Adaptation and Bioremediation Efficiency of UV-Mutagenized Microalgae in Undiluted Agro-Industrial Effluents from Mexico
Abstract
1. Introduction
2. Materials and Methods
2.1. Microalgal Culture
2.2. Food-Processing Effluent Pretreatment
2.3. UV Mutagenesis and Acclimatization to Food-Processing Effluents
2.4. Bioremediation Capacity Evaluation
2.5. Microalgal Biomass Determination
2.6. Statistical Analysis
3. Results
3.1. UV Mutagenesis and Acclimatization for Enhanced Growth in Food-Processing Effluents
3.1.1. UV Mutagenesis
3.1.2. Acclimatization to Food-Processing Effluents
Nejayote
Tequila Vinasse
Cheese Whey
3.2. Microalgae-Based Wastewater Bioremediation Evaluation
3.2.1. Bioremediation in Nejayote
3.2.2. Bioremediation in Tequila Vinasses
3.2.3. Bioremediation in Cheese Whey
3.3. Quantitative Results of Microalgal Biomass
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COD | Chemical Oxygen Demand |
NOM | Official Mexican Standard |
TN | Total Nitrogen |
TPO4 | Total Phosphate |
References
- Prado-Acebo, I.; Cubero-Cardoso, J.; Lu-Chau, T.A.; Eibes, G. Integral Multi-Valorization of Agro-Industrial Wastes: A Review. Waste Manag. 2024, 183, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Javourez, U.; O’Donohue, M.; Hamelin, L. Waste-to-Nutrition: A Review of Current and Emerging Conversion Pathways. Biotechnol. Adv. 2021, 53, 107857. [Google Scholar] [CrossRef]
- Srivastav, A.L.; Kumar, A. An Endeavor to Achieve Sustainable Development Goals Through Floral Waste Management: A Short Review. J. Clean. Prod. 2021, 283, 124669. [Google Scholar] [CrossRef]
- Najar-Almanzor, C.E.; Velasco-Iglesias, K.D.; Nunez-Ramos, R.; Uribe-Velázquez, T.; Solis-Bañuelos, M.; Fuentes-Carrasco, O.J.; Chairez, I.; García-Cayuela, T.; Carrillo-Nieves, D. Microalgae-Assisted Green Bioremediation of Food-Processing Wastewater: A Sustainable Approach toward a Circular Economy Concept. J. Environ. Manag. 2023, 345, 118774. [Google Scholar] [CrossRef]
- Román-Escobedo, L.C.; Cristiani-Urbina, E.; Morales-Barrera, L. Bioremediation with an Alkali-Tolerant Yeast of Wastewater (Nejayote) Derived from the Nixtamalization of Maize. Fermentation 2024, 10, 219. [Google Scholar] [CrossRef]
- Maldonado, Y.M.; Alonso-Lemus, I.L.; Sarabia-Castillo, C.R.; Escobar-Morales, B.; Ríos-González, L.J.; Fernández-Luqueño, F.; Rodríguez-Varela, F.J. Sewage Sludge-Derived Biocarbons as Catalysts of Bioanodes in a Dual-Chamber Microbial Fuel Cell Using Nejayote as Substrate. Int. J. Hydrogen Energy 2025, 108, 185–197. [Google Scholar] [CrossRef]
- Pires, A.F.; Marnotes, N.G.; Rubio, O.D.; Garcia, A.C.; Pereira, C.D. Dairy By-Products: A Review on the Valorization of Whey and Second Cheese Whey. Foods 2021, 10, 1067. [Google Scholar] [CrossRef]
- Osorio-González, C.S.; Sandoval-Salas, F.; Hernández-Rosas, F.; Hidalgo-Contreras, J.V.; Gómez-Merino, F.C.; Ávalos de la Cruz, D.A. Potencial de aprovechamiento del suero de queso en México. Agro Product. 2018, 11, 101–106. [Google Scholar]
- Tejeda, A.; Valencia-Botín, A.J.; Zurita, F. Resistance Evaluation of Canna Indica, Cyperus Papyrus, Iris Sibirica, and Typha Latifolia to Phytotoxic Characteristics of Diluted Tequila Vinasses in Wetland Microcosms. Int. J. Phytoremediation 2023, 25, 1259–1268. [Google Scholar] [CrossRef]
- Consejo Regulador de Tequila (CRT) Producción Total: Tequila y Tequila 100%. Available online: https://www.crt.org.mx/EstadisticasCRTweb/ (accessed on 30 August 2025).
- de Carvalho, J.C.; Molina-Aulestia, D.T.; Martinez-Burgos, W.J.; Karp, S.G.; Manzoki, M.C.; Medeiros, A.B.P.; Rodrigues, C.; Scapini, T.; Vandenberghe, L.P.d.S.; Vieira, S.; et al. Agro-Industrial Wastewaters for Algal Biomass Production, Bio-Based Products, and Biofuels in a Circular Bioeconomy. Fermentation 2022, 8, 728. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Parisa, T.A.; Islam, N.; Kusumo, F.; Inayat, A.; Le, V.G.; Badruddin, I.A.; Khan, T.M.Y.; Ong, H.C. Progress and Challenges of Contaminate Removal from Wastewater Using Microalgae Biomass. Chemosphere 2022, 286, 131656. [Google Scholar] [CrossRef]
- Liberti, D.; Pinheiro, F.; Simões, B.; Varela, J.; Barreira, L. Beyond Bioremediation: The Untapped Potential of Microalgae in Wastewater Treatment. Water 2024, 16, 2710. [Google Scholar] [CrossRef]
- Sousa, A.C.; Dias, C.; Martins, A.R.; Gomes, A.G.; Santos, C.A. Using Winery Effluents for Cultivating Microalgae as Bio-Additives for Vineyards. J. Appl. Phycol. 2025, 37, 1619–1632. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Ali, S.S.; Ramadan, H.; El-Aswar, E.I.; Eltawab, R.; Ho, S.-H.; Elsamahy, T.; Li, S.; El-Sheekh, M.M.; Schagerl, M.; et al. Microalgae-Based Wastewater Treatment: Mechanisms, Challenges, Recent Advances, and Future Prospects. Environ. Sci. Ecotechnology 2023, 13, 100205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chang, C.; Bai, J.; Fang, S.; Zhuang, X.; Yuan, Z. Mutants of Scenedesmus Sp. for Purifying Highly Concentrated Cellulosic Ethanol Wastewater and Producing Biomass Simultaneously. J. Appl. Phycol. 2018, 30, 969–978. [Google Scholar] [CrossRef]
- Hassanien, A.; Saadaoui, I.; Schipper, K.; Al-Marri, S.; Dalgamouni, T.; Aouida, M.; Saeed, S.; Al-Jabri, H.M. Genetic Engineering to Enhance Microalgal-Based Produced Water Treatment with Emphasis on CRISPR/Cas9: A Review. Front. Bioeng. Biotechnol. 2023, 10, 1104914. [Google Scholar] [CrossRef] [PubMed]
- Arora, N.; Yen, H.-W.; Philippidis, G.P. Harnessing the Power of Mutagenesis and Adaptive Laboratory Evolution for High Lipid Production by Oleaginous Microalgae and Yeasts. Sustainability 2020, 12, 5125. [Google Scholar] [CrossRef]
- Lv, Q.; Li, S.; Du, X.; Fan, Y.; Wang, M.; Song, C.; Sui, F.; Liu, Y. Transcriptomic Response Analysis of Ultraviolet Mutagenesis Combined with High Carbon Acclimation to Promote Photosynthetic Carbon Assimilation in Euglena Gracilis. Front. Microbiol. 2024, 15, 1444420. [Google Scholar] [CrossRef]
- Li, X.; Lin, Y.; Kong, H.; Wang, Z. Screening of Ultraviolet-Induced Thermotolerant Yeast Mutants and Their Performance. Fermentation 2023, 9, 608. [Google Scholar] [CrossRef]
- Najar-Almanzor, C.E.; Velasco-Iglesias, K.D.; Solis-Bañuelos, M.; González-Díaz, R.L.; Guerrero-Higareda, S.; Fuentes-Carrasco, O.J.; García-Cayuela, T.; Carrillo-Nieves, D. Chlorella vulgaris-Mediated Bioremediation of Food and Beverage Wastewater from Industries in Mexico: Results and Perspectives Towards Sustainability and Circular Economy. Sci. Total Environ. 2024, 940, 173753. [Google Scholar] [CrossRef]
- Onay, M.; Ayas, Z.S. Coproduction of Biofuel and Pigments from Micractinium Sp. Using UV-Induced Mutagenesis and Adding Abscisic Acid and Salicylic Acid for Biorefinery Concepts. Arab. J. Sci. Eng. 2024, 49, 7929–7944. [Google Scholar] [CrossRef]
- Bleisch, R.; Freitag, L.; Ihadjadene, Y.; Sprenger, U.; Steingröwer, J.; Walther, T.; Krujatz, F. Strain Development in Microalgal Biotechnology—Random Mutagenesis Techniques. Life 2022, 12, 961. [Google Scholar] [CrossRef]
- Usai, A.; Pittman, J.K.; Theodoropoulos, C. A Multiscale Modelling Approach for Haematococcus pluvialis Cultivation under Different Environmental Conditions. Biotechnol. Rep. 2022, 36, e00771. [Google Scholar] [CrossRef]
- López-Sánchez, A.; Silva-Gálvez, A.L.; Zárate-Aranda, J.E.; Yebra-Montes, C.; Orozco-Nunnelly, D.A.; Carrillo-Nieves, D.; Gradilla-Hernández, M.S. Microalgae-Mediated Bioremediation of Cattle, Swine and Poultry Digestates Using Mono- and Mixed-Cultures Coupled with an Optimal Mixture Design. Algal Res. 2022, 64, 102717. [Google Scholar] [CrossRef]
- Rippka, R.; Deruelles, J.; Waterbury, J.B.; Herdman, M.; Stanier, R.Y. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Microbiology 1979, 111, 1–61. [Google Scholar] [CrossRef]
- Sivaramakrishnan, R.; Incharoensakdi, A. Enhancement of Lipid Production in Scenedesmus Sp. by UV Mutagenesis and Hydrogen Peroxide Treatment. Bioresour. Technol. 2017, 235, 366–370. [Google Scholar] [CrossRef]
- Schagerl, M.; Siedler, R.; Konopáčová, E.; Ali, S.S. Estimating Biomass and Vitality of Microalgae for Monitoring Cultures: A Roadmap for Reliable Measurements. Cells 2022, 11, 2455. [Google Scholar] [CrossRef]
- Parekh, S.; Vinci, V.A.; Strobel, R.J. Improvement of Microbial Strains and Fermentation Processes. Appl. Microbiol. Biotechnol. 2000, 54, 287–301. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhao, Y.; Liu, L.; Ao, X.; Ma, L.; Wu, M.; Ma, F. Improving Cell Growth and Lipid Accumulation in Green Microalgae Chlorella Sp. via UV Irradiation. Appl. Biochem. Biotechnol. 2015, 175, 3507–3518. [Google Scholar] [CrossRef] [PubMed]
- Buhr, T.L.; Borgers-Klonkowski, E.; Gutting, B.W.; Hammer, E.E.; Hamilton, S.M.; Huhman, B.M.; Jackson, S.L.; Kennihan, N.L.; Lilly, S.D.; Little, J.D.; et al. Ultraviolet Dosage and Decontamination Efficacy Were Widely Variable across 14 UV Devices after Testing a Dried Enveloped Ribonucleic Acid Virus Surrogate for SARS-CoV-2. Front. Bioeng. Biotechnol. 2022, 10, 875817. [Google Scholar] [CrossRef]
- Li, Y.; Qi, Z.; Fan, Y.; Tang, Y.; Zhou, R. The Concurrent Production of Lipid and Lutein in Chlorella vulgaris Triggered by Light Coupling Nitrogen Tactics. Biochem. Eng. J. 2022, 182, 108435. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, R.; Liu, X.; Ho, S.-H.; Xie, Y.; Chen, J. Strategies Related to Light Quality and Temperature to Improve Lutein Production of Marine Microalga Chlamydomonas Sp. Bioprocess Biosyst. Eng. 2019, 42, 435–443. [Google Scholar] [CrossRef]
- Molino, A.; Mehariya, S.; Iovine, A.; Larocca, V.; Di Sanzo, G.; Martino, M.; Casella, P.; Chianese, S.; Musmarra, D. Extraction of Astaxanthin and Lutein from Microalga Haematococcus pluvialis in the Red Phase Using CO2 Supercritical Fluid Extraction Technology with Ethanol as Co-Solvent. Mar. Drugs 2018, 16, 432. [Google Scholar] [CrossRef] [PubMed]
- Kona, R.; Pallerla, P.; Addipilli, R.; Sripadi, P.; Mohan, S.V. Lutein and β-Carotene Biosynthesis in Scenedesmus Sp. SVMIICT1 through Differential Light Intensities. Bioresour. Technol. 2021, 341, 125814. [Google Scholar] [CrossRef] [PubMed]
- Serra, A.T.; Silva, S.D.; Pleno de Gouveia, L.; Alexandre, A.M.R.C.; Pereira, C.V.; Pereira, A.B.; Partidário, A.C.; Silva, N.E.; Bohn, T.; Gonçalves, V.S.S.; et al. A Single Dose of Marine Chlorella Vulgaris Increases Plasma Concentrations of Lutein, β-Carotene and Zeaxanthin in Healthy Male Volunteers. Antioxidants 2021, 10, 1164. [Google Scholar] [CrossRef] [PubMed]
- Grujić, V.J.; Todorović, B.; Kranvogl, R.; Ciringer, T.; Ambrožič-Dolinšek, J. Diversity and Content of Carotenoids and Other Pigments in the Transition from the Green to the Red Stage of Haematococcus pluvialis Microalgae Identified by HPLC-DAD and LC-QTOF-MS. Plants 2022, 11, 1026. [Google Scholar] [CrossRef]
- Akepach, P.; Ribeiro-Filho, N.; Wattanakul, J.; Darwish, R.; Gedi, M.A.; Gray, D.A. Bioaccessibility of Carotenoids (β-Carotene and Lutein) from Intact and Disrupted Microalgae (Chlamydomonas reinhardtii). LWT 2022, 160, 113292. [Google Scholar] [CrossRef]
- Singh, S.P.; Klisch, M.; Häder, D.-P.; Sinha, R.P. Role of Various Growth Media on Shinorine (Mycosporine-like Amino Acid) Concentration and Photosynthetic Yield in Anabaena Variabilis PCC 7937. World J. Microbiol. Biotechnol. 2008, 24, 3111–3115. [Google Scholar] [CrossRef]
- Gujar, A.; Asghar, M.A.; Alenezi, M.A.; Kubar, M.S.; Kubar, K.A.; Raza, A.; Saleem, K.; Javed, H.H.; Ghafoor, A.Z.; Iftikhar Hussain, M.; et al. Assessment of the Phycosphere Microbial Dynamics of Microbial Community Associated with Red Algae Culture Under Different Cultural Conditions. Environ. Dev. Sustain. 2025, 27, 1–20. [Google Scholar] [CrossRef]
- Rathour, R.K.; Sharma, D.; Ullah, S.; Mahmoud, E.-H.M.; Sharma, N.; Kumar, P.; Bhatt, A.K.; Ahmad, I.; Bhatia, R.K. Bacterial–Microalgal Consortia for Bioremediation of Textile Industry Wastewater and Resource Recovery for Circular Economy. Biotechnol. Environ. 2024, 1, 6. [Google Scholar] [CrossRef]
- Sousa, H.; Sousa, C.A.; Vale, F.; Santos, L.; Simões, M. Removal of Parabens from Wastewater by Chlorella vulgaris-Bacteria Co-Cultures. Sci. Total Environ. 2023, 884, 163746. [Google Scholar] [CrossRef]
- Koneru, H.; Bamba, S.; Bell, A.; Estrada-Graf, A.A.; Johnson, Z.I. Integrating Microbial Communities into Algal Biotechnology: A Pathway to Enhanced Commercialization. Front. Microbiol. 2025, 16, 1555579. [Google Scholar] [CrossRef]
- Téllez-Pérez, V.; López-Olguín, J.F.; Aragón, A.; Zayas-Pérez, M.T.; Téllez-Pérez, V.; López-Olguín, J.F.; Aragón, A.; Zayas-Pérez, M.T. Lodos residuales de nejayote como sustratos para la germinación de semillas de maíz azul criollo. Rev. Int. Contam. Ambient. 2018, 34, 395–404. [Google Scholar] [CrossRef]
- Del Valle-Real, M.; Franco-Morgado, M.; García-García, R.; Guardado-Félix, D.; Gutiérrez-Uribe, J.A. Wastewater from Maize Lime-Cooking as Growth Media for Alkaliphilic Microalgae–Cyanobacteria Consortium to Reduce Chemical Oxygen Demand and Produce Biomass with High Protein Content. Int. J. Food Sci. Technol. 2023, 58, 6775–6783. [Google Scholar] [CrossRef]
- Garza-Valverde, E.; García-Gómez, C.; Nápoles-Armenta, J.; Samaniego-Moreno, L.; Martínez-Orozco, E.; De La Mora-Orozco, C. Nejayote and Food Waste Leachate as a Medium for Scenedesmus acutus and Haematococcus pluvialis Production: A Mixture Experimental Design. Water 2024, 16, 1314. [Google Scholar] [CrossRef]
- López-Pacheco, I.Y.; Carrillo-Nieves, D.; Salinas-Salazar, C.; Silva-Núñez, A.; Arévalo-Gallegos, A.; Barceló, D.; Afewerki, S.; Iqbal, H.M.N.; Parra-Saldívar, R. Combination of Nejayote and Swine Wastewater as a Medium for Arthrospira Maxima and Chlorella Vulgaris Production and Wastewater Treatment. Sci. Total Environ. 2019, 676, 356–367. [Google Scholar] [CrossRef]
- Choix, F.J.; Ochoa-Becerra, M.A.; HsiehLo, M.; Mondragón-Cortez, P.; Méndez-Acosta, H.O. High Biomass Production and CO2 Fixation from Biogas by Chlorella and Scenedesmus Microalgae Using Tequila Vinasses as Culture Medium. J. Appl. Phycol. 2018, 30, 2247–2258. [Google Scholar] [CrossRef]
- Cea Barcia, G.E.; Imperial Cervantes, R.A.; Torres Zuniga, I.; Van Den Hende, S. Converting Tequila Vinasse Diluted with Tequila Process Water into Microalgae-Yeast Flocs and Dischargeable Effluent. Bioresour. Technol. 2020, 300, 122644. [Google Scholar] [CrossRef] [PubMed]
- Choix, F.J.; Ramos-Ibarra, J.R.; Mondragón-Cortez, P.; Lara-González, M.A.; Juárez-Carrillo, E.; Becerril-Espinosa, A.; Ocampo-Alvarez, H.; Torres, J.R. Mixotrophic Growth Regime as a Strategy to Develop Microalgal Bioprocess from Nutrimental Composition of Tequila Vinasses. Bioprocess Biosyst. Eng. 2021, 44, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Nazos, T.T.; Stratigakis, N.C.; Spantidaki, M.; Lagouvardou Spantidaki, A.; Ghanotakis, D.F. Characterization of Cheese Whey Effluents and Investigation of Their Potential to Be Used as a Nutrient Substrate for Chlorella Biomass Production. Waste Biomass Valorization 2023, 14, 3643–3655. [Google Scholar] [CrossRef]
- Abril Bonett, J.E.; de Sousa Geraldino, P.; Cardoso, P.G.; de Freitas Coelho, F.; Duarte, W.F. Isolation of Freshwater Microalgae and Outdoor Cultivation Using Cheese Whey as Substrate. Biocatal. Agric. Biotechnol. 2020, 29, 101799. [Google Scholar] [CrossRef]
- Giulianetti de Almeida, M.P.; Mondini, C.; Bruant, G.; Tremblay, J.; Mockaitis, G.; Weissbrodt, D.G. Mixotrophic Microalgal Mixed Cultures for Cheese Whey Valorization. bioRxiv 2023. [Google Scholar] [CrossRef]
- Amouri, M.; Belkhodja, S.; Masrour, S.; Kaidi, F.; Aziza, M. Enhancement of Indigenous Microalgae Culture Using Cheese Whey as Growth Media for Bioenergy and Coproducts Production. E3S Web Conf. 2023, 436, 04001. [Google Scholar] [CrossRef]
- Casá, N.E.; Lois-Milevicich, J.; Alvarez, P.; Mateucci, R.; de Escalada Pla, M. Chlorella Vulgaris Cultivation Using Ricotta Cheese Whey as Substrate for Biomass Production. J. Appl. Phycol. 2022, 34, 745–756. [Google Scholar] [CrossRef]
- SEGOB NORMA Oficial Mexicana NOM-001-SEMARNAT-2021, Que Establece Los Límites Permisibles de Contaminantes En Las Descargas de Aguas Residuales En Cuerpos Receptores Propiedad de La Nación. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5645374&fecha=11/03/2022#gsc.tab=0 (accessed on 30 August 2025).
- Amenorfenyo, D.K.; Huang, X.; Zhang, Y.; Zeng, Q.; Zhang, N.; Ren, J.; Huang, Q. Microalgae Brewery Wastewater Treatment: Potentials, Benefits and the Challenges. Int. J. Environ. Res. Public Health 2019, 16, 1910. [Google Scholar] [CrossRef]
- González Pérez, R.; Fajardo Montiel, A.L.; Martínez Orozco, E.; Santiago Olivares, N.; Nápoles Armenta, J.; García Gómez, C. Electrocoagulation with Fe-SS Electrodes as a Fourth Stage of Tequila Vinasses Treatment for COD and Color Removal. Processes 2025, 13, 1637. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, C.; Ji, B.; Li, A.; Zhang, X.; Liu, Y. Microalgal-Bacterial Granular Sludge Can Remove Complex Organics from Municipal Wastewater with Algae-Bacteria Interactions. Commun. Earth Environ. 2024, 5, 347. [Google Scholar] [CrossRef]
- Pham, M.-D.-T.; Bui, X.-T.; Vo, T.-K.-Q.; Dao, T.-S.; Le, L.-T.; Vo, T.-D.-H.; Huynh, K.-P.-H.; Nguyen, T.-B.; Lin, C.; Visvanathan, C. Microalgae−Bacteria Based Wastewater Treatment Systems: Granulation, Influence Factors and Pollutants Removal. Bioresour. Technol. 2025, 418, 131973. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, S.; Xie, P.; Chen, X.; Chu, Y.; Chang, H.; Sun, J.; Li, Q.; Ren, N.; Ho, S.-H. Advanced Wastewater Treatment with Microalgae-Indigenous Bacterial Interactions. Environ. Sci. Ecotechnology 2024, 20, 100374. [Google Scholar] [CrossRef] [PubMed]
- Coyne, K.J.; Wang, Y.; Johnson, G. Algicidal Bacteria: A Review of Current Knowledge and Applications to Control Harmful Algal Blooms. Front. Microbiol. 2022, 13, 871177. [Google Scholar] [CrossRef]
- Oruganti, R.K.; Katam, K.; Show, P.L.; Gadhamshetty, V.; Upadhyayula, V.K.K.; Bhattacharyya, D. A Comprehensive Review on the Use of Algal-Bacterial Systems for Wastewater Treatment with Emphasis on Nutrient and Micropollutant Removal. Bioengineered 2022, 13, 10412–10453. [Google Scholar] [CrossRef]
- Casagli, F.; Rossi, S.; Steyer, J.P.; Bernard, O.; Ficara, E. Balancing Microalgae and Nitrifiers for Wastewater Treatment: Can Inorganic Carbon Limitation Cause an Environmental Threat? Environ. Sci. Technol. 2021, 55, 3940–3955. [Google Scholar] [CrossRef]
- Fernando, J.S.R.; Premaratne, M.; Dinalankara, D.M.S.D.; Perera, G.L.N.J.; Ariyadasa, T.U. Cultivation of Microalgae in Palm Oil Mill Effluent (POME) for Astaxanthin Production and Simultaneous Phycoremediation. J. Environ. Chem. Eng. 2021, 9, 105375. [Google Scholar] [CrossRef]
- Ge, Y.-M.; Xing, W.-C.; Lu, X.; Hu, S.-R.; Liu, J.-Z.; Xu, W.-F.; Cheng, H.-X.; Gao, F.; Chen, Q.-G. Growth, Nutrient Removal, and Lipid Productivity Promotion of Chlorella sorokiniana by Phosphate Solubilizing Bacteria Bacillus megatherium in Swine Wastewater: Performances and Mechanisms. Bioresour. Technol. 2024, 400, 130697. [Google Scholar] [CrossRef]
- Wang, J.; Song, A.; Huang, Y.; Liao, Q.; Xia, A.; Zhu, X.; Zhu, X. Domesticating Chlorella vulgaris with Gradually Increased the Concentration of Digested Piggery Wastewater to Bio-Remove Ammonia Nitrogen. Algal Res. 2021, 60, 102526. [Google Scholar] [CrossRef]
- Znad, H.; Al-Ketife, A.M.D.; Judd, S.; AlMomani, F.; Vuthaluru, H.B. Bioremediation and Nutrient Removal from Wastewater by Chlorella Vulgaris. Ecol. Eng. 2018, 110, 1–7. [Google Scholar] [CrossRef]
- Kumari, S.; Kumar, V.; Kothari, R.; Kumar, P. Experimental and Optimization Studies on Phycoremediation of Dairy Wastewater and Biomass Production Efficiency of Chlorella Vulgaris Isolated from Ganga River, Haridwar, India. Environ. Sci. Pollut. Res. 2022, 29, 74643–74654. [Google Scholar] [CrossRef]
- Deb, D.; Mallick, N.; Bhadoria, P.B.S. A Waste-to-Wealth Initiative Exploiting the Potential of Anabaena Variabilis for Designing an Integrated Biorefinery. Sci. Rep. 2022, 12, 9478. [Google Scholar] [CrossRef]
- Tan, X.-B.; Zhao, Z.-Y.; Gong, H.; Jiang, T.; Liu, X.-P.; Liao, J.-Y.; Zhang, Y.-L. Growth of Scenedesmus obliquus in Anaerobically Digested Swine Wastewater from Different Cleaning Processes for Pollutants Removal and Biomass Production. Chemosphere 2024, 352, 141515. [Google Scholar] [CrossRef] [PubMed]
- Latiffi, N.A.A.; Mohamed, R.M.S.R.; Al-Gheethi, A.; Tajuddin, R.M.; Al-Shaibani, M.M.; Vo, D.-V.N.; Rupani, P.F. Nutrients Elimination from Meat Processing Wastewater Using Scenedesmus Sp.; Optimizations; Artificial Neural Network and Kinetics Models. Environ. Technol. Innov. 2022, 26, 102535. [Google Scholar] [CrossRef]
- Mercado, I.; Álvarez, X.; Verduga, M.-E.; Cruz, A. Enhancement of Biomass and Lipid Productivities of Scenedesmus Sp. Cultivated in the Wastewater of the Dairy Industry. Processes 2020, 8, 1458. [Google Scholar] [CrossRef]
- Valenzuela, E.I.; Gutiérrez-Uribe, J.A.; Franco-Morgado, M.; Cervantes-Avilés, P. Navigating the Waters of Nixtamalization: Sustainable Solutions for Maize-Processing Wastewater Treatment. Sci. Total Environ. 2024, 911, 168674. [Google Scholar] [CrossRef] [PubMed]
- Arreola, A.R.; Tizapa, M.S.; Zurita, F.; Morán-Lázaro, J.P.; Valderrama, R.C.; Rodríguez-López, J.L.; Carreon-Alvarez, A. Treatment of Tequila Vinasse and Elimination of Phenol by Coagulation–Flocculation Process Coupled with Heterogeneous Photocatalysis Using Titanium Dioxide Nanoparticles. Environ. Technol. 2020, 41, 1023–1033. [Google Scholar] [CrossRef]
- Pan, M.; Zhu, X.; Pan, G.; Angelidak, I. Integrated Valorization System for Simultaneous High Strength Organic Wastewater Treatment and Astaxanthin Production from Haematococcus pluvialis. Bioresour. Technol. 2021, 326, 124761. [Google Scholar] [CrossRef] [PubMed]
- Haque, F.; Dutta, A.; Thimmanagari, M.; Chiang, Y.W. Integrated Haematococcus pluvialis Biomass Production and Nutrient Removal Using Bioethanol Plant Waste Effluent. Process. Saf. Environ. Prot. 2017, 111, 128–137. [Google Scholar] [CrossRef]
- Sato, H.; Nagare, H.; Huynh, T.N.C.; Komatsu, H. Development of a New Wastewater Treatment Process for Resource Recovery of Carotenoids. Water Sci. Technol. 2015, 72, 1191–1197. [Google Scholar] [CrossRef]
- Montoya, A.; Tejeda, A.; Sulbarán-Rangel, B.; Zurita, F. Treatment of Tequila Vinasse Mixed with Domestic Wastewater in Two Types of Constructed Wetlands. Water Sci. Technol. 2023, 87, 3072–3082. [Google Scholar] [CrossRef]
- Estrada-Arriaga, E.B.; Reynoso-Deloya, M.G.; Guillén-Garcés, R.A.; Falcón-Rojas, A.; García-Sánchez, L. Enhanced Methane Production and Organic Matter Removal from Tequila Vinasses by Anaerobic Digestion Assisted via Bioelectrochemical Power-to-Gas. Bioresour. Technol. 2021, 320, 124344. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Meza, A.; Garzón-Zúñiga, M.A.; Moreno-Andrade, I.; Barragán-Huerta, B.E.; Estrada-Arriaga, E.B.; Vigueras-Cortés, J.M.; García-Olivares, J.G. Hydrogen and Methane Production from Tequila Vinasses in a Novel Hybrid Reactor Containing Biofilm and Suspended Biomass. BioEnergy Res. 2022, 15, 1675–1690. [Google Scholar] [CrossRef]
- de Almeida Pires, T.; Cardoso, V.L.; Batista, F.R.X. Feasibility of Chlorella Vulgaris to Waste Products Removal from Cheese Whey. Int. J. Environ. Sci. Technol. 2022, 19, 4713–4722. [Google Scholar] [CrossRef]
- Kanellos, G.; Antarachas, M.; Lyberatos, G.; Tremouli, A. Cheese Whey Treatment Using a Microbial Electrolysis Cell-Assisted Anaerobic Digestion System: The Effects of Pretreatment, Organic Loading and Applied Potential. In Waste Biomass Valorization; Springer: Berlin/Heidelberg, Germany, 2025. [Google Scholar] [CrossRef]
- Ramirez-Flores, K.A.; Colina-Andrade, G.J.; Teran-Hilares, R.; Tejada-Meza, K. Treated Cheese Whey as a Promising Nutrient Solution for Hydroponic Cultivation of Lettuce, Cabbage and Tomato. Waste Manag. Bull. 2025, 3, 100229. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Hannachi, C.; Mhiri, F.; Hamrouni, B. Performances of Constructed Wetland System to Treat Whey and Dairy Wastewater During a Macrophytes Life Cycle. Desalination Water Treat. 2024, 318, 100364. [Google Scholar] [CrossRef]
- Cruz-Salomón, A.; Ríos-Valdovinos, E.; Pola-Albores, F.; Lagunas-Rivera, S.; Cruz-Rodríguez, R.I.; Cruz-Salomón, K.d.C.; Hernández-Méndez, J.M.E.; Domínguez-Espinosa, M.E. Treatment of Cheese Whey Wastewater Using an Expanded Granular Sludge Bed (EGSB) Bioreactor with Biomethane Production. Processes 2020, 8, 931. [Google Scholar] [CrossRef]
- Mareddy, A.R. 12—Technology in EIA. In Environmental Impact Assessment; Mareddy, A.R., Ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 421–490. ISBN 978-0-12-811139-0. [Google Scholar]
- Madhubalaji, C.K.; Sarat Chandra, T.; Chauhan, V.S.; Sarada, R.; Mudliar, S.N. Chlorella Vulgaris Cultivation in Airlift Photobioreactor with Transparent Draft Tube: Effect of Hydrodynamics, Light and Carbon Dioxide on Biochemical Profile Particularly ω-6/ω-3 Fatty Acid Ratio. J. Food Sci. Technol. 2020, 57, 866–876. [Google Scholar] [CrossRef]
- Wu, K.; Lai, J.; Zhang, Q.; Wang, Y.; Cui, X.; Liu, Y.; Wu, X.; Yu, Z.; Ruan, R. Optimizing Chlorella Vulgaris Cultivation to Enhance Biomass and Lutein Production. Foods 2024, 13, 2514. [Google Scholar] [CrossRef]
- Gencer, Ö.; Turan, G. Enhancing Biomass and Lipid Productivities of Haematococcus pluvialis for Industrial Raw Materials Products. Biotechnol. Biofuels Bioprod. 2025, 18, 8. [Google Scholar] [CrossRef] [PubMed]
- Oslan, S.N.H.; Shoparwe, N.F.; Yusoff, A.H.; Rahim, A.A.; Chang, C.S.; Tan, J.S.; Oslan, S.N.; Arumugam, K.; Ariff, A.B.; Sulaiman, A.Z.; et al. A Review on Haematococcus pluvialis Bioprocess Optimization of Green and Red Stage Culture Conditions for the Production of Natural Astaxanthin. Biomolecules 2021, 11, 256. [Google Scholar] [CrossRef]
- Valenzuela, E.I.; Cervantes-Avilés, P.; Ortega-Lara, W.; Franco-Morgado, M.; Gutiérrez-Uribe, J.A. Comprehensive characterization of maize lime-cooking wastewater with a prospective approach for Ca-P minerals recovery: Implications for waste valorization. Sep. Purif. Technol. 2025, 353, 128450. [Google Scholar] [CrossRef]
- Molino, A.; Mehariya, S.; Karatza, D.; Chianese, S.; Iovine, A.; Casella, P.; Marino, T.; Musmarra, D. Bench-Scale Cultivation of Microalgae Scenedesmus Almeriensis for CO2 Capture and Lutein Production. Energies 2019, 12, 2806. [Google Scholar] [CrossRef]
- Molino, A.; Mehariya, S.; Iovine, A.; Casella, P.; Marino, T.; Karatza, D.; Chianese, S.; Musmarra, D. Enhancing Biomass and Lutein Production from Scenedesmus almeriensis: Effect of Carbon Dioxide Concentration and Culture Medium Reuse. Front. Plant Sci. 2020, 11, 415. [Google Scholar] [CrossRef]
- Díaz-Vázquez, D.; Orozco-Nunnelly, D.A.; Yebra-Montes, C.; Senés-Guerrero, C.; Gradilla-Hernández, M.S. Using Yeast Cultures to Valorize Tequila Vinasse Waste: An Example of a Circular Bioeconomy Approach in the Agro-Industrial Sector. Biomass Bioenergy 2022, 161, 106471. [Google Scholar] [CrossRef]
- Gebreeyessus, G.D.; Mekonnen, A.; Alemayehu, E. A Review on Progresses and Performances in Distillery Stillage Management. J. Clean. Prod. 2019, 232, 295–307. [Google Scholar] [CrossRef]
- Anyaoha, K.E.; Krujatz, F.; Hodgkinson, I.; Maletz, R.; Dornack, C. Microalgae Contribution in Enhancing the Circular Economy Drive of Biochemical Conversion Systems—A Review. Carbon Resour. Convers. 2024, 7, 100203. [Google Scholar] [CrossRef]
- Prates, J.A.M. Unlocking the Functional and Nutritional Potential of Microalgae Proteins in Food Systems: A Narrative Review. Foods 2025, 14, 1524. [Google Scholar] [CrossRef] [PubMed]
- Pal, P.; Singh, A.K.; Srivastava, R.K.; Rathore, S.S.; Sahoo, U.K.; Subudhi, S.; Sarangi, P.K.; Prus, P. Circular Bioeconomy in Action: Transforming Food Wastes into Renewable Food Resources. Foods 2024, 13, 3007. [Google Scholar] [CrossRef]
- Islam, N.F.; Gogoi, B.; Saikia, R.; Yousaf, B.; Narayan, M.; Sarma, H. Encouraging Circular Economy and Sustainable Environmental Practices by Addressing Waste Management and Biomass Energy Production. Reg. Sustain. 2024, 5, 100174. [Google Scholar] [CrossRef]
- Alvarenga, P.; Martins, M.; Ribeiro, H.; Mota, M.; Guerra, I.; Cardoso, H.; Silva, J.L. Evaluation of the Fertilizer Potential of Chlorella vulgaris and Scenedesmus obliquus Grown in Agricultural Drainage Water from Maize Fields. Sci. Total Environ. 2023, 861, 160670. [Google Scholar] [CrossRef]
- Bumandalai, O.; Tserennadmid, R. Effect of Chlorella Vulgaris as a Biofertilizer on Germination of Tomato and Cucumber Seeds. Int. J. Aquat. Biol. 2019, 7, 95–99. [Google Scholar] [CrossRef]
- Singh, S.; Datta, P. Outdoor Evaluation of Herbicide Resistant Strains of Anabaena Variabilis as Biofertilizer for Rice Plants. Plant Soil 2007, 296, 95–102. [Google Scholar] [CrossRef]
- Suchithra, M.R.; Muniswami, D.M.; Sri, M.S.; Usha, R.; Rasheeq, A.A.; Preethi, B.A.; Dineshkumar, R. Effectiveness of Green Microalgae as Biostimulants and Biofertilizer Through Foliar Spray and Soil Drench Method for Tomato Cultivation. South Afr. J. Bot. 2022, 146, 740–750. [Google Scholar] [CrossRef]
- Gadzama, I.U.; Hoffman, L.C.; Holman, B.W.B.; Chaves, A.V.; Meale, S.J. Effects of Supplementing a Feedlot Diet with Microalgae (Chlorella vulgaris) on the Performance, Carcass Traits and Meat Quality of Lambs. Livest. Sci. 2024, 288, 105552. [Google Scholar] [CrossRef]
- Sarker, M.M.; Sumon, M.A.I.; Sultana, S.; Haque, M.M.; Shahjahan, M.; Khan, S. Culture of the Green Microalga, Haematococcus Pluvialis, in Low-Cost Vegetable-Based Media Prepared Using Rotten Wax Gourd (Benincasa hispida). Aquac. Int. 2024, 33, 73. [Google Scholar] [CrossRef]
- Wang, A.; Hui, W.; Deng, X.; Tian, H.; Zhang, W.; Xia, S.; Liu, F.; Yang, W.; Yu, Y.; Liu, B.; et al. Beneficial Effects of Haematococcus pluvialis on Growth and Hepatopancreas Health Status in Crayfish (Procambarus clarkii) via Remodeling the Gut Microbial Metabolic Functions. Aquaculture 2025, 595, 741664. [Google Scholar] [CrossRef]
- Fadl, S.E.; Elsadany, A.Y.; El-Shenawy, A.M.; Sakr, O.A.; El Gammal, G.A.; Gad, D.M.; Abo Norag, M.A.; Eissa, I. Efficacy of Cyanobacterium Anabaena Sp. as a Feed Supplement on Productive Performance and Immune Status in Cultured Nile Tilapia. Aquac. Rep. 2020, 17, 100406. [Google Scholar] [CrossRef]
- Oslan, S.N.H.; Tan, J.S.; Oslan, S.N.; Matanjun, P.; Mokhtar, R.A.M.; Shapawi, R.; Huda, N. Haematococcus pluvialis as a Potential Source of Astaxanthin with Diverse Applications in Industrial Sectors: Current Research and Future Directions. Molecules 2021, 26, 6470. [Google Scholar] [CrossRef]
- Mendes, A.R.; Spínola, M.P.; Lordelo, M.; Prates, J.A.M. Chemical Compounds, Bioactivities, and Applications of Chlorella Vulgaris in Food, Feed and Medicine. Appl. Sci. 2024, 14, 10810. [Google Scholar] [CrossRef]
- Kumar Saini, D.; Yadav, D.; Pabbi, S.; Chhabra, D.; Shukla, P. Phycobiliproteins from Anabaena variabilis CCC421 and Its Production Enhancement Strategies Using Combinatory Evolutionary Algorithm Approach. Bioresour. Technol. 2020, 309, 123347. [Google Scholar] [CrossRef]
- Ho, S.-H.; Huang, S.-W.; Chen, C.-Y.; Hasunuma, T.; Kondo, A.; Chang, J.-S. Bioethanol Production Using Carbohydrate-Rich Microalgae Biomass as Feedstock. Bioresour. Technol. 2013, 135, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Sakarika, M.; Kornaros, M. Chlorella Vulgaris as a Green Biofuel Factory: Comparison Between Biodiesel, Biogas and Combustible Biomass Production. Bioresour. Technol. 2019, 273, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, A.; Jazini, M.; Mahdieh, M.; Karimi, K. Efficient Superantioxidant and Biofuel Production from Microalga Haematococcus pluvialis via a Biorefinery Approach. Bioresour. Technol. 2020, 306, 123100. [Google Scholar] [CrossRef]
- El Shafay, S.M.; Gaber, A.; Alsanie, W.F.; Elshobary, M.E. Influence of Nutrient Manipulation on Growth and Biochemical Constituent in Anabaena variabilis and Nostoc muscorum to Enhance Biodiesel Production. Sustainability 2021, 13, 9081. [Google Scholar] [CrossRef]
- Su, M.; Bastiaens, L.; Verspreet, J.; Hayes, M. Applications of Microalgae in Foods, Pharma and Feeds and Their Use as Fertilizers and Biostimulants: Legislation and Regulatory Aspects for Consideration. Foods 2023, 12, 3878. [Google Scholar] [CrossRef] [PubMed]
Food-Processing Effluent | Microalgae | UV Treatment (min) | Maximum Effluent Concentration Tolerated (%) | Observations |
---|---|---|---|---|
Nejayote | C. vulgaris | 50 | 100 | Prevalent proliferation of microalgae coexisting with diverse microorganisms. |
H. pluvialis | 50 | 100 | ||
A. variabilis | 120 | 100 | ||
Scenedesmus sp. | 40 | 100 | ||
Chlamydomonas sp. | 40 | 100 | ||
Tequila vinasses | C. vulgaris | 50 | 100 | Growth of microalgae alongside yeast and bacteria |
H. pluvialis | 50 | 100 | ||
A. variabilis | 120 | 100 | Overgrowth of other microorganisms such asbacteria and yeast | |
Scenedesmus sp. | 40 | 75 | ||
Chlamydomonas sp. | 40 | 60 | ||
Cheese whey | C. vulgaris | 50 | 100 | Growth of microalgae alongside yeast and bacteria |
H. pluvialis | 50 | 60 | Overgrowth of othermicroorganisms such asbacteria and yeast | |
A. variabilis | 120 | 60 | ||
Scenedesmus sp. | 40 | 45 | ||
Chlamydomonas sp. | 40 | 45 |
Parameter | Microalgae | Initial Content (mg⋅L−1) | Final Content (mg⋅L−1) | Contaminant Removal (%) | Compliance with NOM-001-SEMARNAT-2021 TN: 30–35 mg⋅L-1 TP: 15–21 mg⋅L-1 COD: 120–210 mg⋅L-1 |
---|---|---|---|---|---|
TN | C. vulgaris | 195 ± 18 | BDL A | >94.87 A | Yes |
H. pluvialis | BDL A | >94.87 A | Yes | ||
A. variabilis | 32 ± 2 B | 83.59 ± 0.03 B | Yes | ||
Scenedesmus sp. | 38 ± 3 C | 80.48 ± 0.26 C | No | ||
TPO4 | C. vulgaris | 1015 ± 27 | BDL A | >99.90 A | Yes |
H. pluvialis | BDL A | >99.90 A | Yes | ||
A. variabilis | 20 ± 2 B | 98.03 ± 0.15 B | Yes | ||
Scenedesmus sp. | 109 ± 8 C | 89.27 ± 0.60 C | No | ||
COD | C. vulgaris | 40,320 ± 1231 | 3963 ± 301 B | 90.19 ± 0.70 B | No |
H. pluvialis | 2578 ± 139 A | 92.20 ± 0.32 A | No | ||
A. variabilis | 3951 ± 192 B | 90.20 ± 0.18 B | No | ||
Scenedesmus sp. | 5242 ± 470 C | 87.01 ± 0.77 D | No |
Parameter | Microalgae | Initial Content (mg⋅L−1) | Final Content (mg⋅L−1) | Contaminant Removal (%) | Compliance with NOM-001-SEMARNAT-2021 TN: 30–35 mg⋅L−1 TP: 15–21 mg⋅L−1 COD: 120–21 mg⋅L−1 |
---|---|---|---|---|---|
TN | C. vulgaris | 160 ± 12 | 50 ± 4 A | 68.76 ± 0.16 A | No |
H. pluvialis | 65 ± 6 B | 59.41 ± 0.71 C | No | ||
A. variabilis | 59 ± 5 A,B | 63.14 ± 0.36 B | No | ||
TPO4 | C. vulgaris | 1713 ± 61 | 1173 ± 92 B | 31.59 ± 2.94 C | No |
H. pluvialis | 450 ± 18 A | 73.73 ± 0.12 B | No | ||
A. variabilis | 355 ± 27 A | 79.30 ± 0.84 A | No | ||
COD | C. vulgaris | 132,120 ± 8496 | 32,580 ± 2049 B | 75.34 ± 0.04 C | No |
H. pluvialis | 27,633 ± 1735 A | 79.08 ± 0.03 B | No | ||
A. variabilis | 24,732 ± 1406 A | 81.27 ± 0.14 A | No |
Parameter | Initial Content (mg⋅L−1) | Final Content (mg⋅L−1) | Contaminant Removal (%) | Compliance with NOM-001-SEMARNAT-2021 TN: 30–35 mg⋅L−1 TP: 15–21 mg⋅L−1 COD: 120–210 mg⋅L−1 |
---|---|---|---|---|
TN | 543 ± 28 A | 255 ± 13 B | 53.04 ± 0.03 | No |
TPO4 | 1610 ± 79 A | 1043 ± 56 B | 35.31 ± 2.86 | No |
COD | 59,083 ± 5717 A | 26,206 ± 1400 B | 55.52 ± 1.94 | No |
Food-Processing Wastewater | Microalgae | Biomass Yield (g⋅L−1) | Time to Reach Maximum Yield (day) | μ (Day−1) | Doubling Time (Days) |
---|---|---|---|---|---|
Nejayote | C. vulgaris | 1.43 ± 0.11 A | 15 | 0.148 | 4.68 |
H. pluvialis | 1.18 ± 0.06 B | 13 | 0.157 | 4.42 | |
A. variabilis | 0.89 ± 0.04 C | 15 | 0.114 | 6.07 | |
Scenedesmus sp. | 0.92 ± 0.07 C | 18 | 0.096 | 7.22 | |
Tequila vinasses | C. vulgaris | 1.27 ± 0.09 A,B | 17 | 0.122 | 5.68 |
H. pluvialis | 0.96 ± 0.06 C | 17 | 0.105 | 6.63 | |
A. variabilis | 0.83 ± 0.04 C | 15 | 0.109 | 6.35 | |
Cheese whey | C. vulgaris | 0.95 ± 0.07 C | 17 | 0.104 | 6.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najar-Almanzor, C.E.; González-Díaz, R.L.; García-Cayuela, T.; Carrillo-Nieves, D. Adaptation and Bioremediation Efficiency of UV-Mutagenized Microalgae in Undiluted Agro-Industrial Effluents from Mexico. Environments 2025, 12, 307. https://doi.org/10.3390/environments12090307
Najar-Almanzor CE, González-Díaz RL, García-Cayuela T, Carrillo-Nieves D. Adaptation and Bioremediation Efficiency of UV-Mutagenized Microalgae in Undiluted Agro-Industrial Effluents from Mexico. Environments. 2025; 12(9):307. https://doi.org/10.3390/environments12090307
Chicago/Turabian StyleNajar-Almanzor, Cesar E., Rosa Leonor González-Díaz, Tomás García-Cayuela, and Danay Carrillo-Nieves. 2025. "Adaptation and Bioremediation Efficiency of UV-Mutagenized Microalgae in Undiluted Agro-Industrial Effluents from Mexico" Environments 12, no. 9: 307. https://doi.org/10.3390/environments12090307
APA StyleNajar-Almanzor, C. E., González-Díaz, R. L., García-Cayuela, T., & Carrillo-Nieves, D. (2025). Adaptation and Bioremediation Efficiency of UV-Mutagenized Microalgae in Undiluted Agro-Industrial Effluents from Mexico. Environments, 12(9), 307. https://doi.org/10.3390/environments12090307