Lavender as a Bioindicator: Bioaccumulation Assessment of Cd, Pb, and Zn
Abstract
1. Introduction
- (i)
- Accumulators, which concentrate heavy metals in their above-ground parts.
- (ii)
- Indicators, which reflect the concentration of heavy metals present in the soil.
- (iii)
- Excluders, which maintain low internal metal concentrations, despite high external levels.
2. Materials and Methods
2.1. Analytical Reagents and Certified Reference Materials
2.2. Equipment
2.3. Plants and Soil Characteristics
2.4. Experiment Characteristics
2.5. Soil and Vegetation Analysis
2.6. Data Analysis
2.7. Evaluation of Metal Uptake and Accumulation
2.8. Biometrical Measurements
- (i)
- Compared to the initial mean values of h (51.0–59.5 cm for lavender and 14.0–20.0 cm for lavandin), the mean values of h at 120 days were 1.09–1.24 times higher for lavender (59.5–69.0 cm) and 1.51–2.13 times higher for lavandin (27.5–35.5 cm).
- (ii)
- Compared to the control M0, for which the mean values of h for lavender plants increased by 11% over 4 months, the treatments E1.4–E1.6 with Cd and E1.8 with Pb exhibited positive effects, with mean height values increasing by 15–24%, whereas the other treatments showed similar effects.
- (iii)
- Compared to the control M1, in which the mean values of h for lavandin plants increased by 78% over 4 months, the treatments E2.3 with Zn, E2.6 with Cd, and E2.7 and E2.9 with Pb exhibited positive effects, with mean height values increasing more than twofold, whereas the other treatments showed similar effects.
3. Results and Discussion
3.1. Zinc Uptake and Accumulation Dynamics
3.2. Cadmium Uptake and Accumulation Dynamics
3.3. Lead Uptake and Accumulation Dynamics
3.4. Modeling of the Experimental Data
- (a)
- Mass transfer of heavy metal ions within the soil layer, influenced by factors such as concentration gradients, soil pH, temperature, and moisture;
- (b)
- Diffusion-driven transport of ions toward the plant root surface;
- (c)
- Uptake of metal ions by plant roots, followed by their translocation to stems, leaves, shoots, and flowers.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lajayer, B.A.; Ghorbanpour, M.; Nikabadi, S. Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol. Environ. Saf. 2017, 145, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Stefan, D.S.; Serbanescu, C. Plants Biosensors for Monitoring the Heavy Metals from Urban Pollution; Éditions Universitaires Européennes: Saarbrücken, Germany, 2017; ISBN 978-3-639-56066-4. [Google Scholar]
- Mishra, B.; Chandra, M. Evaluation of phytoremediation potential of aromatic plants: A systematic review. J. Appl. Res. Med. Aromat. Plants 2022, 31, 100405. [Google Scholar] [CrossRef]
- Alharbi, M.; Aljeddani, G. Heavy metals phytoremediation and its impact on photosynthetic pigments and metabolic content in some plant species grown in the streets of Jeddah Governorate, Saudi Arabia. J. Environ. Prot. 2022, 13, 557–574. [Google Scholar] [CrossRef]
- Chagas, J.K.M.; de Figueiredo, C.C.; da Silva, J.; Jorge Paz-Ferreiro, J. The residual effect of sewage sludge biochar on soil availability and bioaccumulation of heavy metals: Evidence from a three-year field experiment. J. Environ. Manag. 2021, 279, 111824. [Google Scholar] [CrossRef] [PubMed]
- Feizi, M.; Jalali, M. Leaching of Cd, Cu, Ni and Zn in a sewage sludge-amended soil in presence of geo- and nano-materials. J. Clean. Prod. 2021, 297, 126506. [Google Scholar] [CrossRef]
- Nzihou, A.; Stanmore, B. The fate of heavy metals during combustion and gasification of contaminated biomass—A brief review. J. Hazard. Mater. 2013, 256, 56–66. [Google Scholar] [CrossRef]
- Xu, S.; Li, L.; Zhan, J.; Guo, X. Variation and factors on heavy metal speciation during co-composting of rural sewage sludge and typical rural organic solid waste. J. Environ. Manag. 2022, 306, 114418. [Google Scholar] [CrossRef]
- Chu, Z.; Fan, X.; Wang, W.; Huang, W.C. Quantitative evaluation of heavy metals’ pollution hazards and estimation of heavy metals’ environmental costs in leachate during food waste composting. Waste Manag. 2019, 84, 119–128. [Google Scholar] [CrossRef]
- Rashid, A.; Schutte, B.J.; Ulery, A.; Deyholos, M.K.; Sanogo, S.; Lehnhoff, E.A.; Beck, L. Heavy metal contamination in agricultural soil: Environmental pollutants affecting crop health. Agronomy 2023, 13, 1521. [Google Scholar] [CrossRef]
- Bharti, K.R.; Sharma, R. Effect of heavy metals: An overview. Mater. Today Proc. 2022, 51, 880–885. [Google Scholar]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Qasim, A.; Zahir, A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef]
- Qishlaqi, A.; Moore, F. Statistical analysis of accumulation and sources of heavy metals occurrence in agricultural soils of Khoshk River banks, Shiraz, Iran. Am. Eurasian J. Agric. Environ. Sci. 2007, 2, 565–573. [Google Scholar]
- Revathi, S.; Subhashree, V. Physiological and biochemical mechanisms of heavy metal tolerance. Int. J. Environ. Sci. 2013, 3, 1339–1354. [Google Scholar]
- Aghili, S.; Golzary, A. Greening the earth, healing the soil: A comprehensive life cycle assessment of phytoremediation for heavy metal contamination. Environ. Technol. Innov. 2023, 32, 103241. [Google Scholar] [CrossRef]
- Bhat, S.A.; Bashir, O.; Ul Haq, S.A.; Amin, T.; Rafiq, A.; Ali, M.; Americo-Pinheiro, J.H.P.; Sher, F. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere 2022, 303, 134788. [Google Scholar] [CrossRef]
- Li, G.; Yan, L.; Chen, X.; Lam, S.S.; Rinklebe, J.; Yu, Q.; Yang, Y.; Peng, W.; Sonne, C. Phytoremediation of cadmium from soil, air and water. Chemosphere 2023, 320, 138058. [Google Scholar] [CrossRef]
- Alsafran, M.; Saleem, M.H.; Jabri, H.A.; Rizwan, M.; Usman, K. Principles and applicability of integrated remediation strategies for heavy metal removal/recovery from contaminated environments. J. Plant Growth Regul. 2023, 42, 3419–3440. [Google Scholar] [CrossRef]
- Han, N.M.M.; Latif, M.T.; Othman, M.; Dominick, D.; Mohamad, N.; Juahir, H.; Tahir, N.M. Composition of selected heavy metals in road dust from Kuala Lumpur city centre. Environ. Earth Sci. 2014, 72, 849–859. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, J.; Zheng, X.; Li, S.; Lv, Q.; Liang, C. Removal of heavy metals from sewage sludge by chemical leaching with biodegradable chelator methyl glycine diacetic acid. Chemosphere 2022, 300, 134496. [Google Scholar] [CrossRef]
- Achkir, A.; Aouragh, A.; El Mahi, M.; Lotfi, E.M.; Labjar, N.; Bouch, M.E.; Ouahidi, M.L.; Badza, T.; Farhan, H.; Moussaoui, T.E. Implication of sewage sludge increased application rates on soil fertility and heavy metals contamination risk. Emerg. Contam. 2023, 9, 100200. [Google Scholar] [CrossRef]
- Urbaniak, M.; Baran, A.; Giebułtowicz, J.; Bednarek, A.; Serwecinska, L. The occurrence of heavy metals and antimicrobials in sewage sludge and their predicted risk to soil—Is there anything to fear? Sci. Total Environ. 2024, 912, 168856. [Google Scholar] [CrossRef] [PubMed]
- Bourliva, A.; Christophoridis, C.; Papadopoulou, L.; Giouri, K.; Papadopoulos, A.; Mitsika, E.; Fytianos, K. Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki, Greece. Environ. Geochem. Health 2017, 39, 611–634. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, Y.; Chen, T.; Xu, Y.; Qi, M.; Sun, G.; Wu, X.; Chen, M.; Xu, W.; Liu, C. Combining Cd and Pb isotope analyses for heavy metal source apportionment in facility agricultural soils around typical urban and industrial areas. J. Hazard. Mater. 2024, 466, 133568. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.B.; Momayezi, M.; Taleei, D. Biochar effect on cadmium accumulation and phytoremediation factors by lavender (Lavandula stoechas L.). Open J. Ecol. 2017, 7, 447–459. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues; WHO Press: Geneva, Switzerland, 2007. [Google Scholar]
- Aibibu, N.; Liu, Y.; Zeng, G.; Wang, X.; Chen, B.; Song, H.; Xu, L. Cadmium accumulation in vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresour. Technol. 2010, 101, 6297–6303. [Google Scholar] [CrossRef]
- Serban, E.A.; Vasile, G.-G.; Gheorghe, S.; Stoica, C.; Ene, C. Effects of toxic metals Cd, Ni and Pb on Matricaria chamomilla L. growth in a laboratory study. Rev. Chim. 2020, 71, 325–335. [Google Scholar] [CrossRef]
- Huang, D.; Gong, X.; Liu, Y.; Zeng, G.; Lai, C.; Bashir, H.; Zhou, L.; Wang, D.; Xu, P.; Cheng, M.; et al. Effects of calcium at toxic concentrations of cadmium in plants. Planta 2017, 245, 863–873. [Google Scholar] [CrossRef]
- Arshad, M.; Naqvi, N.; Gul, I.; Yaqoob, K.; Bilal, M.; Kallerhoff, J. Lead phytoextraction by Pelargonium hortorum: Comparative assessment of EDTA and DIPA for Pb mobility and toxicity. Sci. Total Environ. 2020, 748, 141496. [Google Scholar] [CrossRef]
- Muttaleb, W.H.; Ali, Z.H. Bioremediation an eco-friendly method for administration of environmental contaminants. Int. J. Appl. Sci. Technol. 2022, 4, 22–32. [Google Scholar] [CrossRef]
- Ilinskiy, A.; Vinogradov, D.; Politaeva, N.; Badenko, V.; Ilin, I. Features of the phytoremediation by agricultural crops of heavy metal contaminated soils. Agronomy 2023, 13, 127. [Google Scholar] [CrossRef]
- Lin, H.; Wang, Z.; Liu, C.; Dong, Y. Technologies for removing heavy metal from contaminated soils on farmland: A review. Chemosphere 2022, 305, 135457. [Google Scholar] [CrossRef] [PubMed]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Intern. Sch. Res. Not. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Deepika; Haritash, A.K. Phytoremediation potential of ornamental plants for heavy metal removal from contaminated soil: A critical review. Hortic. Environ. Biotechnol. 2023, 64, 709–734. [Google Scholar]
- Hussain, M.M.; Farooqi, Z.U.R.; Mohy-Ud-Din, W.; Younas, F.; Shahzad, M.T.; Ghani, M.U.; Ayub, M.A.; Qadeer, A. Application of Bioremediation as sustainable approach to remediate heavy metal and pesticide polluted environments. Plant Environ. 2021, 1, 62–92. [Google Scholar]
- Baker, A.J.M. Accumulators and Excluders Strategies in Response of Plants to Heavy Metals. J. Plant Nutr. 1981, 3, 643–654. [Google Scholar] [CrossRef]
- Lone, I.A.; Gaffar, M. Phytoremediation potential of medicinal and aromatic plants. Medicinal and Aromatic Plants, 1st ed.; Aftab, T., Hakeem, K., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 741–760. [Google Scholar]
- Hosseinniaee, S.; Jafari, M.; Tavili, A.; Zare, S.; Cappai, G.; De Giudici, G. Perspectives for phytoremediation capability of native plants growing on Angouran Pb–Zn mining complex in northwest of Iran. J. Environ. Manag. 2022, 315, 115184. [Google Scholar] [CrossRef]
- Angelova, V.R.; Grekov, D.F.; Kisyov, V.K.; Ivanov, K.I. Potential of lavender (Lavandula vera L.) for phytoremediation of soils contaminated with heavy metals. Int. J. Agric. Biosyst. Eng. 2015, 9, 522–529. [Google Scholar]
- Tăbărasu, A.M.; Anghelache, D.N.; Găgeanu, I.; Biris, S.S.; Vlădut, N.V. Considerations on the use of active compounds obtained from lavender. Sustainability 2023, 15, 8879. [Google Scholar] [CrossRef]
- Stancheva, I.; Geneva, M.; Markovska, Y.; Tzvetkova, N.; Mitova, I.; Todorova, M.; Petrov, P. A comparative study on plant morphology, gas exchange parameters, and antioxidant response of Ocimum basilicum L. and Origanum vulgare L. grown on industrially polluted soil. Turk. J. Biol. 2014, 38, 89–102. [Google Scholar] [CrossRef]
- Angelova, V. Potential of some medicinal and aromatic plants for phytoremedation of contaminated with heavy metals soils. In Proceedings of the XV Balkan Mineral Processing Congress, Sozopol, Bulgaria, 12–16 June 2013; pp. 1045–1048. [Google Scholar]
- Sarma, H.; Deka, S.; Deka, H.; Saikia, R.R. Accumulation of heavy metals in selected medicinal plants. Rev. Environ. Contam. Toxicol. 2011, 214, 63–86. [Google Scholar] [PubMed]
- Refaz, A.D.; Mohd, S.; Parvaiz, H.Q. Overview of medicinal plants spread and their uses in Asia. J. Phytopharmacol. 2017, 6, 349–351. [Google Scholar]
- Dinu, C.; Gheorghe, S.; Tenea, A.G.; Stoica, C.; Vasile, G.-G.; Popescu, R.L.; Serban, E.A.; Pascu, L.F. Toxic metals (As, Cd, Ni, Pb) impact in the most common medicinal plant (Mentha piperita). Int. J. Environ. Res. Public Health 2021, 18, 3904. [Google Scholar] [CrossRef]
- Singh, S.K.; Biswojit, B. Bioavailability of heavy metals (Cd, Cr, Ni, Pb) to french marigold (Tagetes patula) in relation to soil properties. Trends Tech. Sci. Res. 2018, 1, 94–96. [Google Scholar]
- Maharia, R.S.; Dutta, R.K.; Acharya, R.; Reddy, A.V. Heavy metal bioaccumulation in selected medicinal plants collected from Khetri copper mines and comparison with those collected from fertile soil in Haridwar. India J. Environ. Sci. Health Part B 2010, 45, 174–181. [Google Scholar] [CrossRef]
- Mihalașcu, C.; Bolohan, C.; Tudor, V.; Mihalache, M.; Teodorescu, R.I. Research on the growth and development of some varieties of Lavandula angustifolia (Mill.) in the South-East of Romania. Rom. Biotechnol. Lett. 2020, 25, 2180–2187. [Google Scholar] [CrossRef]
- Nescu, V.; Ciulca, S.; Sumalan, R.M.; Berbecea, A.; Velicevici, G.; Negrea, P.; Gaspar, S.; Sumalan, R.L. Physiological aspects of absorption, translocation, and accumulation of heavy metals in Silphium perfoliatum L. plants grown in a mining-contaminated soil. Minerals 2022, 12, 334. [Google Scholar] [CrossRef]
- Mussali-Galante, P.; Santoyo-Martínez, M.; Castrejón-Godínez, M.L.; Breton-Deval, L.; Rodríguez-Solis, A.; Valencia-Cuevas, L.; Tovar-Sánchez, E. The bioaccumulation potential of heavy metals by Gliricidia sepium (Fabaceae) in mine tailings. Environ. Sci. Pollut. Res. 2023, 30, 38982–38999. [Google Scholar] [CrossRef] [PubMed]
- Crisan, I.; Ona, A.; Vârban, D.; Muntean, L.; Vârban, R.; Stoie, A.; Mihăiescu, T.; Morea, A. Current trends for lavender (Lavandula angustifolia Mill.) crops and products with emphasis on essential oil quality. Plants 2023, 12, 357. [Google Scholar] [CrossRef]
- ISO 11466; Soil Quality. Extraction of Trace Elements Soluble in Aqua Regia. International Organization for Standardization: Geneva, Switzerland, 1995.
- MAPPM. Ordin 756 al Ministerului Apelor, Padurilor si Protectiei Mediului (MAPPM) Pentru Aprobarea Reglementarii Privind Evaluarea Poluarii Mediului, M. of Romania 303 bis. 1997. Available online: http://www.mmediu.ro/app/webroot/uploads/files/OM-184-1997-bilant-de-mediu-si-OM-756-1997-evaluarea-poluarii-mediului.pdf (accessed on 18 September 2023).
- Serban, E.A.; Stefan, D.S.; Peticila, A.; Rau, I.; Boșomoiu, M. Comparative study of the bioaccumulation of heavy metals in lavender plants. U.P.B. Sci. Bull. Ser. B 2023, 85, 145–156. [Google Scholar]
- ISO 11464; Soil Quality. Pretreatment of Samples for Physical-Chemical Analysis. International Organization for Standardization: Geneva, Switzerland, 2006.
- Zhuang, P.; McBride, M.B.; Xia, H.; Li, N.; Li, Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci. Total Environ. 2009, 407, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.K.; Chatterjee, S.; Datta, S.; Veer, V.; Walther, C. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere 2014, 108, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Lasat, M.M. Phytoextraction of toxic metals: A review of biological mechanisms. J. Environ. Qual. 2002, 31, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Suica-Bunghez, I.-R.; Fierascu, R.; Dumitrescu, O.; Fierascu, I.; Ion, R.-M. Characterization of Silver Nanoparticles Obtained by Lavandula angustifolia Extract. Rev. Roum. Chim. 2015, 60, 515–519. [Google Scholar]
- Fakhirah, D.; Magfira, T.A.; Hutama, A.S.; Septama, A.W.; Maryani, F.; Krismastuti, F.S.H. Synthesis, Characterization, and Antibacterial Activity of Plant Derived Zinc Oxide Nanostructure Using Lavandula angustifolia and Phyllanthus niruri Extracts. Indones. J. Chem. 2024, 24, 865–875. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Nielsen, N.E. Studies on the Effect of Heavy Metals (Cd, Pb, Cu, Mn, Zn and Fe) upon the Growth, Productivity and Quality of Lavandula angustifolia Mill. Production. J. Essent. Oil Res. 1996, 8, 259–274. [Google Scholar] [CrossRef]
- Bukar, L.I.; Hati, S.S.; Dimari, G.A.; Waziri, M. Applicability of Linear Regression Model for the Estimation of Mobility Factor of Heavy Metal in Contaminated Soil against Native Concentrations. Adv. Anal. Chem. 2012, 2, 1–5. [Google Scholar] [CrossRef]
- Shi, L.; Li, J.; Palansooriya, K.N.; Chen, Y.; Hou, D.; Meers, E.; Tsang, D.C.W.; Wang, X.; Ok, Y.S. Modeling phytoremediation of heavy metal contaminated soils through machine learning. J. Hazard. Mater. 2023, 441, 129904. [Google Scholar] [CrossRef]
- Calcan, S.I.; Pârvulescu, O.C.; Ion, V.A.; Răducanu, C.E.; Bădulescu, L.; Madjar, R.; Dobre, T.; Egri, D.; Moț, A.; Iliescu, L.M.; et al. Effects of biochar on soil properties and tomato growth. Agronomy 2022, 12, 1824. [Google Scholar] [CrossRef]
- Ion, V.A.; Pârvulescu, O.C.; Velcea, D.; Popa, O.; Ahmadi, M. Physico-chemical parameters and antioxidant activity of Romanian sea buckthorn berries. Rev. Chim. 2019, 70, 4187–4192. [Google Scholar]
- Bell, M.J.; McLaughlin, M.J.; Wright, G.C.; Cruickshank, A. Inter and intra-specific variation in accumulation of cadmium by peanut, soyabean, and navybean. Austr. J. Agric. Res. 1997, 48, 1151–1160. [Google Scholar]
- Eriksson, J.E. The influence of pH, soil type and time on adsorption and uptake by plants of cadmium added to soil. Water Air Soil Pollut. 1989, 48, 317–335. [Google Scholar] [CrossRef]
- Logan, T.J.; Lindsay, B.J.; Goins, L.E.; Ryan, J.A. Field assessment of sludge metal bioavailability to crops: Sludge rate response. J. Environ. Qual. 1997, 26, 534–550. [Google Scholar] [CrossRef]
- Sorensen, R.C. Teaching the characteristics of yield response with the Mitscherlich equation using computers. J. Agric. Educ. 1983, 12, 21–25. [Google Scholar] [CrossRef]
- Ferreira, I.E.P.; Zocchi, S.S.; Baron, D. Reconciling the Mitscherlich’s law of diminishing returns with Liebig’s law of the minimum. Some results on crop modeling. Math. Biosci. 2017, 293, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Nievergelt, Y. On the existence of best Mitscherlich, Verhulst, and West growth curves for generalized least-squares regression. J. Comput. Appl. Math. 2013, 248, 31–46. [Google Scholar] [CrossRef]
- Liao, Z.Q.; Zheng, J.; Fan, J.L.; Pei, S.Z.; Dai, Y.L.; Zhang, F.C.; Li, Z.J. Novel models for simulating maize growth based on thermal time and photothermal units: Applications under various mulching practices. J. Integr. Agric. 2023, 22, 1381–1395. [Google Scholar] [CrossRef]
- Tudoreanu, L.; Phillips, C.J.C. Empirical models of cadmium accumulation in maize, rye grass and soya bean plants. J. Food Agric. 2004, 84, 845–852. [Google Scholar] [CrossRef]
Parameter | Unit (M.U.) | Mean ± SD |
---|---|---|
pH | - | 6.5 ± 0.1 |
Conductivity | µS/cm | 825 ± 8.5 |
Organic carbon (humus) | % | 12.71 ± 0.69 |
Humidity | % | 49.35 ± 0.92 |
Total nitrogen | mg/kg d.w. | 18,224 ± 16 |
Total phosphorus | mg/kg d.w. | 3046 ± 13 |
Organochlorine pesticides | mg/kg d.w. | <0.01 |
Triazine pesticides | mg/kg d.w. | <0.1 |
Phosphorous pesticides | mg/kg d.w. | <0.01 |
Metal Ions | Soil (mg/kg d.w.) | Water Sample (µg/L) | Lavender (mg/kg d.w.) | Lavandin (mg/kg d.w.) |
---|---|---|---|---|
As | <0.75 | <2.0 | <0.75 | <0.75 |
Cd | <0.10 | <0.4 | <0.08 | <0.08 |
Co | 4.82 ± 0.04 | <0.85 | <0.04 | <0.04 |
Cr | 10.3 ± 0.14 | <1.3 | 0.26 ± 0.06 | 0.31 ± 0.03 |
Cu | 7.14 ± 0.03 | 4.9 ± 0.28 | 5.12 ± 0.10 | 6.14 ± 0.07 |
Fe | 27,753 ± 17 | 40.3 ± 1.84 | 75.6 ± 1.13 | 51.7 ± 0.99 |
Mn | 877 ± 5.7 | 2.5 ± 0.42 | 22.7 ± 0.57 | 21.0 ± 1.13 |
Mo | <0.10 | <2.0 | 0.84 ± 0.04 | 0.73 ± 0.03 |
Ni | 12.5 ± 0.14 | <1.0 | 1.26 ± 0.03 | 1.32 ± 0.04 |
Pb | 1.32 ± 0.03 | <0.75 | <1.50 | <1.50 |
Sb | 3.68 ± 0.03 | <1.2 | <0.18 | <0.18 |
Zn | 24.0 ± 1.41 | 15.1 ± 0.43 | 20.1 ± 0.42 | 21.3 ± 0.99 |
Ca | 24,736 ± 34 | 38.8 ± 1.13 | 12,717 ± 10 | 15,121 ± 8 |
Mg | 1943 ± 10 | 5.2 ± 0.14 | 3700 ± 6 | 3310 ± 6 |
Na | 97.2 ± 1.1 | 40.2 ± 1.12 | 496 ± 4 | 423 ± 5 |
K | 1357 ± 10 | 4.8 ± 0.70 | 19,878 ± 8 | 20,102 ± 9 |
Al | 3979 ± 13 | 99 ± 2.5 | 32.8 ± 0.85 | 29.71 ± 0.16 |
Se | Not analyzed | <1.4 | Not analyzed | Not analyzed |
Metal | Control Soil (M), (mg/kg d.w.) | Reference Values for Soils with Sensitive Use (mg/kg d.w.) * | ||
---|---|---|---|---|
Normal Value | Alert Threshold | Intervention Threshold | ||
Cd | <0.10 | 1 | 3 | 5 |
Pb | 1.32 | 20 | 50 | 100 |
Zn | 24.0 | 100 | 300 | 600 |
Metal | Normal Values (VN), (mg/kg) | Phytotoxic Concentration (VF), (mg/kg) |
---|---|---|
Cd | <0.1÷1 | 10 |
Pb | 1÷5 | 20 |
Zn | 15÷150 | 200 |
Experiments with Plants | Experiment Code | Enrichment Concentration (mg/kg d.w.) | Seedlings Plants/Experiment |
---|---|---|---|
Lavender | |||
Control | M0 | - | 2 |
Experiments with zinc | |||
Zn2+ concentration limit—normal value | E.1.1. | 100 | 2 |
Zn2+ concentration limit—alert threshold | E.1.2. | 300 | 2 |
Zn2+ concentration limit—intervention threshold | E.1.3. | 600 | 2 |
Experiments with cadmium | |||
Cd2+ concentration limit—normal value | E.1.4. | 1 | 2 |
Cd2+ concentration limit—alert threshold | E.1.5. | 3 | 2 |
Cd2+ concentration limit—intervention threshold | E.1.6. | 5 | 2 |
Experiments with lead | |||
Pb2+ concentration limit—normal value | E.1.7. | 20 | 2 |
Pb2+ concentration limit—alert threshold | E.1.8. | 50 | 2 |
Lavandin | |||
Control | M1 | - | 2 |
Experiments with zinc | |||
Zn2+ concentration limit—normal value | E.2.1. | 100 | 2 |
Zn2+ concentration limit—alert threshold | E.2.2. | 300 | 2 |
Zn2+ concentration limit—intervention threshold | E.2.3. | 600 | 2 |
Experiments with cadmium | |||
Cd2+ concentration limit—normal value | E.2.4. | 1 | 2 |
Cd2+ concentration limit—alert threshold | E.2.5. | 3 | 2 |
Cd2+ concentration limit—intervention threshold | E.2.6. | 5 | 2 |
Experiments with lead | |||
Pb2+ concentration limit—normal value | E.2.7. | 20 | 2 |
Pb2+ concentration limit—alert threshold | E.2.8. | 50 | 2 |
Pb2+ concentration limit—intervention threshold | E.2.9. | 100 | 2 |
Empirical Model | Expression | Abbreviations |
---|---|---|
Linear | y = A·x + B | y—heavy metal content in plant tissue (mg/kg d.w.); x—heavy metal content in soil (mg/kg s.d.w.); A, B—model constants. |
Mitscherlich | y = A − B exp (−C·x) | A, B, C—model constants. |
Modified Mitscherlich | y = A(1 − exp (B·x)) + C | A, B, C—model constants. |
Empirical Model | Expression | Parameters | R2 |
---|---|---|---|
Zn, Lavender (Linear, E1.3) | y = A·x + B | A = 1.37 × 10−2 B = 18.8 | 0.633 |
Zn, Lavandin (Linear, E2.2 + E2.3) | y = A·x + B | A = 3.769 × 10−2 B = 34.61 | 0.312 |
Cd, Lavender (Linear, all data) | y = A·x + B | A = 0.6759 B = 0.513 | 0.733 |
Cd, Lavandin (Linear, all data) | y = A·x + B | A = 0.8577 B = 0.2679 | 0.658 |
Pb, Lavender (Linear, all data) | y = A·x + B | A = 0.8797 B = 0.5894 | 0.953 |
Pb, Lavender (Mitscherlich, all data) | y = A − B·exp(−C·x) | A = 34.82 B = 35.46 C = 3.599 × 10−2 | 0.964 |
Pb, Lavandin (Linear, all data) | y = A·x + B | A = 0.8714 B = 1.253 | 0.957 |
Pb, Lavandin (Mitscherlich, all data) | y = A − B·exp(−C·x) | A = 35.79 B = 36.50 C = 3.856 × 10−2 | 0.976 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ștefan, D.S.; Șerban, E.A.; Boșomoiu, M.; Ungureanu, C.; Ștefan, M. Lavender as a Bioindicator: Bioaccumulation Assessment of Cd, Pb, and Zn. Environments 2025, 12, 214. https://doi.org/10.3390/environments12070214
Ștefan DS, Șerban EA, Boșomoiu M, Ungureanu C, Ștefan M. Lavender as a Bioindicator: Bioaccumulation Assessment of Cd, Pb, and Zn. Environments. 2025; 12(7):214. https://doi.org/10.3390/environments12070214
Chicago/Turabian StyleȘtefan, Daniela Simina, Ecaterina Anca Șerban, Magdalena Boșomoiu, Camelia Ungureanu, and Mircea Ștefan. 2025. "Lavender as a Bioindicator: Bioaccumulation Assessment of Cd, Pb, and Zn" Environments 12, no. 7: 214. https://doi.org/10.3390/environments12070214
APA StyleȘtefan, D. S., Șerban, E. A., Boșomoiu, M., Ungureanu, C., & Ștefan, M. (2025). Lavender as a Bioindicator: Bioaccumulation Assessment of Cd, Pb, and Zn. Environments, 12(7), 214. https://doi.org/10.3390/environments12070214