Principal Component Analysis to Discriminate and Locate Natural and Anthropogenic Sources of Contamination Within a Strongly Anthropized Region: A Technical Workflow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Analyses
2.3. Data Preparation and Multivariate Analysis
3. Results
3.1. Raw Data Distribution
3.2. Spatializing Principal Component Scores
4. Discussion
4.1. Data Distribution and Visualization
4.2. Spatializing Principal Component Scores
4.3. RGB Colour Composite Map
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IDW | Inverse Distance Weighted |
K-S | Kolmogorov–Smirnov |
KMO | Kaiser–Meyer–Olkin |
M | Median |
NST | Normal score transformation |
PCA | Principal component analysis |
References
- Tipping, E.; Lawlor, A.J.; Lofts, S.; Shotbolt, L. Simulating the Long-Term Chemistry of an Upland UK Catchment: Heavy Metals. Environ. Pollut. 2006, 141, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Birke, M.; Reimann, C.; Rauch, U.; De Vivo, B.; Halamić, J.; Klos, V.; Gosar, M.; Ladenberger, A. Distribution of Cadmium in European Agricultural and Grazing Land Soil. In Chemistry of Europe’s Agricultural Soils—Part B: General Background Information and Further Analysis; Geologische Bundesanstalt für Geowissenschaften und Rohstoffe (BGR): Hannover, Germany, 2014; pp. 89–116. [Google Scholar]
- Zhang, C.; Fay, D.; McGrath, D.; Grennan, E.; Carton, O.T. Statistical Analyses of Geochemical Variables in Soils of Ireland. Geoderma 2008, 146, 378–390. [Google Scholar] [CrossRef]
- Rodrigues, S.; Urquhart, G.; Hossack, I.; Pereira, M.E.; Duarte, A.C.; Davidson, C.; Hursthouse, A.; Tucker, P.; Roberston, D. The Influence of Anthropogenic and Natural Geochemical Factors on Urban Soil Quality Variability: A Comparison between Glasgow, UK and Aveiro, Portugal. Environ. Chem. Lett. 2009, 7, 141–148. [Google Scholar] [CrossRef]
- Argyraki, A.; Kelepertzis, E. Urban Soil Geochemistry in Athens, Greece: The Importance of Local Geology in Controlling the Distribution of Potentially Harmful Trace Elements. Sci. Total Environ. 2014, 482–483, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate Statistical and GIS-Based Approach to Identify Heavy Metal Sources in Soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Ergin, M.; Saydam, C.; Baştürk, Ö.; Erdem, E.; Yörük, R. Heavy Metal Concentrations in Surface Sediments from the Two Coastal Inlets (Golden Horn Estuary and İzmit Bay) of the Northeastern Sea of Marmara. Chem. Geol. 1991, 91, 269–285. [Google Scholar] [CrossRef]
- Muller, G. Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control. A Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Tomlinson, D.; Wilson, J.; Harris, C.R.; Jeffrey, D.W. Problems in Assessment of Heavy Metals in Estuaries and the Formation of Pollution Index. Helgoländer Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Reimann, C.; De Caritat, P. Distinguishing between Natural and Anthropogenic Sources for Elements in the Environment: Regional Geochemical Surveys versus Enrichment Factors. Sci. Total Environ. 2005, 337, 91–107. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Vu, T.D. Identification of Multivariate Geochemical Anomalies Using Spatial Autocorrelation Analysis and Robust Statistics. Ore Geol. Rev. 2019, 111, 102985. [Google Scholar] [CrossRef]
- Bohling, G.C.; Davis, J.C.; Olea, R.A.; Harff, J. Singularity and Nonnormality in the Classification of Compositional Data. Math. Geol. 1998, 30, 5–20. [Google Scholar] [CrossRef]
- Reimann, C.; Filzmoser, P. Normal and Lognormal Data Distribution in Geochemistry: Death of a Myth. Consequences for the Statistical Treatment of Geochemical and Environmental Data. Environ. Geol. 2000, 39, 1001–1014. [Google Scholar] [CrossRef]
- Mukhametzyanov, I.Z. Non-Linear Multivariate Normalization Methods. In Normalization of Multidimensional Data for Multi-Criteria Decision Making Problems: Inversion, Displacement, Asymmetry; Springer International Publishing: Cham, Switzerland, 2023; pp. 167–194. [Google Scholar]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. Ser. B Stat. Methodol. 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Sakia, R.M. The Box-Cox Transformation Technique: A Review. J. R. Stat. Soc. Ser. D Stat. 1992, 41, 169. [Google Scholar] [CrossRef]
- Xu, T.; Gómez-Hernández, J.J. Inverse Sequential Simulation: A New Approach for the Characterization of Hydraulic Conductivities Demonstrated on a Non-Gaussian Field. Water Resour. Res. 2015, 51, 2227–2242. [Google Scholar] [CrossRef]
- Carranza, E.J.M. Geochemical Mineral Exploration: Should We Use Enrichment Factors or Log-Ratios? Nat. Resour. Res. 2017, 26, 411–428. [Google Scholar] [CrossRef]
- Jabrane, M.; Touiouine, A.; Bouabdli, A.; Chakiri, S.; Mohsine, I.; Valles, V.; Barbiero, L. Data Conditioning Modes for the Study of Groundwater Resource Quality Using a Large Physico-Chemical and Bacteriological Database, Occitanie Region, France. Water 2022, 15, 84. [Google Scholar] [CrossRef]
- Carranza, E.J.M. Analysis and Mapping of Geochemical Anomalies Using Logratio-Transformed Stream Sediment Data with Censored Values. J. Geochem. Explor. 2011, 110, 167–185. [Google Scholar] [CrossRef]
- Härdle, W.K.; Simar, L. Applied Multivariate Statistical Analysis, 4th ed.; Springer: Berlin, Heidelberg, 2015; ISBN 9783662451717. [Google Scholar]
- Liu, Y.; Cheng, Q.; Zhou, K.; Xia, Q.; Wang, X. Multivariate Analysis for Geochemical Process Identification Using Stream Sediment Geochemical Data: A Perspective from Compositional Data. Geochem. J. 2016, 50, 293–314. [Google Scholar] [CrossRef]
- Varol, M. Assessment of Heavy Metal Contamination in Sediments of the Tigris River (Turkey) Using Pollution Indices and Multivariate Statistical Techniques. J. Hazard Mater. 2011, 195, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.T. Principal Components as a Small Number of Interpretable Variables: Some Examples. In Principal Component Analysis; Jolliffe, I.T., Ed.; Springer: New York, NY, USA, 1986; pp. 50–63. ISBN 978-1-4757-1904-8. [Google Scholar]
- Cheng, Q.; Panahi, A. Principal Component Analysis with Optimum Order Sample Correlation Coefficient for Image Enhancement. Int. J. Remote Sens. 2006, 27, 3387–3401. [Google Scholar] [CrossRef]
- Carroll, J.B. An analytical solution for approximating simple structure in factor analysis. Psychometrika 1953, 18, 23–38. [Google Scholar] [CrossRef]
- Hendrickson, A.E.; White, P.O. Promax: A Quick Method for Rotation to Oblique Simple Structure. Br. J. Stat. Psychol. 1964, 17, 65–70. [Google Scholar] [CrossRef]
- Reimann, C.; Filzmoser, P.; Garrett, R.G. Factor Analysis Applied to Regional Geochemical Data: Problems and Possibilities. Appl. Geochem. 2002, 17, 185–206. [Google Scholar] [CrossRef]
- Filzmoser, P.; Garrett, R.G.; Reimann, C. Multivariate Outlier Detection in Exploration Geochemistry. Comput. Geosci. 2005, 31, 579–587. [Google Scholar] [CrossRef]
- Harris, J.; Wilkinson, L.; Grunsky, E. Effective Use and Interpretation of Lithogeochemical Data in Regional Mineral Exploration Programs: Application of Geographic Information Systems (GIS) Technology. Ore Geol. Rev. 2000, 16, 107–143. [Google Scholar] [CrossRef]
- Gazley, M.; Collins, K.; Roberston, J.; Hines, B.; Fisher, L.; McFarlane, A. Application of Principal Component Analysis and Cluster Analysis to Mineral Exploration and Mine Geology. In Proceedings of the AusIMM New Zealand Branch Annual Conference, Dunedin, New Zealand, 31 August 2015. [Google Scholar]
- Jansson, N.F.; Allen, R.L.; Skogsmo, G.; Tavakoli, S. Principal Component Analysis and K-Means Clustering as Tools during Exploration for Zn Skarn Deposits and Industrial Carbonates, Sala Area, Sweden. J. Geochem. Explor. 2022, 233, 106909. [Google Scholar] [CrossRef]
- Sadeghi, M.; Casey, P.; Carranza, E.J.M.; Lynch, E.P. Principal Components Analysis and K-Means Clustering of till Geochemical Data: Mapping and Targeting of Prospective Areas for Lithium Exploration in Västernorrland Region, Sweden. Ore Geol. Rev. 2024, 167, 106002. [Google Scholar] [CrossRef]
- Makvandi, S.; Ghasemzadeh-Barvarz, M.; Beaudoin, G.; Grunsky, E.C.; Beth McClenaghan, M.; Duchesne, C. Principal Component Analysis of Magnetite Composition from Volcanogenic Massive Sulfide Deposits: Case Studies from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) Deposits. Ore Geol. Rev. 2016, 72, 60–85. [Google Scholar] [CrossRef]
- Ueki, K.; Iwamori, H. Geochemical Differentiation Processes for Arc Magma of the Sengan Volcanic Cluster, Northeastern Japan, Constrained from Principal Component Analysis. Lithos 2017, 290–291, 60–75. [Google Scholar] [CrossRef]
- Sikakwe, G.U.; Nwachukwu, A.N.; Uwa, C.U.; Abam Eyong, G. Geochemical Data Handling, Using Multivariate Statistical Methods for Environmental Monitoring and Pollution Studies. Environ. Technol. Innov. 2020, 18, 100645. [Google Scholar] [CrossRef]
- de Sá, V.R.; Koike, K.; Goto, T.; Nozaki, T.; Takaya, Y.; Yamasaki, T. A Combination of Geostatistical Methods and Principal Components Analysis for Detection of Mineralized Zones in Seafloor Hydrothermal Systems. Nat. Resour. Res. 2021, 30, 2875–2887. [Google Scholar] [CrossRef]
- Liu, J.; Kang, H.; Tao, W.; Li, H.; He, D.; Ma, L.; Tang, H.; Wu, S.; Yang, K.; Li, X. A Spatial Distribution—Principal Component Analysis (SD-PCA) Model to Assess Pollution of Heavy Metals in Soil. Sci. Total Environ. 2023, 859, 160112. [Google Scholar] [CrossRef]
- Bux, R.K.; Batool, M.; Shah, S.M.; Solangi, A.R.; Shaikh, A.A.; Haider, S.I.; Shah, Z.-H. Mapping the Spatial Distribution of Soil Heavy Metals Pollution by Principal Component Analysis and Cluster Analyses. Water Air Soil Pollut. 2023, 234, 330. [Google Scholar] [CrossRef]
- Borůvka, L.; Vacek, O.; Jehlička, J. Principal Component Analysis as a Tool to Indicate the Origin of Potentially Toxic Elements in Soils. Geoderma 2005, 128, 289–300. [Google Scholar] [CrossRef]
- Toller, S.; Funari, V.; Vasumini, I.; Dinelli, E. Geochemical Characterization of Surface Sediments from the Ridracoli Reservoir Area and Surroundings, Italy. Details on Bulk Composition and Grain Size. J. Geochem. Explor. 2021, 231, 106863. [Google Scholar] [CrossRef]
- Bonardi, G.; Ciarcia, S.; Di Nocera, S.; Matano, F.; Sgrosso, I.; Torre, M. Carta Delle Principali Unità Cinematiche Dell’Appennino Meridionale. Nota Illustrativa. Ital. J. Geosci. 2009, 128, 47–60. [Google Scholar]
- Vitale, S.; Ciarcia, S. Tectono-Stratigraphic and Kinematic Evolution of the Southern Apennines/Calabria–Peloritani Terrane System (Italy). Tectonophysics 2013, 583, 164–182. [Google Scholar] [CrossRef]
- Guarino, A.; Albanese, S.; Cicchella, D.; Ebrahimi, P.; Dominech, S.; Rita Pacifico, L.; Rofrano, G.; Nicodemo, F.; Pizzolante, A.; Allocca, C.; et al. Factors Influencing the Bioavailability of Some Selected Elements in the Agricultural Soil of a Geologically Varied Territory: The Campania Region (Italy) Case Study. Geoderma 2022, 428, 116207. [Google Scholar] [CrossRef]
- Giannetti, B.; Luhr, J.F. The White Trachytic Tuff of Roccamonfina Volcano (Roman Region, Italy). Contrib. Mineral. Petrol. 1983, 84, 235–252. [Google Scholar] [CrossRef]
- Peccerillo, A. Plio-Quaternary Volcanism in Italy: Petrology, Geochemistry, Geodynamics; Springer: New York, NY, USA, 2005; pp. 1–365. [Google Scholar] [CrossRef]
- De Vivo, B.; Rolandi, G.; Gans, P.; Calvert, A.; Bohrson, W.; Spera, F.; Belkin, H. New Constraints on the Pyroclastic Eruptive History of the Campanian Volcanic Plain (Italy). Miner. Pet. 2001, 73, 47–65. [Google Scholar] [CrossRef]
- Rolandi, G.; Petrosino, P.; Mc Geehin, J. The Interplinian Activity at Somma–Vesuvius in the Last 3500 Years. J. Volcanol. Geotherm. Res. 1998, 82, 19–52. [Google Scholar] [CrossRef]
- Rolandi, G.; Bellucci, F.; Heizler, M.T.; Belkin, H.E.; De Vivo, B. Tectonic Controls on the Genesis of Ignimbrites from the Campanian Volcanic Zone, Southern Italy. Miner. Pet. 2003, 79, 3–31. [Google Scholar] [CrossRef]
- Torrente, M.M.; Milia, A. Volcanism and Faulting of the Campania Margin (Eastern Tyrrhenian Sea, Italy): A Three-Dimensional Visualization of a New Volcanic Field off Campi Flegrei. Bull. Volcanol. 2013, 75, 719. [Google Scholar] [CrossRef]
- Ayuso, R.A.; de Vivo, B.; Rolandi, G.; Seal II, R.R.; Paone, A. Geochemical and Isotopic (Nd-Pb-Sr-O) Variations Bearing on the Genesis of Volcanic Rocks from Vesuvius, Italy. J. Volcanol. Geotherm. Res. 1998, 82, 53–78. [Google Scholar] [CrossRef]
- De Vivo, B.; Petrosino, P.; Lima, A.; Rolandi, G.; Belkin, H.E. Research Progress in Volcanology in the Neapolitan Area, Southern Italy: A Review and Some Alternative Views. Miner. Pet. 2010, 99, 1–28. [Google Scholar] [CrossRef]
- Salminen, R.; Batista, M.; Bidovec, M.; Demetriades, A.; De Vivo, B.; De Vos, W.; Duris, A.G.; Gregorauskienė, V.; Halamić, J.; Heitzmann, P. FOREGS Geochemical Atlas of Europe, Part 1: Background Information, Methodology and Maps; Geological Survey of Finland: Espoo, Finland, 2005; ISBN 951-690-921-3. [Google Scholar]
- Reimann, C.; Filzmoser, P.; Garrett, R.G.; Dutter, R. Statistical Data Analysis Explained; John Wiley & Sons, Ltd.: Chichester, UK, 2008; Volume 44, ISBN 9780470987605. [Google Scholar]
- De Vivo, B.; Lima, A.; Albanese, S.; Cicchella, D.; Rezza, C.; Civitillo, D.; Minolfi, G.; Zuzolo, D. Atlante Geochimico-Ambientale Dei Suoli Della Campania. In Environmental Geochemical Atlas of Campania Soils; Aracne Editrice: Rome, Italy, 2016. [Google Scholar]
- De Vivo, B.; Cicchella, D.; Lima, A.; Fortelli, A.; Guarino, A.; Zuzolo, D.; Esposito, M.; Cerino, R.; Pizzolante, A.; Albanese, S. Monitoraggio Geochimico-Ambientale dei Suoli Della Regione Campania—Progetto Campania Trasparente—Volume 1—Elementi Potenzialmente Tossici e Loro Biodisponibilità, Elementi Maggiori e in Traccia (Distribuzione in Suoli Superficiali e Profondi); Aracne editrice: Rome, Italy, 2021; ISBN 978-88-255-4036-9. [Google Scholar]
- Kaiser, H.F. A Second Generation Little Jiffy. Psychometrika 1970, 35, 401–415. [Google Scholar] [CrossRef]
- Kaiser, H.F. An Index of Factorial Simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Petrik, A.; Albanese, S.; Lima, A.; De Vivo, B. The Spatial Pattern of Beryllium and Its Possible Origin Using Compositional Data Analysis on a High-Density Topsoil Data Set from the Campania Region (Italy). Appl. Geochem. 2018, 91, 162–173. [Google Scholar] [CrossRef]
- Zuzolo, D.; Cicchella, D.; Lima, A.; Guagliardi, I.; Cerino, P.; Pizzolante, A.; Thiombane, M.; De Vivo, B.; Albanese, S. Potentially Toxic Elements in Soils of Campania Region (Southern Italy): Combining Raw and Compositional Data. J. Geochem. Explor. 2020, 213, 106524. [Google Scholar] [CrossRef]
- Kaiser, H.F. The Varimax Criterion for Analytic Rotation in Factor Analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Di Vito, M.A.; Talamo, P.; de Vita, S.; Rucco, I.; Zanchetta, G.; Cesarano, M. Dynamics and Effects of the Vesuvius Pomici Di Avellino Plinian Eruption and Related Phenomena on the Bronze Age Landscape of Campania Region (Southern Italy). Quat. Int. 2019, 499, 231–244. [Google Scholar] [CrossRef]
- Rolandi, G.; Maraffi, S.; Petrosino, P.; Lirer, L. The Ottaviano Eruption of Somma-Vesuvio (8000 y B.P.): A Magmatic Alternating Fall and Flow-Forming Eruption. J. Volcanol. Geotherm. Res. 1993, 58, 43–65. [Google Scholar] [CrossRef]
- Rolandi, G.; Mastrolorenzo, G.; Barrella, A.M.; Borrelli, A. The Avellino Plinian Eruption of Somma-Vesuvius (3760 y.B.P.): The Progressive Evolution from Magmatic to Hydromagmatic Style. J. Volcanol. Geotherm. Res. 1993, 58, 67–88. [Google Scholar] [CrossRef]
- Cicchella, D.; De Vivo, B.; Lima, A.; Albanese, S.; Fedele, L. Urban Geochemical Mapping in the Campania Region (Italy). Geochem. Explor. Environ. Anal. 2008, 8, 19–29. [Google Scholar] [CrossRef]
- Quantin, C.; Becquer, T.; Berthelin, J. Mn-Oxide: A Major Source of Easily Mobilisable Co and Ni under Reducing Conditions in New Caledonia Ferralsols. Comptes Rendus Geosci. 2002, 334, 273–278. [Google Scholar] [CrossRef]
- Mayanna, S.; Peacock, C.L.; Schäffner, F.; Grawunder, A.; Merten, D.; Kothe, E.; Büchel, G. Biogenic Precipitation of Manganese Oxides and Enrichment of Heavy Metals at Acidic Soil PH. Chem. Geol. 2015, 402, 6–17. [Google Scholar] [CrossRef]
- Savelli, C. The Problem of Rock Assimilation by Somma-Vesuvius Magma. Contrib. Mineral. Petrol. 1967, 16, 328–353. [Google Scholar] [CrossRef]
- Cicchella, D.; Ambrosino, M.; Albanese, S.; Guarino, A.; Lima, A.; De Vivo, B.; Guagliardi, I. Major Elements Concentration in Soils. A Case Study from Campania Region (Italy). J. Geochem. Explor. 2023, 247, 107179. [Google Scholar] [CrossRef]
- Albanese, S.; Cicchella, D.; De Vivo, B.; Lima, A.; Civitillo, D.; Cosenza, A.; Grezzi, G. Advancements in Urban Geochemical Mapping of the Naples Metropolitan Area: Colour Composite Maps and Results from an Urban Brownfield Site. In Mapping the Chemical Environment of Urban Areas; John Wiley & Sons: New York, NY, USA, 2011; pp. 410–423. ISBN 9780470670071. [Google Scholar]
- Thiombane, M.; Martín-Fernández, J.-A.; Albanese, S.; Lima, A.; Doherty, A.; De Vivo, B. Exploratory Analysis of Multi-Element Geochemical Patterns in Soil from the Sarno River Basin (Campania Region, Southern Italy) through Compositional Data Analysis (CODA). J. Geochem. Explor. 2018, 195, 110–120. [Google Scholar] [CrossRef]
- Arienzo, M.; Adamo, P.; Rosaria Bianco, M.; Violante, P. Impact of Land Use and Urban Runoff on the Contamination of the Sarno River Basin in Southwestern Italy. Water Air Soil Pollut. 2001, 131, 349–366. [Google Scholar] [CrossRef]
Element | Samples | Min | Q25 | Median | Mean | Q75 | Max | SD | CV% | MAD | Skewness | Kurtosis | Accuracy (%) | RPD (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | 7300 | 0.60 | 7.90 | 11.80 | 12.40 | 15.20 | 930.00 | 13.02 | 105.00 | 3.70 | 48.88 | 3387.39 | 2.60 | 2.70 |
Ba | 7300 | 8.30 | 194.20 | 337.00 | 368.48 | 505.00 | 2953.50 | 220.02 | 59.70 | 152.00 | 1.16 | 5.19 | 4.30 | 5.60 |
Be | 5864 | 0.10 | 2.40 | 4.70 | 4.56 | 6.30 | 17.90 | 2.42 | 53.10 | 1.80 | 0.33 | −0.04 | 6.90 | 11.10 |
Bi | 6963 | 0.03 | 0.32 | 0.42 | 0.47 | 0.53 | 11.82 | 0.35 | 75.40 | 0.11 | 12.98 | 310.13 | 8.50 | 16.20 |
Cd | 7152 | <0.01 | 0.20 | 0.31 | 0.45 | 0.51 | 11.06 | 0.52 | 114.30 | 0.13 | 6.74 | 86.42 | 5.20 | 6.90 |
Co | 7300 | 0.50 | 8.30 | 11.50 | 11.78 | 14.60 | 88.00 | 5.36 | 45.50 | 3.20 | 1.84 | 13.74 | 5.50 | 8.90 |
Cr | 7300 | <0.50 | 10.80 | 16.90 | 21.74 | 27.50 | 808.40 | 24.14 | 111.10 | 7.40 | 13.42 | 311.59 | 5.20 | 4.60 |
Cu | 7300 | 2.51 | 32.92 | 52.86 | 93.50 | 111.39 | 2394.33 | 125.61 | 134.30 | 26.79 | 6.04 | 59.66 | 4.80 | 8.40 |
Hg | 6915 | <5.00 | 29.00 | 45.00 | 82.31 | 77.00 | 6775.00 | 161.17 | 195.80 | 20.00 | 16.76 | 532.28 | 9.00 | 17.70 |
Mn | 7300 | 51.00 | 677.00 | 834.50 | 944.79 | 1082.00 | 7975.00 | 508.81 | 53.90 | 188.50 | 4.17 | 34.12 | 2.70 | 3.80 |
Mo | 7300 | 0.06 | 0.74 | 1.10 | 1.38 | 1.67 | 62.15 | 1.52 | 110.00 | 0.44 | 14.29 | 412.96 | 6.00 | 4.40 |
Ni | 7300 | 0.40 | 12.00 | 16.10 | 19.86 | 25.30 | 155.60 | 13.34 | 67.20 | 5.60 | 1.85 | 5.82 | 3.50 | 3.70 |
Pb | 7300 | 3.12 | 29.66 | 47.07 | 59.91 | 66.60 | 2052.18 | 70.80 | 118.20 | 18.33 | 9.20 | 152.30 | 4.80 | 3.30 |
Sb | 7065 | 0.01 | 0.35 | 0.52 | 0.79 | 0.79 | 42.80 | 1.42 | 179.30 | 0.20 | 14.54 | 334.77 | 14.70 | 3.50 |
Sn | 5864 | 0.20 | 1.70 | 2.90 | 3.54 | 4.10 | 125.60 | 4.48 | 126.70 | 1.20 | 13.56 | 277.04 | 5.70 | 4.70 |
Sr | 7300 | 4.60 | 80.00 | 141.50 | 166.16 | 223.55 | 1370.60 | 115.11 | 69.30 | 69.30 | 1.49 | 5.80 | 6.90 | 5.10 |
Th | 7300 | 0.30 | 7.10 | 12.10 | 12.61 | 16.40 | 64.30 | 7.16 | 56.80 | 4.70 | 1.24 | 3.58 | 6.20 | 5.60 |
Tl | 7113 | 0.05 | 0.71 | 1.36 | 1.38 | 1.95 | 69.00 | 1.14 | 82.80 | 0.62 | 29.99 | 1753.33 | 3.60 | 3.50 |
U | 7134 | <0.1 | 1.30 | 3.00 | 3.35 | 4.80 | 43.20 | 2.40 | 71.50 | 1.70 | 1.88 | 14.75 | 6.90 | 2.20 |
V | 7300 | 4.00 | 45.00 | 64.00 | 76.58 | 89.00 | 234.00 | 29.49 | 43.60 | 22.00 | 0.48 | −0.11 | 4.60 | 10.00 |
Zn | 7300 | 3.90 | 68.00 | 85.90 | 103.65 | 110.83 | 3210.60 | 91.14 | 87.90 | 20.40 | 11.63 | 263.50 | 3.60 | 4.70 |
Element | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
Th | 0.92 | 0.08 | −0.04 | 0.00 |
Be | 0.90 | 0.24 | −0.05 | 0.08 |
As | 0.81 | 0.40 | 0.01 | −0.05 |
Tl | 0.78 | 0.26 | −0.12 | 0.40 |
U | 0.75 | 0.23 | −0.24 | 0.35 |
V | 0.70 | 0.21 | 0.31 | 0.48 |
Bi | 0.69 | 0.49 | 0.18 | −0.18 |
Ba | 0.58 | 0.23 | 0.00 | 0.69 |
Sn | 0.46 | 0.72 | −0.14 | 0.19 |
Pb | 0.45 | 0.75 | −0.16 | 0.22 |
Mn | 0.39 | 0.01 | 0.67 | −0.16 |
Mo | 0.39 | 0.47 | 0.06 | 0.38 |
Ni | −0.29 | −0.03 | 0.89 | −0.08 |
Sb | 0.28 | 0.81 | −0.17 | −0.01 |
Cr | −0.24 | 0.15 | 0.81 | −0.19 |
Cd | 0.22 | 0.65 | 0.32 | 0.06 |
Zn | 0.11 | 0.81 | 0.19 | 0.24 |
Co | 0.10 | −0.08 | 0.92 | 0.20 |
Cu | 0.07 | 0.45 | 0.08 | 0.69 |
Hg | 0.06 | 0.79 | −0.03 | 0.07 |
Sr | −0.01 | −0.02 | −0.24 | 0.85 |
Eigenvalue | 5.79 | 4.57 | 3.22 | 2.62 |
Variance (%) | 42.5 | 15.7 | 10.1 | 8.8 |
Cumulative (%) | 42.5 | 58.2 | 68.4 | 77.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannone, A.; Dominech, S.; Zhang, C.; Pacifico, L.R.; De Falco, A.; Albanese, S. Principal Component Analysis to Discriminate and Locate Natural and Anthropogenic Sources of Contamination Within a Strongly Anthropized Region: A Technical Workflow. Environments 2025, 12, 163. https://doi.org/10.3390/environments12050163
Iannone A, Dominech S, Zhang C, Pacifico LR, De Falco A, Albanese S. Principal Component Analysis to Discriminate and Locate Natural and Anthropogenic Sources of Contamination Within a Strongly Anthropized Region: A Technical Workflow. Environments. 2025; 12(5):163. https://doi.org/10.3390/environments12050163
Chicago/Turabian StyleIannone, Antonio, Salvatore Dominech, Chaosheng Zhang, Lucia Rita Pacifico, Alessio De Falco, and Stefano Albanese. 2025. "Principal Component Analysis to Discriminate and Locate Natural and Anthropogenic Sources of Contamination Within a Strongly Anthropized Region: A Technical Workflow" Environments 12, no. 5: 163. https://doi.org/10.3390/environments12050163
APA StyleIannone, A., Dominech, S., Zhang, C., Pacifico, L. R., De Falco, A., & Albanese, S. (2025). Principal Component Analysis to Discriminate and Locate Natural and Anthropogenic Sources of Contamination Within a Strongly Anthropized Region: A Technical Workflow. Environments, 12(5), 163. https://doi.org/10.3390/environments12050163