From Aerosol Optical Depth to Risk Assessment: A Novel Framework for Environmental Impact Statistics of Air Quality Using AERONET
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Data
2.3. Integrated Assessment Methodology
- where
- where
- where
2.4. Rescaling Method
- where
2.5. Validation with Statistical Indicators—Error Calculation: Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)
- where
3. Results and Discussion
3.1. Overview of Aerosol Type Distribution (Iasi and Cluj-Napoca)
3.1.1. Iasi AERONET Monitoring Site
3.1.2. Cluj-Napoca AERONET Monitoring Site
3.2. Performance Evaluation Using RMSE and MAE
3.3. Environmental Impact Quantification Calculated Using AERONET Data
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOD | Aerosol Optical Depth |
EC | Elemental carbon |
OC | Organic carbon |
DD | Desert dust |
RMSE | Root mean square error |
MAE | Mean absolute error |
AERONET | Aerosol Robotic Network |
References
- Raaschou-Nielsen, O.; Antonsen, S.; Agerbo, E.; Hvidtfeldt, U.A.; Geels, C.; Frohn, L.M.; Christensen, J.H.; Sigsgaard, T.; Brandt, J.; Pedersen, C.B. PM2.5 air pollution components and mortality in Denmark. Environ. Int. 2023, 171, 107685. [Google Scholar] [CrossRef]
- Wang, J.; Wan, Y.; Cheng, L.; Xia, W.; Li, Y.; Xu, S. Arsenic in outdoor air particulate matter in China: Tiered study and implications for human exposure potential. Atmos. Pollut. Res. 2020, 11, 785–792. [Google Scholar] [CrossRef]
- Chifflet, S.; Guyomarc’h, L.; Dominutti, P.; Heimbürger-Boavida, L.E.; Angeletti, B.; Louvat, P.; Jaffrezo, J.L.; Vu, C.T.; Uzu, G.; Mari, X. Seasonal variations of metals and metalloids in atmospheric particulate matter (PM2.5) in the urban megacity Hanoi. Atmos. Pollut. Res. 2024, 15, 101961. [Google Scholar] [CrossRef]
- Bartholy, J.; Pongrácz, R. A brief review of health-related issues occurring in urban areas related to global warming of 1.5 °C. Curr. Opin. Environ. Sustain. 2018, 30, 123–132. [Google Scholar] [CrossRef]
- State of Global Air. State of Global Air Report 2024. 2024. Available online: https://www.stateofglobalair.org/resources/report/state-global-air-report-2024 (accessed on 15 June 2024).
- Wang, P. China’s air pollution policies: Progress and challenges. Curr. Opin. Environ. Sci. Health 2021, 19, 100227. [Google Scholar] [CrossRef]
- He, C.; Jiang, K.; Chen, S.; Jiang, W.; Liu, J. Zero CO2 emissions for an ultra-large city by 2050: Case study for Beijing. Curr. Opin. Environ. Sustain. 2019, 36, 141–155. [Google Scholar] [CrossRef]
- Naser, H.A. Technology for environmental management in Small Island Developing States: The case of Bahrain. Curr. Opin. Environ. Sustain. 2022, 59, 101219. [Google Scholar] [CrossRef]
- Simionescu, M.; Neagu, O.; Gavurova, B. The role of quality of Governance in reducing pollution in Romania: An ARDL and nonparametric bayesian approach. Front. Environ. Sci. 2022, 10, 892243. [Google Scholar] [CrossRef]
- European Union. Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC (Text with EEA relevance). Off. J. Eur. Union 2016, 344, 1–31. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016L2284 (accessed on 15 June 2024).
- Sicard, P.; Agathokleous, E.; Anenberg, S.C.; De Marco, A.; Paoletti, E.; Calatayud, V. Trends in urban air pollution over the last two decades: A global perspective. Sci. Total Environ. 2023, 858, 160064. [Google Scholar] [CrossRef]
- Sopčić, S.; Godec, R.; Jakovljević, I.; Bešlić, I. The influence of biomass burning on the organic content of urban aerosols. Biomass 2025, 5, 1. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, H.; Lyu, R.; Shao, L.; Li, W.; Xing, J.; Zhao, Z.; Li, X.; Zhou, X.; Zhang, D. Organic carbon and elemental carbon in two dust plumes at a coastal city in North China. Aerosol Air Qual. Res. 2024, 24, 240002. [Google Scholar] [CrossRef]
- Hou, D.; Zhang, X.; Zhao, J.; Qiang, J.; Wang, J.; Wang, P.; An, Q.; Wang, Y.; Wang, L.; Yuan, S.; et al. Source apportionment of elemental carbon in different seasons in Hebei, China. Front. Environ. Sci. 2022, 10, 949504. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Yan, H. An analysis of air pollution associated with the 2023 sand and dust storms over China: Aerosol properties and PM10 variability. Geosci. Front. 2024, 15, 101762. [Google Scholar] [CrossRef]
- Georgakopoulou, V.E.; Taskou, C.; Diamanti, A.; Beka, D.; Papalexis, P.; Trakas, N.; Spandidos, D.A. Saharan dust and respiratory health: Understanding the link between airborne particulate matter and chronic lung diseases (Review). Exp. Ther. Med. 2024, 28, 460. [Google Scholar] [CrossRef]
- Sadeghimoghaddam, A.; Khankeh, H.; Norozi, M.; Fateh, S.; Farrokhi, M. Investigating the effects of dust storms on morbidity and mortality due to cardiovascular and respiratory diseases: A systematic review. J. Educ. Health Promot. 2021, 10, 191. [Google Scholar] [CrossRef]
- Pardo, M.; Li, C.; He, Q.; Levin-Zaidman, S.; Tsoory, M.; Yu, Q.; Wang, X.; Rudich, Y. Mechanisms of lung toxicity induced by biomass burning aerosols. Part. Fibre Toxicol. 2020, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Sigsgaard, T.; Forsberg, B.; Annesi-Maesano, I.; Blomberg, A.; Bølling, A.; Boman, C.; Bønløkke, J.; Brauer, M.; Bruce, N.; Héroux, M.E.; et al. Health impacts of anthropogenic biomass burning in the developed world. Eur. Respir. J. 2015, 46, 1577–1588. [Google Scholar] [CrossRef]
- Assad, N.A.; Kapoor, V.; Sood, A. Biomass smoke exposure and chronic lung disease. Curr. Opin. Pulm. Med. 2016, 22, 150–157. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Parasin, N. Perspective on Particulate Matter: From biomass burning to the health crisis in Mainland Southeast Asia. Toxics 2023, 11, 553. [Google Scholar] [CrossRef]
- Sangkham, S.; Phairuang, W.; Sherchan, S.P.; Pansakun, N.; Munkong, N.; Sarndhong, K.; Islam, M.A.; Sakunkoo, P. An update on adverse health effects from exposure to PM2.5. Environ. Adv. 2024, 18, 100603. [Google Scholar] [CrossRef]
- FERN. 2025. Available online: https://www.fern.org/fileadmin/uploads/fern/Documents/briefingnote%20burning%20biomass.pdf (accessed on 15 May 2025).
- Yin, S. Effect of biomass burning on premature mortality associated with long-term exposure to PM2.5 in Equatorial Asia. J. Environ. Manag. 2023, 330, 117154. [Google Scholar] [CrossRef]
- Water and Air Quality Bureau, Health Canada. Human Health Effects of Wildfire Smoke. 2025. Available online: https://www.canada.ca/en/health-canada/services/publications/healthy-living/human-health-effects-wildfire-smoke.html (accessed on 15 May 2025).
- Karanasiou, A.; Alastuey, A.; Amato, F.; Renzi, M.; Stafoggia, M.; Tobias, A.; Reche, C.; Forastiere, F.; Gumy, S.; Mudu, P.; et al. Short-term health effects from outdoor exposure to biomass burning emissions: A review. Sci. Total Environ. 2021, 781, 146739. [Google Scholar] [CrossRef] [PubMed]
- Habybabady, R.H.; Sis, H.N.; Paridokht, F.; Ramrudinasab, F.; Behmadi, A.; Khosravi, B.; Mohammadi, M. Effects of dust exposure on the respiratory health symptoms and pulmonary functions of street sweepers. Malays. J. Med. Sci. 2018, 25, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Bostan, D.C.; Miclaus, I.M.; Apetroaie, C.; Voiculescu, M.; Timofte, A.; Cazacu, M.M. Long-Range Transport Analysis Based on Eastern Atmospheric Circulation and Its Impact on the Dust Event over Moldavia, Romania in August 2022. Atmosphere 2023, 14, 1366. [Google Scholar] [CrossRef]
- Marmureanu, L.; Vasilescu, J.; Slowik, J.; Prévôt, A.S.H.; Marin, C.A.; Antonescu, B.; Vlachou, A.; Nemuc, A.; Dandocsi, A.; Szidat, S. Online Chemical Characterization and Source Identification of Summer and Winter Aerosols in Magurele, Romania. Atmosphere 2020, 11, 385. [Google Scholar] [CrossRef]
- Liu, F.; Peng, L.; Dai, S.; Bi, X.; Shi, M. Size-Segregated Characteristics of Organic Carbon (OC) and Elemental Carbon (EC) in Marine Aerosol in the Northeastern South China Sea. Atmosphere 2023, 14, 661. [Google Scholar] [CrossRef]
- Hussein, T.; Li, X.; Bakri, Z.; Alastuey, A.; Arar, S.; Al-Hunaiti, A.; Viana, M.; Petäjä, T. Organic and Elemental Carbon in the Urban Background in an Eastern Mediterranean City. Atmosphere 2022, 13, 197. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ. Health Perspect. 2010, 118, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Follette-Cook, M.; Strode, S.; Malings, C. Theoretical basis for converting satellite observations to ground-level PM2.5 concentrations. In NASA Air Quality Remote Sensing Training; US EPA: Washington, DC, USA, 2023. Available online: https://appliedsciences.nasa.gov/sites/default/files/2023-03/D2P3_AOD_PM_JO.pdf (accessed on 15 May 2025).
- Xu, D.; Lin, W.; Gao, J.; Jiang, Y.; Li, L.; Gao, F. PM2.5 Exposure and Health Risk Assessment Using Remote Sensing Data and GIS. Int. J. Environ. Res. Public Health 2022, 19, 6154. [Google Scholar] [CrossRef]
- Matandirotya, N.R.; Anoruo, C.M. An assessment of aerosol optical depth over three AERONET sites in South Africa during the year 2020. Sci. Afr. 2023, 19, e01446. [Google Scholar] [CrossRef] [PubMed]
- Tariq, S.; Qayyum, F.; Ul-Haq, Z.; Mehmood, U. Remote sensing of nighttime air quality over the megacity of Lahore, Pakistan. Urban Clim. 2023, 49, 101498. [Google Scholar] [CrossRef]
- Said, S.; Salah, Z.; Abdel Wahab, M.M.; Alfaro, S.C. Retrieving PM10 Surface Concentration from AERONET Aerosol Optical Depth: The Cairo and Delhi Megacities Case Studies. J. Indian Soc. Remote Sens. 2023, 51, 1797–1807. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Pham, H.V.; Lasko, K.; Bui, M.T.; Laffly, D.; Jourdan, A.; Bui, H.Q. Spatiotemporal analysis of ground and satellite-based aerosol for air quality assessment in the Southeast Asia region. Environ. Pollut. 2019, 255, 113106. [Google Scholar] [CrossRef] [PubMed]
- Verma, J.; Singh, P. Air pollution induced biochemical changes in the selected roadside ornamental tree in Ludhiana city, India. Environ. Eng. Manag. J. 2025, 24, 233–241. [Google Scholar] [CrossRef]
- Tanasa, I.; Cazacu, M.; Sluser, B. Air Quality Integrated Assessment: Environmental Impacts, Risks and Human Health Hazards. Appl. Sci. 2023, 13, 1222. [Google Scholar] [CrossRef]
- AERONET. 2025. Available online: https://aeronet.gsfc.nasa.gov/ (accessed on 1 June 2024).
- Stefanie, H.I.; Radovici, A.; Mereuta, A.; Arghius, V.; Camarasan, H.; Costin, D.; Botezan, C.; Ginsca, C.; Ajtai, N. Variation of Aerosol Optical Properties over Cluj-Napoca, Romania, Based on 10 Years of AERONET Data and MODIS MAIAC AOD Product. Remote Sens. 2023, 15, 3072. [Google Scholar] [CrossRef]
- IQAir. 2024. Available online: https://www.iqair.com (accessed on 1 June 2024).
- Civitas. 2024. Available online: https://civitas.eu/cities/iasi (accessed on 1 June 2024).
- Ajtai, N.; Stefanie, H.; Ozunu, A. Description of aerosol properties over Cluj-Napoca derived from AERONET sun photometric data. Environ. Eng. Manag. J. 2013, 12, 227–232. [Google Scholar] [CrossRef]
- Sfica, L.; Iordache, L.; Ichim, P.; Leahu, A.; Cazacu, M.M.; Gurlui, S.; Trif, C.T. The influence of weather conditions and local climate on particulate matter (PM10) concentration in metropolitan area of Iasi, Romania. Present Environ. Sustain. Dev. 2018, 11, 109–117. [Google Scholar] [CrossRef]
- Tîmpu, S.; Sfica, L.; Dobri, R.V.; Cazacu, M.M.; Nita, A.I.; Birsan, M.V. Tropospheric Dust and Associated Atmospheric Circulations over the Mediterranean Region with Focus on Romania’s Territory. Atmosphere 2020, 11, 349. [Google Scholar] [CrossRef]
- Nemuc, A.; Belegante, L.; Radulescu, R. One year of sunphotometer measurements in Romania. Rom. J. Phys. 2011, 56, 550–562. [Google Scholar]
- Laszlo, I.; Liu, H. EPS Aerosol Optical Depth (AOD) Algorithm Theoretical Basis Document; NOAA NESDIS Center for Satellite Appllications and Research: College Park, MD, USA, 2020. [Google Scholar]
- Daxini, R.; Wu, Y. Review of methods to account for the solar spectral influence on photovoltaic device performance. Energy 2024, 286, 129461. [Google Scholar] [CrossRef]
- Jin, J.; Henzing, B.; Segers, A. How aerosol size matters in aerosol optical depth (AOD) assimilation and the optimization using the Ångström exponent. Atmos. Chem. Phys. 2023, 23, 1641–1660. [Google Scholar] [CrossRef]
- Xun, L.; Lu, H.; Qian, C.; Zhang, Y.; Lyu, S.; Li, X. Analysis of Aerosol Optical Depth from Sun Photometer at Shouxian, China. Atmosphere 2021, 12, 1226. [Google Scholar] [CrossRef]
- Earth Observatory, Aerosol Optical Depth. 2024. Available online: https://earthobservatory.nasa.gov/global-maps/MODAL2_M_AER_OD (accessed on 1 June 2024).
- Huang, F.; Ma, W.; Wang, S.; Feng, C.; Kong, X.; Liu, H. Analysis and Validation of the Aerosol Optical Depth of MODIS Products in Gansu Province, Northwest China. Remote Sens. 2023, 15, 2972. [Google Scholar] [CrossRef]
- Tian, Z.; Wei, J.; Li, Z. How Important Is Satellite-Retrieved Aerosol Optical Depth in Deriving Surface PM2.5 Using Machine Learning? Remote Sens. 2023, 15, 3780. [Google Scholar] [CrossRef]
- Singh, D.; Nanda, C. Aerosol Optical Depth (AOD) Variation Over Haryana Due to Lockdown Amid COVID-19 as an Indicator of Air Quality. In Proceedings of the 2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS), Ahmedabad, India, 1–4 December 2020; pp. 170–172. [Google Scholar] [CrossRef]
- Talib, N.; Sa’aidi, N.A.M.; Narashid, R.H.; Zaki, N.A.M.; Saad, N.M.; Abdullah, S.; Mohd, F.A. Relationship between Particulate Matter (PM2.5) Concentration and Aerosol Optical Depth (AOD) throughout Peninsular Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2022, 1019, 012017. [Google Scholar] [CrossRef]
- Cazacu, M.; Timofte, A.; Unga, F.; Albina, B.; Gurlui, S. AERONET data investigation of the aerosol mixtures over Iasi area, One-year time scale overview. J. Quant. Spectrosc. Radiat. Transf. 2015, 153, 57–64. [Google Scholar] [CrossRef]
- Ajtai, N.; Mereuta, A.; Stefanie, H.; Radovici, A.; Botezan, C.; Zawadzka-Manko, O.; Stachlewska, I.S.; Stebel, K.; Zehner, C. SEVIRI Aerosol Optical Depth Validation Using AERONET and Intercomparison with MODIS in Central and Eastern Europe. Remote Sens. 2021, 13, 844. [Google Scholar] [CrossRef]
- Callewaert, S.; Vandenbussche, S.; Kumps, N.; Kylling, A.; Shang, X.; Komppula, M.; Goloub, P.; Maziere, M.D. The Mineral Aerosol Profiling from Infrared Radiances (MAPIR) algorithm: Version 4.1 description and evaluation. Atmos. Meas. Tech. 2019, 12, 3673–3698. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Smirnov, A.; Sinyuk, A.; Schafer, J.; Giles, D.; Dubovik, O. AERONET’s Version 2.0 Quality Assurance Criteria. Available online: http://aeronet.gsfc.nasa.gov/new_web/Documents/AERONETcriteria_final1.pdf (accessed on 1 June 2024).
- Zheng, C. Chapter 9—Assessment Methods for Air Pollution Exposure. In Spatiotemporal Analysis of Air Pollution and Its Application in Public Health; Elsevier: Amsterdam, The Netherlands, 2020; pp. 197–206. [Google Scholar] [CrossRef]
- Cazorla, A.; Bahadur, R.; Suski, K.J.; Cahill, J.F.; Chand, D.; Schmid, B.; Ramanathan, V.; Prather, K.A. Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements. Atmos. Chem. Phys. 2013, 13, 9337–9350. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database—Automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef]
- Russell, P.B.; Bergstrom, R.W.; Shinozuka, Y.; Clarke, A.D.; DeCarlo, P.F.; Jimenez, J.L.; Livingston, J.M.; Redemann, J.; Holben, B.; Dubovik, O.; et al. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition. Atmos. Chem. Phys. 2010, 10, 1155–1169. [Google Scholar] [CrossRef]
- Sluser, B.; Plavan, O.; Teodosiu, C. Environmental Impact and Risk Assessment. In Assessing Progress Towards Sustainability; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Neamtu, R.; Sluser, B.; Plavan, O.; Teodosiu, C. Environmental monitoring and impact assessment of Prut River cross-border pollution. Environ. Monit. Assess. 2021, 193, 340. [Google Scholar] [CrossRef]
- Zait, R.; Fighir, D.; Sluser, B.; Plavan, O.; Teodosiu, C. Priority Pollutants Effects on Aquatic Ecosystems Evaluated through Ecotoxicity, Impact, and Risk Assessments. Water 2022, 14, 3237. [Google Scholar] [CrossRef]
- Robu, B.; Macoveanu, M. Evaluari de Mediu Pentru Dezvoltare Durabila (Environmental Assessments for Sustainable Development); EcoZone: Iasi, Romania, 2010. [Google Scholar]
- Smirnov, A.; Holben, B.N.; Eck, T.F.; Dubovik, O.; Slutsker, I. Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Environ. 2000, 3, 337–349. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 20673–20696. [Google Scholar] [CrossRef]
- Niculae, A.L.; Racovitza, A.; Chiriac, R. Study of the influence of nanoparticle addition in diesel-ethanol blend on fuel jet characteristics. Environ. Eng. Manag. J. 2024, 23, 1383–1389. [Google Scholar] [CrossRef]
- Ealo, M.; Alastuey, A.; Ripoll, A.; Pérez, N.; Minguillón, M.C.; Querol, X.; Pandolfi, M. Detection of Saharan dust and biomass burning events using near-real-time intensive aerosol optical properties in the north-western Mediterranean. Atmos. Chem. Phys. 2016, 16, 12567–12586. [Google Scholar] [CrossRef]
- Bauer, S.E.; Im, U.; Mezuman, K.; Gao, C.Y. Desert dust, industrialization, and agricultural fires: Health impacts of outdoor air pollution in Africa. J. Geophys. Res. Atmos. 2019, 124, 4104–4120. [Google Scholar] [CrossRef]
- Zhou, D.; Ding, K.; Huang, X.; Liu, L.; Liu, Q.; Xu, Z.; Jiang, F.; Fu, C.; Ding, A. Transport, mixing and feedback of dust, biomass burning and anthropogenic pollutants in eastern Asia: A case study. Atmos. Chem. Phys. 2018, 18, 16345–16361. [Google Scholar] [CrossRef]
- Dong, X.; Fu, J.S.; Huang, K.; Zhu, Q.; Tipton, M. Regional climate effects of biomass burning and dust in East Asia: Evidence from modeling and observation. Geophys. Res. Lett. 2019, 46, 11490–11499. [Google Scholar] [CrossRef]
- Gama, C.; Pio, C.; Monteiro, A.; Russo, M.; Fernandes, A.P.; Borrego, C.; Baldasano, J.M.; Tchepel, O. Comparison of methodologies for assessing desert dust contribution to regional PM10 and PM2.5 levels: A one-year study over Portugal. Atmosphere 2020, 11, 134. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; et al. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Hodson, T.O. Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- ASHRAE. ASHRAE Guideline 14-2002: Measurement of Energy and Demand Savings. American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2002. Available online: https://www.eeperformance.org/uploads/8/6/5/0/8650231/ashrae_guideline_14-2002_measurement_of_energy_and_demand_saving.pdf (accessed on 17 August 2025).
- Efficiency Valuation Organization (EVO). International Performance Measurement and Verification Protocol: Concepts and options for determining energy and water savings—Volume I (IPMVP). 2017. Available online: https://evo-world.org/en/products-services-mainmenu-en/protocols/ipmvp (accessed on 15 May 2025).
- Coakley, D.; Raftery, P.; Keane, M. A review of methods to match building energy simulation models to measured data. Renew. Sustain. Energy Rev. 2014, 37, 123–141. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef]
- Marmureanu, L.; Marin, C.A.; Andrei, S.; Antonescu, B.; Ene, D.; Boldeanu, M.; Vasilescu, J.; Vitelaru, C.; Cadar, O.; Levei, E. Orange snow—A saharan dust intrusion over Romania during winter conditions. Remote Sens. 2019, 11, 2466. [Google Scholar] [CrossRef]
- Brimblecombe, P. Visibility Driven Perception and Regulation of Air Pollution in Hong Kong, 1968–2020. Environments 2021, 8, 51. [Google Scholar] [CrossRef]
Aerosol Type | Main Health Effects |
---|---|
EC | Pulmonary toxicity, respiratory and cardiovascular diseases, chronic obstructive pulmonary disease, infections, cancer, and premature death. |
Mixtures (Fine and Coarse Particles) | Influenza, tuberculosis, skin reactions, inflammation, oxidative stress, and cardiorespiratory risks. |
DD | Asthma, coughing, wheezing, bronchitis, pneumonia, allergic rhinitis, high blood pressure, and heart issues. |
Impact Scale | Description | Risk Scale | Description |
---|---|---|---|
<100 | Natural environment, not affected by industrial/human activities | <100 | Negligible/insignificant risks |
100–350 | Environment modified by industrial activities within admissible limits | 100–200 | Minor risks, and monitoring actions are required |
350–500 | Environment modified by industrial activities causing discomfort conditions | 200–350 | Moderate risks at an acceptable level, monitoring and prevention actions are required |
500–700 | Environment modified by industrial activities causing distress to life forms | 350–700 | Moderate risks at an unacceptable level, control and prevention measures are needed |
700–1000 | Environment modified by industrial activities, dangerous for life forms | 700–1000 | Major risks, remediation, control and prevention measures are needed |
>1000 | Degraded environment, not proper for life forms | >1000 | Catastrophic risks, all activities should be stopped |
Distance from the Source | Health/Environmental Impact | Example Evidence |
---|---|---|
Close to the source | High PM, severe health effects, frequent exposure | Most epidemiological studies, systematic reviews |
Far from source | Lower PM, milder or less frequent health effects, still detectable dust | WHO fact sheet, atmospheric transport studies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanasa, I.; Cazacu, M.; Botan, D.; Atkinson, J.D.; Sebestyen, V.; Sluser, B. From Aerosol Optical Depth to Risk Assessment: A Novel Framework for Environmental Impact Statistics of Air Quality Using AERONET. Environments 2025, 12, 285. https://doi.org/10.3390/environments12080285
Tanasa I, Cazacu M, Botan D, Atkinson JD, Sebestyen V, Sluser B. From Aerosol Optical Depth to Risk Assessment: A Novel Framework for Environmental Impact Statistics of Air Quality Using AERONET. Environments. 2025; 12(8):285. https://doi.org/10.3390/environments12080285
Chicago/Turabian StyleTanasa, Ioana, Marius Cazacu, Dumitru Botan, John D. Atkinson, Viktor Sebestyen, and Brindusa Sluser. 2025. "From Aerosol Optical Depth to Risk Assessment: A Novel Framework for Environmental Impact Statistics of Air Quality Using AERONET" Environments 12, no. 8: 285. https://doi.org/10.3390/environments12080285
APA StyleTanasa, I., Cazacu, M., Botan, D., Atkinson, J. D., Sebestyen, V., & Sluser, B. (2025). From Aerosol Optical Depth to Risk Assessment: A Novel Framework for Environmental Impact Statistics of Air Quality Using AERONET. Environments, 12(8), 285. https://doi.org/10.3390/environments12080285