Association of Dietary Patterns with Blood Heavy Metal Concentrations: Results from the Korean National Health and Nutrition Examination Survey 2012–2016
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Source and Population
2.2. General Characteristics of Subjects
2.3. Heavy Metal Concentration in Blood
2.4. Dietary Patterns
2.5. Statistical Analyses
3. Results
3.1. General Characteristics, Heavy Metal Concentration, and Biochemical Values According to Dietary Patterns
3.2. Association Between Blood Heavy Metal Concentrations and Dietary Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef]
- Ardila, P.A.R.; Alonso, R.Á.; Valsero, J.J.D.; García, R.M.; Cabrera, F.Á.; Cosío, E.L.; Laforet, S.D. Assessment of heavy metal pollution in marine sediments from southwest of Mallorca Island, Spain. Environ. Sci. Pollut. Res. 2023, 30, 16852–16866. [Google Scholar] [CrossRef] [PubMed]
- Dargahi, A.; Rahimpouran, S.; Rad, H.M.; Eghlimi, E.; Zandian, H.; Hosseinkhani, A.; Vosoughi, M.; Valizadeh, F.; Hossinzadeh, R. Investigation of the link between the type and concentrations of heavy metals and other elements in blood and urinary stones and their association to the environmental factors and dietary pattern. J. Trace Elem. Med. Biol. 2023, 80, 127270. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Gong, T.; Liang, P. Heavy Metal Exposure and Cardiovascular Disease. Circ. Res. 2024, 134, 1160–1178. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Ramond, A.; O’Keeffe, L.M.; Shahzad, S.; Kunutsor, S.K.; Muka, T.; Gregson, J.; Willeit, P.; Warnakula, S.; Khan, H.; et al. Environmental toxic metal contaminants and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2018, 362, k3310. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yu, L.; Yang, Z.; Shen, P.; Lin, H.; Shui, L.; Tang, M.; Jin, M.; Chen, K.; Wang, J. Associations of Diet Quality and Heavy Metals with Obesity in Adults: A Cross-Sectional Study from National Health and Nutrition Examination Survey (NHANES). Nutrients 2022, 14, 4038. [Google Scholar] [CrossRef]
- Planchart, A.; Green, A.; Hoyo, C.; Mattingly, C.J. Heavy Metal Exposure and Metabolic Syndrome: Evidence from Human and Model System Studies. Curr. Environ. Health Rep. 2018, 5, 110–124. [Google Scholar] [CrossRef]
- Zhou, J.; Meng, X.; Deng, L.; Liu, N. Non-linear associations between metabolic syndrome and four typical heavy metals: Data from NHANES 2011–2018. Chemosphere 2022, 291 Pt 2, 132953. [Google Scholar] [CrossRef] [PubMed]
- Gundacker, C.; Forsthuber, M.; Szigeti, T.; Kakucs, R.; Mustieles, V.; Fernandez, M.F.; Bengtsen, E.; Vogel, U.; Hougaard, K.S.; Saber, A.T. Lead (Pb) and neurodevelopment: A review on exposure and biomarkers of effect (BDNF, HDL) and susceptibility. Int. J. Hyg. Environ. Health 2021, 238, 113855. [Google Scholar] [CrossRef]
- Farias, P.; Hernandez-Bonilla, D.; Moreno-Macias, H.; Montes-Lopez, S.; Schnaas, L.; Texcalac-Sangrador, J.L.; Rios, C.; Riojas-Rodriguez, H. Prenatal Co-Exposure to Manganese, Mercury, and Lead, and Neurodevelopment in Children during the First Year of Life. Int. J. Environ. Res. Public Health 2022, 19, 13020. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Huang, L.; Huang, S.; Wei, L.; Cao, D.; Zan, G.; Tan, Y.; Wang, S.; Yang, M.; Tian, L.; et al. Association of both prenatal and early childhood multiple metals exposure with neurodevelopment in infant: A prospective cohort study. Environ. Res. 2022, 205, 112450. [Google Scholar] [CrossRef] [PubMed]
- Sadighara, P.; Abedini, A.H.; Irshad, N.; Ghazi-Khansari, M.; Esrafili, A.; Yousefi, M. Association Between Non-alcoholic Fatty Liver Disease and Heavy Metal Exposure: A Systematic Review. Biol. Trace Elem. Res. 2023, 201, 5607–5615. [Google Scholar] [CrossRef]
- Yang, C.; Li, Y.; Ding, R.; Xing, H.; Wang, R.; Zhang, M. Lead exposure as a causative factor for metabolic associated fatty liver disease (MAFLD) and a lead exposure related nomogram for MAFLD prevalence. Front. Public Health 2022, 10, 1000403. [Google Scholar] [CrossRef]
- Kulathunga, M.; Wijayawardena, M.A.A.; Naidu, R. Dietary heavy metal(loid)s exposure and prevalence of chronic kidney disease of unknown aetiology (CKDu) in Sri Lanka. Environ. Geochem. Health 2022, 44, 3863–3874. [Google Scholar] [CrossRef]
- Sanders, A.P.; Mazzella, M.J.; Malin, A.J.; Hair, G.M.; Busgang, S.A.; Saland, J.M.; Curtin, P. Combined exposure to lead, cadmium, mercury, and arsenic and kidney health in adolescents age 12–19 in NHANES 2009–2014. Environ. Int. 2019, 131, 104993. [Google Scholar] [CrossRef] [PubMed]
- Filippini, T.; Torres, D.; Lopes, C.; Carvalho, C.; Moreira, P.; Naska, A.; Kasdagli, M.I.; Malavolti, M.; Orsini, N.; Vinceti, M. Cadmium exposure and risk of breast cancer: A dose-response meta-analysis of cohort studies. Environ. Int. 2020, 142, 105879. [Google Scholar] [CrossRef]
- Heng, Y.Y.; Asad, I.; Coleman, B.; Menard, L.; Benki-Nugent, S.; Hussein Were, F.; Karr, C.J.; McHenry, M.S. Heavy metals and neurodevelopment of children in low and middle-income countries: A systematic review. PLoS ONE 2022, 17, e0265536. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; McCullough, L.E.; Tzeng, J.Y.; Darrah, T.; Vengosh, A.; Maguire, R.L.; Maity, A.; Samuel-Hodge, C.; Murphy, S.K.; Mendez, M.A.; et al. Maternal blood cadmium, lead and arsenic levels, nutrient combinations, and offspring birthweight. BMC Public Health 2017, 17, 354. [Google Scholar] [CrossRef] [PubMed]
- Wai, K.M.; Mar, O.; Kosaka, S.; Umemura, M.; Watanabe, C. Prenatal Heavy Metal Exposure and Adverse Birth Outcomes in Myanmar: A Birth-Cohort Study. Int. J. Environ. Res. Public Health 2017, 14, 1339. [Google Scholar] [CrossRef]
- Chung, H.K.; Park, J.Y.; Cho, Y.; Shin, M.J. Contribution of dietary patterns to blood heavy metal concentrations in Korean adults: Findings from the Fifth Korea National Health and Nutrition Examination Survey 2010. Food Chem. Toxicol. 2013, 62, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Suomi, J.; Valsta, L.; Tuominen, P. Dietary Heavy Metal Exposure among Finnish Adults in 2007 and in 2012. Int. J. Environ. Res. Public Health 2021, 18, 10581. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, Y.; Liu, Y.; Liang, B.; Zhou, H.; Li, Y.; Zhang, Y.; Huang, J.; Yu, C.; Chen, K. An Assessment of Dietary Exposure to Cadmium in Residents of Guangzhou, China. Int. J. Environ. Res. Public Health 2018, 15, 556. [Google Scholar] [CrossRef] [PubMed]
- Yoo, B.W.; Kim, B.; Joshi, P.; Kwon, S.O.; Kim, Y.; Oh, J.S.; Kim, J.; Oh, S.Y.; Lim, J.A.; Choi, B.S.; et al. Effect of dietary patterns on the blood/urine concentration of the selected toxic metals (Cd, Hg, Pb) in Korean children. Food Sci. Biotechnol. 2018, 27, 1227–1237. [Google Scholar] [CrossRef] [PubMed]
- Kelishadi, R.; Hasanghaliaei, N.; Poursafa, P.; Keikha, M.; Ghannadi, A.; Yazdi, M.; Rahimi, E. A randomized controlled trial on the effects of jujube fruit on the concentrations of some toxic trace elements in human milk. J. Res. Med. Sci. 2016, 21, 108. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Hossain, K.F.B.; Banik, S.; Sikder, M.T.; Akter, M.; Bondad, S.E.C.; Rahaman, M.S.; Hosokawa, T.; Saito, T.; Kurasaki, M. Selenium and zinc protections against metal-(loids)-induced toxicity and disease manifestations: A review. Ecotoxicol. Environ. Saf. 2019, 168, 146–163. [Google Scholar] [CrossRef]
- Sun, H.; Chen, J.; Xiong, D.; Long, M. Detoxification of Selenium Yeast on Mycotoxins and Heavy Metals: A Review. Biol. Trace Elem. Res. 2023, 201, 5441–5454. [Google Scholar] [CrossRef]
- Carrington, C.D.; Montwill, B.; Bolger, P.M. An intervention analysis for the reduction of exposure to methylmercury from the consumption of seafood by women of child-bearing age. Regul. Toxicol. Pharmacol. 2004, 40, 272–280. [Google Scholar] [CrossRef]
- Naess, S.; Kjellevold, M.; Dahl, L.; Nerhus, I.; Midtbo, L.K.; Bank, M.S.; Rasinger, J.D.; Markhus, M.W. Effects of seafood consumption on mercury exposure in Norwegian pregnant women: A randomized controlled trial. Environ. Int. 2020, 141, 105759. [Google Scholar] [CrossRef]
- Taylor, V.; Goodale, B.; Raab, A.; Schwerdtle, T.; Reimer, K.; Conklin, S.; Karagas, M.R.; Francesconi, K.A. Human exposure to organic arsenic species from seafood. Sci. Total Environ. 2017, 580, 266–282. [Google Scholar] [CrossRef]
- Hassan, F.I.; Niaz, K.; Khan, F.; Maqbool, F.; Abdollahi, M. The relation between rice consumption, arsenic contamination, and prevalence of diabetes in South Asia. EXCLI J. 2017, 16, 1132. [Google Scholar] [PubMed]
- Signes-Pastor, A.J.; Punshon, T.; Cottingham, K.L.; Jackson, B.P.; Sayarath, V.; Gilbert-Diamond, D.; Korrick, S.; Karagas, M.R. Arsenic exposure in relation to apple consumption among infants in the new hampshire birth cohort study. Expo. Health 2020, 12, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Kordas, K.; Queirolo, E.I.; Mañay, N.; Peregalli, F.; Hsiao, P.Y.; Lu, Y.; Vahter, M. Low-level arsenic exposure: Nutritional and dietary predictors in first-grade Uruguayan children. Environ. Res. 2016, 147, 16–23. [Google Scholar] [CrossRef]
- Burganowski, R.; Vahter, M.; Queirolo, E.I.; Peregalli, F.; Baccino, V.; Barcia, E.; Mangieri, S.; Ocampo, V.; Mañay, N.; Kordas, K. A cross-sectional study of urinary cadmium concentrations in relation to dietary intakes in Uruguayan school children. Sci. Total Environ. 2019, 658, 1239–1248. [Google Scholar] [CrossRef]
- Li, T.; Zhang, S.; Tan, Z.; Dai, Y. Potential dietary factors for reducing lead burden of Chinese preschool children. Environ. Sci. Pollut. Res. 2019, 26, 22922–22928. [Google Scholar] [CrossRef] [PubMed]
- Notario-Barandiaran, L.; Irizar, A.; Begoña-Zubero, M.; Soler-Blasco, R.; Riutort-Mayol, G.; Fernández-Somoano, A.; Tardón, A.; Casas, M.; Vrijheid, M.; Signes-Pastor, A.J. Association between mediterranean diet and metal (loid) exposure in 4-5-year-old children living in Spain. Environ. Res. 2023, 233, 116508. [Google Scholar] [CrossRef]
- Cespedes, E.M.; Hu, F.B. Dietary patterns: From nutritional epidemiologic analysis to national guidelines2. Am. J. Clin. Nutr. 2015, 101, 899–900. [Google Scholar] [CrossRef]
- Moon, M.K.; Lee, I.; Lee, A.; Park, H.; Kim, M.J.; Kim, S.; Cho, Y.H.; Hong, S.; Yoo, J.; Cheon, G.J.; et al. Lead, mercury, and cadmium exposures are associated with obesity but not with diabetes mellitus: Korean National Environmental Health Survey (KoNEHS) 2015–2017. Environ. Res. 2022, 204 Pt A, 111888. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Knol, L.L.; Yang, X.; Kong, L. Dietary fiber intake is inversely related to serum heavy metal concentrations among US adults consuming recommended amounts of seafood: NHANES 2013–2014. Food Front. 2021, 3, 142–149. [Google Scholar] [CrossRef]
- Laouali, N.; Benmarhnia, T.; Lanphear, B.P.; Weuve, J.; Mascari, M.; Boutron-Ruault, M.-C.; Oulhote, Y. Association between blood metals mixtures concentrations and cognitive performance, and effect modification by diet in older US adults. Environ. Epidemiol. 2022, 6, e192. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, Q.; Luo, W.; Jia, S.; Liu, D.; Ma, W.; Gu, H.; Wei, X.; He, Y.; Cao, S.; et al. Relationship between maternal heavy metal exposure and congenital heart defects: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. Int. 2022, 29, 55348–55366. [Google Scholar] [CrossRef]
- Korea Centers for Disease Control and Prevention. Quality Control of the Clinical Laboratory for the Korea National Health and Nutrition Examination Survey (KNHANES). 2017. Available online: https://knhanes.kdca.go.kr/knhanes/archive/wsiQcRpt.do# (accessed on 10 February 2025.).
- Park, S.; Lee, B.K. Body fat percentage and hemoglobin levels are related to blood lead, cadmium, and mercury concentrations in a Korean adult population (KNHANES 2008–2010). Biol. Trace Elem. Res. 2013, 151, 315–323. [Google Scholar] [CrossRef]
- The Korean Nutrition Society. Dietary Reference Intake for Koreans, 1st ed.; The Korean Nutrition Society: Seoul, Republic of Korea, 2010. [Google Scholar]
- Park, S.; Lee, B.K. Strong positive association of traditional Asian-style diets with blood cadmium and lead levels in the Korean adult population. Int. J. Environ. Health Res. 2013, 23, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Arbuckle, T.E.; Liang, C.L.; Morisset, A.S.; Fisher, M.; Weiler, H.; Cirtiu, C.M.; Legrand, M.; Davis, K.; Ettinger, A.S.; MIREC Study Group. Maternal and fetal exposure to cadmium, lead, manganese and mercury: The MIREC study. Chemosphere 2016, 163, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Dix-Cooper, L.; Kosatsky, T. Blood mercury, lead and cadmium levels and determinants of exposure among newcomer South and East Asian women of reproductive age living in Vancouver, Canada. Sci. Total Environ. 2018, 619–620, 1409–1419. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.G.; Chun, O.K.; Song, W.O. Determinants of the blood lead level of US women of reproductive age. J. Am. Coll. Nutr. 2005, 24, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Alica Pizent, J.J.; Telišman, S. Blood pressure in relation to dietary calcium intake, alcohol consumption, blood lead, and blood cadmium in female nonsmokers. J. Trace Elem. Med. Biol. 2001, 15, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Sorokina, S.A.; Derkho, M.A.; Gizatullina, F.G.; Sereda, T.I. Leukocytes as Indicators of the Accumulation of Metals in the Body of Growing Heifers. Int. Trans. J. Eng. Manag. Appl. Sci. Technol. 2022, 13, 134. [Google Scholar]
- Taylor, C.M.; Doerner, R.; Northstone, K.; Kordas, K. Maternal diet during pregnancy and blood cadmium concentrations in an observational cohort of British women. Nutrients 2020, 12, 904. [Google Scholar] [CrossRef] [PubMed]
- Jo, G.; Park, D.; Lee, J.; Kim, R.; Subramanian, S.V.; Oh, H.; Shin, M.J. Trends in Diet Quality and Cardiometabolic Risk Factors Among Korean Adults, 2007–2018. JAMA Netw. Open 2022, 5, e2218297. [Google Scholar] [CrossRef]
- Park, D.; Shin, M.J.; Després, J.P.; Eckel, R.H.; Tuomilehto, J.; Lim, S. 20-year trends in metabolic syndrome among Korean adults from 2001 to 2020. JACC Asia 2023, 3 Pt 2, 491–502. [Google Scholar] [CrossRef]
- Korea Ministry of Food and Drug Safety. Reevaluation Report on Standards and Specifications for Heavy Metals in Food. 2024. Available online: https://www.mfds.go.kr (accessed on 10 February 2025.).
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Lead; US Government Printing: Atlanta, GA, USA, 2005.
- Byun, G.; Kim, S.; Kim, S.Y.; Park, D.; Shin, M.J.; Oh, H.; Lee, J.T. Blood lead concentrations and mortality in Korean adults: The Korea National Health and Nutrition Examination Survey with mortality follow-up. Int. J. Environ. Res. Public Health 2020, 17, 6898. [Google Scholar] [CrossRef] [PubMed]
- Shah-Kulkarni, S.; Ha, M.; Kim, B.M.; Kim, E.; Hong, Y.C.; Park, H.; Kim, Y.; Kim, B.N.; Chang, N.; Oh, S.Y.; et al. Neurodevelopment in Early Childhood Affected by Prenatal Lead Exposure and Iron Intake. Medicine 2016, 95, e2508. [Google Scholar] [CrossRef] [PubMed]
- Leroux, I.N.; Ferreira, A.; Silva, J.; Bezerra, F.F.; da Silva, F.F.; Salles, F.J.; Luz, M.S.; de Assuncao, N.A.; Cardoso, M.R.A.; Olympio, K.P.K. Lead exposure from households and school settings: Influence of diet on blood lead levels. Environ. Sci. Pollut. Res. Int. 2018, 25, 31535–31542. [Google Scholar] [CrossRef] [PubMed]
- Turgeon O’Brien, H.; Gagne, D.; Vaissiere, E.; Blanchet, R.; Lauziere, J.; Vezina, C.; Ayotte, P. Effect of dietary calcium intake on lead exposure in Inuit children attending childcare centres in Nunavik. Int. J. Environ. Health Res. 2014, 24, 482–495. [Google Scholar] [CrossRef]
- Ghanwat, G.; Patil, A.J.; Patil, J.; Kshirsagar, M.; Sontakke, A.; Ayachit, R.K. Effect of Vitamin C Supplementation on Blood Lead Level, Oxidative Stress and Antioxidant Status of Battery Manufacturing Workers of Western Maharashtra, India. J. Clin. Diagn. Res. 2016, 10, BC08–BC11. [Google Scholar] [CrossRef]
- Yin, N.; Han, Z.; Jia, W.; Fu, Y.; Ma, J.; Liu, X.; Cai, X.; Li, Y.; Chen, X.; Cui, Y. Effect of vitamin C supplement on lead bioaccessibility in contaminated soils using multiple in vitro gastrointestinal assays: Mechanisms and health risks. Ecotoxicol. Environ. Saf. 2022, 243, 113968. [Google Scholar] [CrossRef]
- Mumtaz, S.; Ali, S.; Khan, R.; Shakir, H.A.; Tahir, H.M.; Mumtaz, S.; Andleeb, S. Therapeutic role of garlic and vitamins C and E against toxicity induced by lead on various organs. Environ. Sci. Pollut. Res. Int. 2020, 27, 8953–8964. [Google Scholar] [CrossRef]
- Vahter, M.; Akesson, A.; Liden, C.; Ceccatelli, S.; Berglund, M. Gender differences in the disposition and toxicity of metals. Environ. Res. 2007, 104, 85–95. [Google Scholar] [CrossRef]
- Faroon, O.; Ashizawa, A.; Wright, S.; Tucker, P.; Jenkins, K.; Ingerman, L.; Rudisill, C.; SRC Inc. Toxicological Profile for Cadmium; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2012.
- Gao, L.; Chang, J.; Chen, R.; Li, H.; Lu, H.; Tao, L.; Xiong, J. Comparison on cellular mechanisms of iron and cadmium accumulation in rice: Prospects for cultivating Fe-rich but Cd-free rice. Rice 2016, 9, 39. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Nakatsuka, H.; Watanabe, T.; Shimbo, S. Estimation of dietary intake of cadmium from cadmium in blood or urine in East Asia. J. Trace Elem. Med. Biol. 2018, 50, 24–27. [Google Scholar] [CrossRef]
- Satarug, S. Dietary Cadmium Intake and Its Effects on Kidneys. Toxics 2018, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Shawki, A.; Mackenzie, B. Interaction of calcium with the human divalent metal-ion transporter-1. Biochem. Biophys. Res. Commun. 2010, 393, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Park, J.D.; Zheng, W. Human exposure and health effects of inorganic and elemental mercury. J. Prev. Med. Public Health 2012, 45, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Dart, R.C. (Ed.) Medical Toxicology, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2004. [Google Scholar]
- Kim, S.A.; Kwon, Y.; Kim, S.; Joung, H. Assessment of Dietary Mercury Intake and Blood Mercury Levels in the Korean Population: Results from the Korean National Environmental Health Survey 2012–2014. Int. J. Environ. Res. Public Health 2016, 13, 877. [Google Scholar] [CrossRef] [PubMed]
- Moniuszko-Jakoniuk, J.; Jurczuk, M.; Galazyn-Sidorczuk, M.; Brzóska, M.M. Lead turnover and changes in the body status of chosen micro-and macroelements in rats exposed to lead and ethanol. Pol. J. Environ. Stud. 2003, 12, 335–344. [Google Scholar]
- Basta, P.C.; de Vasconcellos, A.C.S.; Hallwass, G.; Yokota, D.; Pinto, D.; de Aguiar, D.S.; de Souza, C.C.; Oliveira-da-Costa, M. Risk Assessment of Mercury-Contaminated Fish Consumption in the Brazilian Amazon: An Ecological Study. Toxics 2023, 11, 800. [Google Scholar] [CrossRef]
- Seo, J.W.; Kim, B.G.; Hong, Y.S. The Relationship between Mercury Exposure Indices and Dietary Intake of Fish and Shellfish in Women of Childbearing Age. Int. J. Environ. Res. Public Health 2020, 17, 4907. [Google Scholar] [CrossRef]
- Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients 2019, 11, 1806. [Google Scholar] [CrossRef]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Martinat, M.; Rossitto, M.; Di Miceli, M.; Laye, S. Perinatal Dietary Polyunsaturated Fatty Acids in Brain Development, Role in Neurodevelopmental Disorders. Nutrients 2021, 13, 1185. [Google Scholar] [CrossRef]
- Thomas, J.; Thomas, C.J.; Radcliffe, J.; Itsiopoulos, C. Omega-3 Fatty Acids in Early Prevention of Inflammatory Neurodegenerative Disease: A Focus on Alzheimer’s Disease. BioMed Res. Int. 2015, 2015, 172801. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Lv, X.; Wang, R.; Li, X.; Xu, W.; Wang, N.; Ma, S.; Huang, H.; Niu, Y.; Kong, X. Association of marine PUFAs intakes with cardiovascular disease, all-cause mortality, and cardiovascular mortality in American adult male patients with dyslipidemia: The U.S. National Health and Nutrition Examination Survey, 2001 to 2016. Nutr. J. 2023, 22, 48. [Google Scholar] [CrossRef] [PubMed]
- Allison, S.J. Metabolism: High salt intake as a driver of obesity. Nat. Rev. Nephrol. 2018, 14, 285. [Google Scholar] [CrossRef]
- Oh, S.W.; Koo, H.S.; Han, K.H.; Han, S.Y.; Chin, H.J. Associations of sodium intake with obesity, metabolic disorder, and albuminuria according to age. PLoS ONE 2017, 12, e0188770. [Google Scholar] [CrossRef] [PubMed]
- Poti, J.M.; Braga, B.; Qin, B. Ultra-processed Food Intake and Obesity: What Really Matters for Health-Processing or Nutrient Content? Curr. Obes. Rep. 2017, 6, 420–431. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EU) No 488/2014 of 12 May 2014 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in foodstuffs. Off. J. Eur. Union 2014, 138, 75. [Google Scholar]
- Vanderschueren, R.; Doevenspeck, J.; Goethals, L.; Andjelkovic, M.; Waegeneers, N.; Smolders, E. The contribution of cacao consumption to the bioaccessible dietary cadmium exposure in the Belgian population. Food Chem. Toxicol. 2023, 172, 113599. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM) Scientific Opinion on Lead in Food. EFSA J. 2010, 8, 1570. [CrossRef]
Food Groups | Component 1 | ||
---|---|---|---|
Meat and Processed Foods-Enriched Diet (MPD) | Vegetables and Milk-Enriched Diet (VMD) | Fermented Foods and Fish-Enriched Diet (FFD) | |
Red meat | 0.661 | ||
White meat | 0.622 | ||
Instant noodles | 0.593 | ||
Noodles | 0.575 | ||
Alcohol | 0.548 | ||
Fast food | 0.539 | ||
Soda | 0.517 | ||
Processed meat | 0.485 | ||
Fruits | 0.727 | ||
Vegetables | 0.662 | ||
Potatoes | 0.603 | ||
Dairy products | 0.522 | ||
Seaweeds | 0.421 | ||
Grains | 0.629 | ||
Fermented vegetables | 0.613 | ||
Fermented beans | 0.611 | ||
Fish soup | 0.401 | ||
Processed fish | 0.338 | ||
Fish | 0.332 | ||
Total% of variance explained | 17.468 | 9.882 | 7.745 |
Dietary Pattern | Heavy Metal | Model | Male | Female | p for Inter Action | ||||
---|---|---|---|---|---|---|---|---|---|
Dietary Pattern Scores | Dietary Pattern Scores | ||||||||
T1 | T2 | T3 | T1 | T2 | T3 | ||||
MPD: Meat and processed foods-enriched diet | Lead | Model 1 | 1 | 0.976 [0.744; 1.281] | 0.793 [0.618; 1.016] | 1 | 0.549 [0.439; 0.687] | 0.454 [0.341; 0.605] | 0.004 |
Model 2 | 1 | 1.570 [1.163; 2.119] | 1.984 [1.476; 2.666] | 1 | 1.071 [0.832; 1.378] | 1.422 [1.013; 1.998] | 0.053 | ||
Model 3 | 1 | 1.529 [1.119; 2.089] | 1.899 [1.394; 2.586] | 1 | 0.985 [0.759; 1.279] | 1.356 [0.957; 1.923] | <0.001 | ||
Model 4 | 1 | 1.477 [1.079; 2.023] | 1.764 [1.290; 2.413] | 1 | 0.952 [0.732; 1.238] | 1.283 [0.901; 1.828] | 0.082 | ||
Mercury | Model 1 | 1 | 1.051 [0.800; 1.380] | 0.979 [0.763; 1.256] | 1 | 0.871 [0.701; 1.082] | 0.838 [0.645; 1.090] | 0.400 | |
Model 2 | 1 | 1.479 [1.104; 1.981] | 1.857 [1.392; 2.477] | 1 | 1.275 [1.004; 1.618] | 1.545 [1.137; 2.099] | 0.789 | ||
Model 3 | 1 | 1.365 [1.004; 1.856] | 1.588 [1.173; 2.149] | 1 | 1.265 [0.990; 1.618] | 1.514 [1.104; 2.077] | 0.696 | ||
Model 4 | 1 | 1.67 [1.004; 1.862] | 1.577 [1.160; 2.143] | 1 | 1.258 [0.983; 1.610] | 1.484 [1.080; 2.041] | 0.670 | ||
Cadmium | Model 1 | 1 | 0.808 [0.899; 1.089] | 0.654 [0.497; 0.862] | 1 | 0.487 [0.402; 0.589] | 0.327 [0.256; 0.418] | <0.001 | |
Model 2 | 1 | 1.079 [0.790; 1.474] | 1.215 [0.893; 1.653] | 1 | 1.070 [0.854; 1.340] | 1.245 [0.923; 1.681] | 0.009 | ||
Model 3 | 1 | 1.070 [0.774; 1.478] | 1.230 [0.894; 1.693] | 1 | 1.018 [0.808; 1.283] | 1.179 [0.866; 1.605] | 0.009 | ||
Model 4 | 1 | 0.778 [0.543; 1.114] | 0.753 [0.526; 1.077] | 1 | 0.983 [0.778; 1.241] | 1.097 [0.803; 1.500] | 0.356 | ||
VMD: Vegetables and milk-enriched diet | Lead | Model 1 | 1 | 0.649 [0.520; 0.811] | 0.587 [0.464; 0.744] | 1 | 1.112 [0.857; 1.442] | 1.190 [0.924; 1.532] | <0.001 |
Model 2 | 1 | 0.634 [0.500; 0.804] | 0.583 [0.452; 0.752] | 1 | 1.016 [0.770; 1.340] | 1.020 [0.780; 1.336] | 0.002 | ||
Model 3 | 1 | 0.598 [0.466; 0.768] | 0.594 [0.456; 0.775] | 1 | 1.102 [0.827; 1.469] | 1.054 [0.796; 1.395] | 0.004 | ||
Model 4 | 1 | 0.595 [0.462; 0.765] | 0.579 [0.442; 0.759] | 1 | 1.131 [0.847; 1.511] | 1.066 [0.801; 1.418] | 0.005 | ||
Mercury | Model 1 | 1 | 1.178 [0.944; 1.471] | 1.267 [1.002; 1.603] | 1 | 1.485 [1.142; 1.931] | 1.529 [1.183; 1.976] | 0.290 | |
Model 2 | 1 | 1.204 [0.954; 1.518] | 1.334 [1.042; 1.708] | 1 | 1.454 [1.113; 1.898] | 1.456 [1.122; 1.890] | 0.629 | ||
Model 3 | 1 | 1.104 [0.864; 1.411] | 1.292 [0.994; 1.679] | 1 | 1.530 [1.162; 2.017] | 1.488 [1.135; 1.952] | 0.586 | ||
Model 4 | 1 | 1.103 [0.862; 1.411] | 1.278 [0.980; 1.667] | 1 | 1.560 [1.182; 2.058] | 1.510 [1.148; 1.987] | 0.574 | ||
Cadmium | Model 1 | 1 | 0.791 [0.614; 1.018] | 0.808 [0.618; 1.056] | 1 | 0.824 [0.662; 1.102] | 0.973 [0.788; 1.202] | 0.284 | |
Model 2 | 1 | 0.804 [0.619; 1.044] | 0.848 [0.642; 1.120] | 1 | 0.672 [0.523; 0.862] | 0.745 [0.584; 0.950] | 0.745 | ||
Model 3 | 1 | 0.819 [0.624; 1.075] | 0.912 [0.684; 1.215] | 1 | 0.709 [0.548; 0.917] | 0.758 [0.590; 0.974] | 0.559 | ||
Model 4 | 1 | 0.930 [0.691; 1.252] | 1.088 [0.793; 1.493] | 1 | 0.722 [0.557; 0.936] | 0.783 [0.607; 1.009] | 0.223 | ||
FFD: Fermented and fish-enriched diet | Lead | Model 1 | 1 | 1.394 [1.058; 1.838] | 2.536 [1.956; 3.288] | 1 | 1.294 [1.026; 1.631] | 1.726 [1.344; 2.215] | 0.036 |
Model 2 | 1 | 1.085 [0.806; 1.460] | 1.813 [1.371; 2.399] | 1 | 1.056 [0.825; 1.352] | 1.303 [0.999; 1.701] | 0.122 | ||
Model 3 | 1 | 1.027 [0.755; 1.398] | 1.627 [1.214; 2.180] | 1 | 1.001 [0.776; 1.292] | 1.327 [1.010; 1.743] | 0.356 | ||
Model 4 | 1 | 1.042 [0.765; 1.420] | 1.613 [1.202; 2.165] | 1 | 1.011 [0.781; 1.307] | 1.361 [1.034; 1.791] | 0.390 | ||
Mercury | Model 1 | 1 | 1.515 [1.153; 1.992] | 1.739 [1.345; 2.248] | 1 | 1.174 [0.942; 1.464] | 1.094 [0.850; 1.407] | 0.012 | |
Model 2 | 1 | 1.289 [0.967; 1.728] | 1.330 [1.012; 1.747] | 1 | 1.024 [0.817; 1.285] | 0.887 [0.684; 1.150] | 0.009 | ||
Model 3 | 1 | 1.272 [0.939; 1.724] | 1.318 [0.984; 1.764] | 1 | 0.993 [0.786; 1.255] | 0.922 [0.707; 1.204] | 0.039 | ||
Model 4 | 1 | 1.276 [0.941; 1.730] | 1.306 [0.975; 1.749] | 1 | 0.992 [0.784; 1.254] | 0.923 [0.707; 1.205] | 0.043 | ||
Cadmium | Model 1 | 1 | 1.277 [0.927; 1.759] | 1.529 [1.134; 2.062] | 1 | 1.418 [1.166; 1.723] | 1.951 [1.570; 2.426] | 0.196 | |
Model 2 | 1 | 1.042 [0.746; 1.454] | 1.129 [0.825; 1.544] | 1 | 1.102 [0.883; 1.376] | 1.384 [1.083; 1.769] | 0.071 | ||
Model 3 | 1 | 0.957 [0.678; 1.351] | 1.014 [0.731; 1.407] | 1 | 1.074 [0.855; 1.349] | 1.420 [1.103; 1.826] | 0.022 | ||
Model 4 | 1 | 1.041 [0.716; 1.513] | 0.999 [0.700; 1.426] | 1 | 1.093 [0.868; 1.376] | 1.446 [1.122; 1.864] | 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, D.; Moon, N.; Jun, H.J.; Heo, S.J.; Park, S.; Shin, M.-J.; Kim, J.H. Association of Dietary Patterns with Blood Heavy Metal Concentrations: Results from the Korean National Health and Nutrition Examination Survey 2012–2016. Environments 2025, 12, 125. https://doi.org/10.3390/environments12040125
Park D, Moon N, Jun HJ, Heo SJ, Park S, Shin M-J, Kim JH. Association of Dietary Patterns with Blood Heavy Metal Concentrations: Results from the Korean National Health and Nutrition Examination Survey 2012–2016. Environments. 2025; 12(4):125. https://doi.org/10.3390/environments12040125
Chicago/Turabian StylePark, Dahyun, Nalae Moon, Hee Ju Jun, Su Ji Heo, Seungyoung Park, Min-Jeong Shin, and Ju Hee Kim. 2025. "Association of Dietary Patterns with Blood Heavy Metal Concentrations: Results from the Korean National Health and Nutrition Examination Survey 2012–2016" Environments 12, no. 4: 125. https://doi.org/10.3390/environments12040125
APA StylePark, D., Moon, N., Jun, H. J., Heo, S. J., Park, S., Shin, M.-J., & Kim, J. H. (2025). Association of Dietary Patterns with Blood Heavy Metal Concentrations: Results from the Korean National Health and Nutrition Examination Survey 2012–2016. Environments, 12(4), 125. https://doi.org/10.3390/environments12040125