501412. [Google Scholar] [CrossRef]
- Kaseke, T.; Pfukwa, T.M.; Nxumalo, K.A.; Shinga, M.H.; Opara, U.L.; Fawole, O.A. Parinari Curatellifolia: A Treasure Trove of Phytochemicals, Nutritional Benefits, and Biological Activities. Heliyon 2025, 11, e41647. [Google Scholar] [CrossRef] [PubMed]
- Nyamushamba, G.B.; Mapiye, C.; Tada, O.; Halimani, T.E.; Muchenje, V. Conservation of Indigenous Cattle Genetic Resources in Southern Africa’s Smallholder Areas: Turning Threats into Opportunities-A Review. Asian-Australas J. Anim. Sci. 2017, 30, 603–621. [Google Scholar] [CrossRef]
- Sejian, V.; Gaughan, J.; Baumgard, L.; Prasad, C. Climate Change Impact on Livestock: Adaptation and Mitigation; Springer (India) Pvt, Ltd.: Delhi, India, 2015; ISBN 9788132222651. [Google Scholar]
- Bester, J.; Matjuda, L.E.; Rust, J.M.; Fourie, H.J. The Nguni: A Case Study. In Community-Based Management of Animal Genetic Resources, Proceedings of the Workshop held in Mbabane, Swaziland, 7–11 May 2001; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002. [Google Scholar]
- Vanvanhossou, S.F.U.; Yin, T.; Gorjanc, G.; König, S. Evaluation of Crossbreeding Strategies for Improved Adaptation and Productivity in African Smallholder Cattle Farms. Genet. Sel. Evol. 2025, 57, 6. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, J.; Fillol, E.; Mutua, J.Y.; Cinardi, G.; Robinson, T.P.; Notenbaert, A.M.O.; Ericksen, P.J.; Graham, M.W.; Butterbach-Bahl, K. A Shift from Cattle to Camel and Goat Farming Can Sustain Milk Production with Lower Inputs and Emissions in North Sub-Saharan Africa’s Drylands. Nat. Food 2022, 3, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, I. Climate Change and the Characterization, Breeding and Conservation of Animal Genetic Resources. Anim. Genet. 2010, 41, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Thornton, P.K.; Rosenstock, T.; Förch, W.; Lamanna, C.; Bell, P.; Henderson, B.; Herrero, M. A Qualitative Evaluation of CSA Options in Mixed Crop-Livestock Systems in Developing Countries. In Climate Smart Agriculture, Natural Resource Management and Policy; Lipper, L., McCarthy, N., Zilberman, D., Asfaw, S., Branca, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 385–423. [Google Scholar]
- Núñez, I.P.; Díaz, R.; Quiñones, J.; Martínez, A.; Velázquez, L.; Huaiquipán, R.; Tapia, D.; Muñoz, A.; Valdés, M.; Sepúlveda, N.; et al. Molecular Characteristics and Processing Technologies of Dairy Products from Non-Traditional Species. Molecules 2024, 29, 5427. [Google Scholar] [CrossRef]
- Siririka, N.A.; Charamba, V.; Mupangwa, J.; Shipandeni, M.N.T.; Kahumba, A. Climate Change Adaptation Strategies among Smallholder Livestock Farmers in Namibia’s Omaheke Region, Namibia. Discov. Sustain. 2025, 6, 179. [Google Scholar] [CrossRef]
- Balehegn, M.; Kebreab, E.; Tolera, A.; Hunt, S.; Erickson, P.; Crane, T.A.; Adesogan, A.T. Livestock Sustainability Research in Africa with a Focus on the Environment. Anim. Front. 2021, 11, 47–56. [Google Scholar] [CrossRef]
- Adesogan, A.T.; Gebremikael, M.B.; Varijakshapanicker, P.; Vyas, D. Climate-Smart Approaches for Enhancing Livestock Productivity, Human Nutrition, and Livelihoods in Low- and Middle-Income Countries. Anim. Prod. Sci. 2025, 65, AN24215. [Google Scholar] [CrossRef]
- Amole, T.A.; Ayantunde, A.A. Climate-Smart Livestock Interventions in West Africa: A Review; CGIAR Research Program on Climate Change, Agriculture and Food Security: Copenhagen, Denmark, 2016. [Google Scholar]
- Rivero, M.J.; Evans, A.C.O.; Berndt, A.; Cartmill, A.; Dowsey, A.; Farruggia, A.; Mignolet, C.; Enriquez-Hidalgo, D.; Chadwick, D.; McCracken, D.I.; et al. Taking the Steps toward Sustainable Livestock: Our Multidisciplinary Global Farm Platform Journey. Anim. Front. 2021, 11, 52–58. [Google Scholar] [CrossRef]
- Herrero, M.; Grace, D.; Njuki, J.; Johnson, N.; Enahoro, D.; Silvestri, S.; Rufino, M.C. The Roles of Livestock in Developing Countries. Animal 2013, 7, 3–18. [Google Scholar] [CrossRef]
- Dyanti, N.; Ncanywa, T. Commercialization of Green Hydrogen Production from Kraal Manure in the Eastern Cape, South Africa: A Review. J. Energy South. Africa 2022, 33, 1–12. [Google Scholar] [CrossRef]
- Myeni, L.; Moeletsi, M.; Thavhana, M.; Randela, M.; Mokoena, L. Barriers Affecting Sustainable Agricultural Productivity of Smallholder Farmers in the Eastern Free State of South Africa. Sustainability 2019, 11, 3003. [Google Scholar] [CrossRef]
- Branca, G.; Cacchiarelli, L.; Haug, R.; Sorrentino, A. Promoting Sustainable Change of Smallholders’ Agriculture in Africa: Policy and Institutional Implications from a Socio-Economic Cross-Country Comparative Analysis. J. Clean. Prod. 2022, 358, 131949. [Google Scholar] [CrossRef]
- Dumont, B.; Barlagne, C.; Cassart, P.; Duval, J.E.; Fanchone, A.; Gourdine, J.L.; Huguenin-Elie, O.; Kazakova, Y.; Klötzli, J.; Lüscher, A.; et al. Principles, Barriers and Enablers to Agroecological Animal Production Systems: A Qualitative Approach Based on Five Case Studies. Animal 2025, 19, 101367. [Google Scholar] [CrossRef] [PubMed]
- Manning, L. Innovating in an Uncertain World: Understanding the Social, Technical and Systemic Barriers to Farmers Adopting New Technologies. Challenges 2024, 15, 32. [Google Scholar] [CrossRef]
- Muhie, S.H. Novel Approaches and Practices to Sustainable Agriculture. J. Agric. Food Res. 2022, 10, 100446. [Google Scholar] [CrossRef]
- Eeswaran, R.; Nejadhashemi, A.P.; Faye, A.; Min, D.; Prasad, P.V.V.; Ciampitti, I.A. Current and Future Challenges and Opportunities for Livestock Farming in West Africa: Perspectives from the Case of Senegal. Agronomy 2022, 12, 1818. [Google Scholar] [CrossRef]
- Azine, P.C.; Mugumaarhahama, Y.; Mutwedu, V.B.; Baenyi, S.P.; Basengere, R.; Ayagirwe, B. Livestock Feeding Practices in South Kivu, Eastern Democratic Republic of Congo: Challenges and Opportunities. Discov. Anim. 2025, 2, 8. [Google Scholar] [CrossRef]
- Thornton, P.; Wollenberg, E.; Cramer, L. Livestock and Climate Change: Outlook for a More Sustainable and Equitable Future; ILRI: Nairobi, Kenya, 2024. [Google Scholar]
- Savory, A. The Savory Grazing Method or Holistic Resource Management. Rangelands 1983, 5, 155–159. [Google Scholar]
- Mann, C.; Sherren, K. Holistic Management and Adaptive Grazing: A Trainers’ View. Sustainability 2018, 10, 1848. [Google Scholar] [CrossRef]
- Savory, A.; Duncan, T. Chapter 4.4—Regenerating Agriculture to Sustain Civilization. In Land Restoration; Chabay, I., Frick, M., Helgeson, J.B.T.-L.R., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 289–309. ISBN 978-0-12-801231-4. [Google Scholar]
- Savory, A. Holistic Resource Management: A Conceptual Framework for Ecologially Sound Economic Modelling. Ecol. Econ. 1991, 3, 181–191. [Google Scholar] [CrossRef]
- O’Donoghue, T.; Minasny, B.; McBratney, A. Regenerative Agriculture and Its Potential to Improve Farmscape Function. Sustainability 2021, 14, 5815. [Google Scholar] [CrossRef]
- Wang, Y.; de Boer, I.J.M.; Persson, U.M.; Ripoll-Bosch, R.; Cederberg, C.; Gerber, P.J.; Smith, P.; van Middelaar, C.E. Risk to Rely on Soil Carbon Sequestration to Offset Global Ruminant Emissions. Nat. Commun. 2023, 14, 7625. [Google Scholar] [CrossRef]
- Lynch, J.; Cain, M.; Pierrehumbert, R.; Allen, M. Demonstrating GWP: A Means of Reporting Warming-Equivalent Emissions That Captures the Contrasting Impacts of Short- and Long-Lived Climate Pollutants. Environ. Res. Lett. 2020, 15, 044023. [Google Scholar] [CrossRef]
- Ghassemi, N.J.; Ju, M.S.; Jo, J.H.; Oh, K.H.; Lee, Y.S.; Lee, S.D.; Kim, E.J.; Roh, S.; Lee, H.G. Advances in Methane Emission Estimation in Livestock: A Review of Data Collection Methods, Model Development and the Role of AI Technologies. Animals 2024, 14, 435. [Google Scholar] [CrossRef]
- Jordon, M.W.; Willis, K.J.; Harvey, W.J.; Petrokofsky, L.; Petrokofsky, G. Implications of Temperate Agroforestry on Sheep and Cattle Productivity, Environmental Impacts and Enterprise Economics. A Systematic Evidence Map. Forests 2020, 11, 1321. [Google Scholar] [CrossRef]
- di Virgilio, A.; Lambertucci, S.A.; Morales, J.M. Sustainable Grazing Management in Rangelands: Over a Century Searching for a Silver Bullet. Agric. Ecosyst. Environ. 2019, 283, 106561. [Google Scholar] [CrossRef]
- González-Esquivel, C.E.; Gavito, M.E.; Astier, M.; Cadena-Salgado, M.; del-Val, E.; Villamil-Echeverri, L.; Merlín-Uribe, Y.; Balvanera, P. Ecosystem Service Trade-Offs, Perceived Drivers, and Sustainability in Contrasting Agroecosystems in Central Mexico. Ecol. Soc. 2015, 20, 38. [Google Scholar] [CrossRef]
- Dyantyi-Gwanya, N.; Giwa, S.O.; Ncanywa, T.; Taziwa, R.T. Exploring Economic Expansion of Green Hydrogen Production in South Africa. Sustainability 2025, 17, 901. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development (OECD). Making Better Policies for Food Systems; Organisation for Economic Co-Operation and Development (OECD): Paris, France, 2021; ISBN 9789264906198. [Google Scholar]
- Barry, S. Livestock Mobility through Integrated Beef Production-Scapes Supports Rangeland Livestock Production and Conservation. Front. Sustain. Food Syst. 2021, 4, 549359. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katiyatiya, C.L.F.; Ncanywa, T. Harnessing Opportunities, Constraints, and Implications of Integrating Environmental Conservation with Sustainable Ruminant Production. Environments 2025, 12, 308. https://doi.org/10.3390/environments12090308
Katiyatiya CLF, Ncanywa T. Harnessing Opportunities, Constraints, and Implications of Integrating Environmental Conservation with Sustainable Ruminant Production. Environments. 2025; 12(9):308. https://doi.org/10.3390/environments12090308
Chicago/Turabian StyleKatiyatiya, Chenaimoyo Lufutuko Faith, and Thobeka Ncanywa. 2025. "Harnessing Opportunities, Constraints, and Implications of Integrating Environmental Conservation with Sustainable Ruminant Production" Environments 12, no. 9: 308. https://doi.org/10.3390/environments12090308
APA StyleKatiyatiya, C. L. F., & Ncanywa, T. (2025). Harnessing Opportunities, Constraints, and Implications of Integrating Environmental Conservation with Sustainable Ruminant Production. Environments, 12(9), 308. https://doi.org/10.3390/environments12090308