Bridging Knowledge Gaps and Charting Future Directions in Urban and Industrial Air Pollution Research
Conflicts of Interest
List of Contributions
- Stanisci, I.; Sarno, G.; Curzio, O.; Maio, S.; Angino, A.A.; Silvi, P.; Cori, L.; Viegi, G.; Baldacci, S. Air pollution and climate change: A pilot study to investigate citizens’ perception. Environments 2024, 11, 190. https://doi.org/10.3390/environments11090190.
- Otu, E.; Ashworth, K.; Tsekleves, E. Rhythm of exposure in town centres: A case study of Lancaster City Centre. Environments 2024, 11, 132. https://doi.org/10.3390/environments11070132.
- Wang, Z.-M.; Wang, P.; Wagner, J.; Kumagai, K. Impacts on urban VOCs and PM2.5 during a wildfire episode. Environments 2024, 11, 63. https://doi.org/10.3390/environments11040063.
- Petrus, M.; Popa, C.; Bratu, A.-M. Determination of ozone concentration levels in urban environments using a laser spectroscopy system. Environments 2024, 11, 9. https://doi.org/10.3390/environments11010009.
- Gearhart, J.; Sagovac, S.; Xia, T.; Islam, M.K.; Shim, A.; Seo, S.-H.; Cooper Sargent, M.; Sampson, N.R.; Napieralski, J.; Danielson, I.; et al. Fugitive dust associated with scrap metal processing. Environments 2023, 10, 223. https://doi.org/10.3390/environments10120223.
- Ghosh, B.; Padhy, P.K.; Niyogi, S.; Patra, P.K.; Hecker, M. A comparative study of heavy metal pollution in ambient air and the health risks assessment in industrial, urban and semi-urban areas of West Bengal, India: An evaluation of carcinogenic, non-carcinogenic, and additional lifetime cancer cases. Environments 2023, 10, 190. https://doi.org/10.3390/environments10110190.
- Deary, M.E.; Griffiths, S.D. The impact of air pollution from industrial fires in urban settings: Monitoring, modelling, health, and environmental justice perspectives. Environments 2024, 11, 157. https://doi.org/10.3390/environments11070157.
References
- Burnett, R.T.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A., 3rd; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef] [PubMed]
- Apte, J.S.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.J.; Vermeulen, R.C.; Hamburg, S.P. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data. Environ. Sci. Technol. 2017, 51, 6999–7008. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [PubMed]
- Ingo, G.M.; Riccucci, C.; Pisani, G.; Pascucci, M.; D’Ercole, D.; Guerriero, E.; Boccaccini, F.; Falso, G.; Zambonini, G.; Paolini, V.; et al. The vehicle braking systems as main source of inhalable airborne magnetite particles in trafficked areas. Environ. Int. 2022, 158, 106991. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Zheng, H.; Zhao, B.; Yan, C.; Jiang, Y.; Hu, R.; Song, S.; Dong, Z.; Li, S.; Li, Z.; et al. Drivers of high concentrations of secondary organic aerosols in Northern China during the COVID-19 lockdowns. Environ. Sci. Technol. 2023, 57, 5521–5531. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.-J.; He, Y.; Duan, J.; Li, Y.; Chen, Q.; Zheng, Y.; Chen, Y.; Hu, W.; Lin, C.; Ni, H.; et al. Contrasting sources and processes of particulate species in haze days with low and high relative humidity in wintertime Beijing. Atmos. Chem. Phys. 2020, 20, 9101–9114. [Google Scholar] [CrossRef]
- Querol, X.; Massagué, J.; Alastuey, A.; Moreno, T.; Gangoiti, G.; Mantilla, E.; Duéguez, J.J.; Escudero, M.; Monfort, E.; García-Pando, C.P.; et al. Lesson. from the COVID-19 air pollution decrease in Spain: Now what? Sci. Total Environ. 2021, 779, 146380. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paolini, V.; Petracchini, F. Bridging Knowledge Gaps and Charting Future Directions in Urban and Industrial Air Pollution Research. Environments 2025, 12, 292. https://doi.org/10.3390/environments12090292
Paolini V, Petracchini F. Bridging Knowledge Gaps and Charting Future Directions in Urban and Industrial Air Pollution Research. Environments. 2025; 12(9):292. https://doi.org/10.3390/environments12090292
Chicago/Turabian StylePaolini, Valerio, and Francesco Petracchini. 2025. "Bridging Knowledge Gaps and Charting Future Directions in Urban and Industrial Air Pollution Research" Environments 12, no. 9: 292. https://doi.org/10.3390/environments12090292
APA StylePaolini, V., & Petracchini, F. (2025). Bridging Knowledge Gaps and Charting Future Directions in Urban and Industrial Air Pollution Research. Environments, 12(9), 292. https://doi.org/10.3390/environments12090292