Metal Enrichment in Settleable Particulate Matter Associated with Air Pollution in the Andean City of Ecuador
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Design and Sampling
2.3. Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manisalidis, J.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Ukaogo, P.O.; Ewuzie, U.; Onwuka, C.V. Environmental pollution: Causes, effects, and the remedies. In Microorganisms for Sustainable Environment and Health; Elsevier: Amsterdam, The Netherlands, 2020; pp. 419–429. [Google Scholar]
- Mancheno, T.; Zalakeviciute, R.; González-Rodríguez, M.; Alexandrino, K. Assessment of metals in PM10 filters and Araucaria heterophylla needles in two areas of Quito, Ecuador. Heliyon 2021, 7, e05966. [Google Scholar] [CrossRef]
- Jandacka, D.; Durcanska, D.; Bujdos, M. The contribution of road traffic to particulate matter and metals in air pollution in the vicinity of an urban road. Transp. Res. Part D Transp. Environ. 2017, 50, 397–408. [Google Scholar] [CrossRef]
- Santos, J.M.; Reis, N.C.; Galvão, E.S.; Silveira, A.; Goulart, E.V.; Lima, A.T. Source apportionment of settleable particles in an impacted urban and industrialized region in Brazil. Environ. Sci. Pollut. Res. 2017, 24, 22026–22039. [Google Scholar] [CrossRef]
- Sakunkoo, P.; Thonglua, T.; Sangkham, S.; Jirapornkul, C.; Limmongkon, Y.; Daduang, S.; Pimonsree, S. Human health risk assessment of PM2.5-bound heavy metal of anthropogenic sources in the Khon Kaen Province of Northeast Thailand. Heliyon 2022, 8, e09572. [Google Scholar] [CrossRef]
- Chakraborty, A.; Gupta, T.; Mandariya, A.K.; Tripathi, S. Trace elements in ambient aerosols and size-resolved fog droplets: Trends, enrichment, and risk assessment. Heliyon 2023, 9, e16400. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.J.; Shen, Z.X.; Chow, J.C.; Watson, J.G.; Lee, S.C.; Tie, X.X.; Ho, K.F.; Wang, G.H.; Han, Y.M. Winter and summer PM2.5 chemical compositions in fourteen Chinese cities. J. Air Waste Manag. Assoc. 2012, 62, 1214–1226. [Google Scholar] [CrossRef]
- Chen, L.; Ma, K. Spatial and temporal distribution and source analysis of heavy metals in agricultural soils of Ningxia, Northwest of China. Sustainability 2023, 15, 15360. [Google Scholar] [CrossRef]
- Wu, Y.; Li, G.; An, T. Toxic metals in particulate matter and health risks in an E-waste dismantling park and its surrounding areas: Analysis of three PM size groups. Int. J. Environ. Res. Public Health 2022, 19, 15383. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zhang, A.; Wang, T.; Qu, G.; Shao, J.; Yuan, B.; Jiang, G. Influence of e-waste dismantling and its regulations: Temporal trend, spatial distribution of heavy metals in rice grains, and its potential health risk. Environ. Sci. Technol. 2013, 47, 7437–7445. [Google Scholar] [CrossRef]
- Alexandrino, K.; Viteri, F.; Rybarczyk, Y.; Andino, J.E.G.; Zalakeviciute, R. Biomonitoring of metal levels in urban areas with different vehicular traffic intensity by using Araucaria heterophylla needles. Ecol. Indic. 2020, 117, 106701. [Google Scholar] [CrossRef]
- Morales-Estupiñan, M.J.; Recalde, S.; Orozco, K.; Ponce, W. Analysis of heavy metals in Azadirachta indica A. Juss leaves, as bioindicator for monitoring environmental pollution in Guayaquil, Ecuador. In Proceedings of the 6th World Congress on New Technologies (NewTech’20), Prague, Czech Republic, 19–21 August 2020; Volume 145, pp. 1–5. [Google Scholar]
- Armijos, C.; Tapia, W.; Alexandrino, K. Assessment of airborne metal pollution in urban parks and industrial areas using Callistemon citrinus and Acacia melanoxylon. Appl. Geochem. 2022, 139, 105263. [Google Scholar] [CrossRef]
- Benítez, Á.; Medina, J.; Vásquez, C.; Loaiza, T.; Luzuriaga, Y.; Calva, J. Lichens and bromeliads as bioindicators of heavy metal deposition in Ecuador. Diversity 2019, 11, 28. [Google Scholar] [CrossRef]
- Benítez, Á.; Ordóñez, D.; Calva, J. Salix humboldtiana as an indicator of air pollution by trace metals in the urban areas of the city of Loja, Southern Ecuador. Atmosphere 2024, 15, 1160. [Google Scholar] [CrossRef]
- Benítez, Á.; Armijos, L.; Calva, J. Monitoring air quality with transplanted bryophytes in a neotropical Andean city. Life 2021, 11, 821. [Google Scholar] [CrossRef]
- Santillán-Lima, P.; Rodríguez Llerena, M.; Santillán-Lima, J.; Molina-Granja, F.; Caichug-Rivera, D.; Lozada-Yánez, R. Assessment of the concentration of settleable particulate matter using geographic information systems in the Central Ecuadorian Highlands. EAI Endorsed Trans. Scalable Inf. Syst. 2024, 11, 1. [Google Scholar] [CrossRef]
- Zegarra-Peña, R.; Andrade-Tenesaca, S.; Parra-Ullauri, M.; Mejía-Coronel, D.; Rodas-Espinoza, C. Análisis espacial de PM10 en el aire y su composición de metales con relación a factores ambientales alrededor de centros de educación preescolar en Cuenca. Maskana 2020, 11, 57–68. [Google Scholar] [CrossRef]
- Rojas, M.V.; Caraballo, M.A.; Álvarez, O.H.; Vivanco, S. Emisión de dióxido de carbono de vehículos automotores en la ciudad de Loja, Ecuador. CEDAMAZ 2018, 8, 23–29. [Google Scholar]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Rodrigues, S.M.; Cruz, N.; Coelho, C.; Henriques, B.; Carvalho, L.; Duarte, A.C.; Römkens, P.F. Risk assessment for Cd, Cu, Pb and Zn in urban soils: Chemical availability as the central concept. Environ. Pollut. 2013, 183, 234–242. [Google Scholar] [CrossRef]
- Municipio de Loja. Plan de Uso y Gestión del Suelo; Municipio de Loja: Loja, Ecuador, 2021. Available online: https://www.loja.gob.ec/files/image/LOTAIP/pugs-2020_2032.pdf (accessed on 21 May 2024).
- Boira, H.; Gómez, F.; Lopez, E. The Plant Species in Green Urban Spaces and Their Effects in Atmospheric Pollution. SSRN 2024. Available online: https://ssrn.com/abstract=4858482 (accessed on 21 May 2024).
- Settimo, G.; Soggiu, M.E.; Inglessis, M.; Marsili, G.; Avino, P. Persistent organic pollutants and metals in atmospheric deposition rates around the port-industrial area of Civitavecchia, Italy. Appl. Sci. 2021, 11, 1827. [Google Scholar] [CrossRef]
- Remeteiová, D.; Ružičková, S.; Mičková, V.; Laubertová, M.; Slezáková, R. Evaluation of US EPA Method 3052 Microwave Acid Digestion for Quantification of Majority Metals in Waste Printed Circuit Boards. Metals 2020, 10, 1511. [Google Scholar] [CrossRef]
- Soil & Plant Analysis Laboratory. Elemental Analysis of Solution Samples with Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES); University of Wisconsin—Madison, Standard Operating Procedure: Madison, WI, USA, 2005. [Google Scholar]
- Kumar, M.; Gogoi, A.; Kumari, D.; Borah, R.; Das, P.; Mazumder, P.; Tyagi, V.K. Review of perspective, problems, challenges, and future scenario of metal contamination in the urban environment. J. Hazard. Toxic Radioact. Waste 2017, 21, 04017007. [Google Scholar] [CrossRef]
- Guagliardi, I.; Cicchella, D.; De Rosa, R. A geostatistical approach to assess concentration and spatial distribution of heavy metals in urban soils. Water Air Soil Pollut. 2012, 223, 5983–5998. [Google Scholar] [CrossRef]
- R Development Core Team. A Language and Environment for Statistical Computing. In R Foundation for Statistical Computing; R Development Core Team: Vienna, Australia, 2024; Available online: http://www.R-project.org (accessed on 20 May 2024).
- Sánchez-Rodas, D.; de la Campa, A.M.S.; De la Rosa, J.D.; Oliveira, V.; Gómez-Ariza, J.L.; Querol, X.; Alastuey, A. Arsenic speciation of atmospheric particulate matter (PM10) in an industrialised urban site in southwestern Spain. Chemosphere 2007, 66, 1485–1493. [Google Scholar] [CrossRef]
- ATSDR. ToxFAQs™ de Arsénico; Agencia para Sustancias Tóxicas y el Registro de Enfermedades (ATSDR): Atlanta, GA, USA, 2007. Available online: https://www.atsdr.cdc.gov/es/toxfaqs/es_tfacts2.pdf (accessed on 21 May 2024).
- Emsley, J. Las Piezas de Construcción de la Naturaleza; Oxford Univ. Press: Oxford, UK, 2001. [Google Scholar]
- United Nations Environment Programme. Principales Descubrimientos Científicos en Relación con el Plomo; UNEP: Nairobi, Kenya, 2010. [Google Scholar]
- Duan, J.; Tan, J. Atmospheric heavy metals and arsenic in China: Situation, sources and control policies. Atmos. Environ. 2013, 74, 93–101. [Google Scholar] [CrossRef]
- Witkowska, D.; Słowik, J.; Chilicka, K. Heavy metals and human health: Possible exposure pathways and the competition for protein binding sites. Molecules 2021, 26, 6060. [Google Scholar] [CrossRef]
- Aguilera, A.; Cortés, J.L.; Delgado, C.; Aguilar, Y.; Aguilar, D.; Cejudo, R.; Bautista, F. Heavy metal contamination (Cu, Pb, Zn, Fe, and Mn) in urban dust and its possible ecological and human health risk in Mexican cities. Front. Environ. Sci. 2022, 10, 854460. [Google Scholar] [CrossRef]
- Harrison, R.M.; Allan, J.; Carruthers, D.; Heal, M.R.; Lewis, A.C.; Marner, B.; Williams, A. Non-exhaust vehicle emissions of particulate matter and VOC from road traffic: A review. Atmos. Environ. 2021, 262, 118592. [Google Scholar] [CrossRef]
- Hays, M.D.; Cho, S.H.; Baldauf, R.; Schauer, J.J.; Shafer, M. Particle size distributions of metal and non-metal elements in an urban near-highway environment. Atmos. Environ. 2011, 45, 925–942. [Google Scholar] [CrossRef]
- Shi, G.; Chen, Z.; Bi, C.; Wang, L.; Teng, J.; Li, Y.; Xu, S. A comparative study of health risk of potentially toxic metals in urban and suburban road dust in the most populated city of China. Atmos. Environ. 2011, 45, 764–771. [Google Scholar] [CrossRef]
- Piscitello, A.; Bianco, C.; Casasso, A.; Sethi, R. Non-exhaust traffic emissions: Sources, characterization, and mitigation measures. Sci. Total Environ. 2021, 766, 144440. [Google Scholar] [CrossRef]
- Bourliva, A.; Christophoridis, C.; Papadopoulou, L.; Giouri, K.; Papadopoulos, A.; Mitsika, E.; Fytianos, K. Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of Thessaloniki, Greece. Environ. Geochem. Health 2017, 39, 611–634. [Google Scholar]
- Fonseca, A. Enfermedades por exposición ocupacional a plomo: Revisión sistemática exploratoria de la evidencia cualitativa y cuantitativa. Rev. San Gregor. 2021, 1, 195–216. [Google Scholar] [CrossRef]
- Agencia de Sustancias Tóxicas y el Registro de Enfermedades. Resumen de Salud Pública: Cobalto; Agencia de Sustancias Tóxicas y el Registro de Enfermedades: Atlanta, GA, USA, 2004. Available online: https://www.atsdr.cdc.gov/es/phs/es_phs33.pdf (accessed on 21 May 2024).
- ATSDR. Toxicological Profile for Silver; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2021.
- Zhang, Y.; Hou, D.; O’Connor, D.; Shen, Z.; Shi, P.; Ok, Y.S.; Luo, M. Lead contamination in Chinese surface soils: Source identification, spatial-temporal distribution and associated health risks. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1386–1423. [Google Scholar] [CrossRef]
- Frank, J.J.; Poulakos, A.G.; Tornero-Velez, R.; Xue, J. Systematic review and meta-analyses of lead (Pb) concentrations in environmental media reported in the United States from 1996 to 2016. Sci. Total Environ. 2019, 694, 133489. [Google Scholar] [CrossRef]
- Ministerio del Ambiente. Acuerdo Ministerial No. 112: Eliminación del Uso de Plomo en la Gasolina; Registro Oficial de la República del Ecuador: Quito, Ecuador, 1998.
- La Colla, N.S.; Botté, S.E.; Marcovecchio, J.E. Atmospheric particulate pollution in South American megacities. Environ. Rev. 2021, 29, 415–429. [Google Scholar] [CrossRef]
- Liu, W.; Xing, X.; Li, M.; Yu, Y.; Hu, T.; Mao, Y.; Qi, S. New insight into the geochemical mechanism and behavior of heavy metals in soil and dust fall of a typical copper smelter. Environ. Res. 2023, 225, 115638. [Google Scholar] [CrossRef] [PubMed]
- Markiewicz-Patkowska, J.; Hursthouse, A.; Przybyla-Kij, H. The interaction of heavy metals with urban soils: Sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit. Environ. Int. 2005, 31, 513–521. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, 3rd ed.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Reboredo, F.; Simões, M.; Jorge, C.; Mancuso, M.; Martinez, J.; Guerra, M.; Ramalho, J.C.; Pessoa, M.F.; Lidon, F. Metal content in edible crops and agricultural soils due to intensive use of fertilizers and pesticides in Terras da Costa de Caparica (Portugal). Environ. Sci. Pollut. Res. 2019, 26, 2512–2522. [Google Scholar] [CrossRef]
- Tang, J.; He, M.; Luo, Q.; Adeel, M.; Jiao, F. Heavy metals in agricultural soils from a typical mining city in China: Spatial distribution, source apportionment, and health risk assessment. Pol. J. Environ. Stud. 2020, 29, 1379–1390. [Google Scholar] [CrossRef]
- Morales-Casa, V.; Barraza, F.; Collante, E.; Ginocchio, R.; Jorquera, H.; Lambert, F.; Varas, J. Sedimentation rate of settleable particulate matter in Santiago city, Chile. Environ. Qual. Manag. 2020, 29, 17–25. [Google Scholar] [CrossRef]
- Negral, L.; Suárez-Peña, B.; Amado, Á.; Megido, L.; Lara, R.; Marañón, E.; Castrillón, L. Settleable matter in a highly industrialized area: Chemistry and health risk assessment. Chemosphere 2021, 274, 129751. [Google Scholar] [CrossRef] [PubMed]
- Soriano, A.; Pallarés, S.; Pardo, F.; Vicente, A.B.; Sanfeliu, T.; Bech, J. Deposition of heavy metals from particulate settleable matter in soils of an industrialised area. J. Geochem. Explor. 2012, 113, 36–44. [Google Scholar] [CrossRef]
- Kończak, B.; Cempa, M.; Deska, M. Assessment of the ability of roadside vegetation to remove particulate matter from the urban air. Environ. Pollut. 2020, 268, 115465. [Google Scholar] [CrossRef]
- Varela, Z.; López-Sánchez, G.; Yáñez, M.; Pérez, C.; Fernández, J.A.; Matos, P.; Aboal, J.R. Changes in epiphytic lichen diversity are associated with air particulate matter levels: The case study of urban areas in Chile. Ecol. Indic. 2018, 91, 307–314. [Google Scholar] [CrossRef]
- Morales-Casa, V.; Rebolledo, J.; Ginocchio, R.; Saéz-Navarrete, C. The effect of “moss bag” shape in the air monitoring of metal(oid)s in semi-arid sites: Influence of wind speed and moss porosity. Atmos. Pollut. Res. 2019, 10, 1921–1930. [Google Scholar] [CrossRef]
- Dongarrà, G.; Manno, E.; Varrica, D.; Lombardo, M.; Vultaggio, M. Study on ambient concentrations of PM10, PM10–2.5, PM2.5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates. Atmos. Environ. 2010, 44, 5244–5257. [Google Scholar] [CrossRef]
- Charlesworth, S.; De Miguel, E.; Ordóñez, A. A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environ. Geochem. Health 2011, 33, 103–123. [Google Scholar] [CrossRef] [PubMed]
Land Use | Point | SPMm (mg/cm2) | Pb (ppm) | Co (ppm) | Cd (ppm) | Cr (ppm) | Cu (ppm) | Ag (ppm) | As (ppm) |
---|---|---|---|---|---|---|---|---|---|
CM | 1 | 0.15 | 16.16 | 2.33 | 3.54 | 8.45 | 12.20 | 0.00 | 1.95 |
2 | 0.21 | 20.52 | 2.89 | 4.93 | 12.06 | 10.68 | 0.20 | 0.00 | |
EQ2 | 3 | 0.39 | 16.70 | 4.93 | 1.82 | 6.91 | 13.22 | 0.09 | 2.43 |
4 | 0.44 | 16.02 | 2.95 | 4.70 | 15.34 | 15.21 | 0.22 | 0.00 | |
EQ1 | 5 | 0.28 | 20.61 | 4.77 | 2.52 | 8.14 | 21.89 | 0.12 | 1.60 |
6 | 0.41 | 15.87 | 5.34 | 2.04 | 10.75 | 16.46 | 0.11 | 2.11 | |
IND | 7 | 1.21 | 14.73 | 7.98 | 3.24 | 36.38 | 23.10 | 0.12 | 0.00 |
8 | 0.35 | 22.34 | 4.03 | 11.61 | 12.51 | 18.70 | 0.36 | 2.74 | |
R1 | 9 | 0.41 | 17.10 | 2.94 | 2.74 | 6.21 | 9.81 | 0.07 | 0.00 |
10 | 0.20 | 22.53 | 3.27 | 2.15 | 8.36 | 11.82 | 0.05 | 0.34 |
Factor | Df | SS | R2 | F | p-Value |
---|---|---|---|---|---|
Month | 4 | 2.4785 | 0.45004 | 9.2061 | 0.001 |
Land use | 4 | 0.4759 | 0.08642 | 1.0642 | 0.41 |
Residual | 45 | 3.0288 | 0.54996 | ||
Total | 49 | 5.5073 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
del Pozo, D.; Valle, B.; Maza, D.; Benítez, Á. Metal Enrichment in Settleable Particulate Matter Associated with Air Pollution in the Andean City of Ecuador. Environments 2025, 12, 304. https://doi.org/10.3390/environments12090304
del Pozo D, Valle B, Maza D, Benítez Á. Metal Enrichment in Settleable Particulate Matter Associated with Air Pollution in the Andean City of Ecuador. Environments. 2025; 12(9):304. https://doi.org/10.3390/environments12090304
Chicago/Turabian Styledel Pozo, David, Bryan Valle, Daniel Maza, and Ángel Benítez. 2025. "Metal Enrichment in Settleable Particulate Matter Associated with Air Pollution in the Andean City of Ecuador" Environments 12, no. 9: 304. https://doi.org/10.3390/environments12090304
APA Styledel Pozo, D., Valle, B., Maza, D., & Benítez, Á. (2025). Metal Enrichment in Settleable Particulate Matter Associated with Air Pollution in the Andean City of Ecuador. Environments, 12(9), 304. https://doi.org/10.3390/environments12090304