Pretreatment Methods for Recovering Active Cathode Material from Spent Lithium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Active Material Recovery Process
2.3. Material Characterization
2.4. Performance Indices of the Pretreatment
3. Results and Discussion
3.1. Pretreatment on the Cathode Sheet
3.2. Pretreatment on the Entire Cell
3.3. Pretreatment on a Cycled Battery
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CB | Carbon black |
COP | Conference of the Parties |
CRMs | Critical raw materials |
DMAC | N,N-Dimethylacetamide |
DMC | Dimethyl carbonate |
DMF | N,N-dimethylformamide |
DMI | Dimethyl isosorbide |
EDS | Energy-Dispersive Spectroscopy |
EVs | Electric vehicles |
GVL | -valerolactone |
ICDD | International Centre for Diffraction Data® |
ICP-OES | Inductively coupled plasma optical emission spectrometry |
IEA | International Energy Agency |
LIBs | Lithium-ion batteries |
NMC532 | Lithium nickel manganese cobalt oxide (LiNi0.5Mn0.3Co0.2O2) |
NMP | N-methyl-pyrrolidone |
PVDF | Polyvinylidene fluoride |
SEM | Scanning electron microscopy |
TEP | Triethyl phosphate |
TGA | Thermogravimetric analysis |
XRD | X-ray diffraction |
References
- Sabri, M.A.; Al Jitan, S.; Bahamon, D.; Vega, L.F.; Palmisano, G. Current and Future Perspectives on Catalytic-Based Integrated Carbon Capture and Utilization. Sci. Total Environ. 2021, 790, 148081. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Guo, D.; Wang, X.; Qin, Y.; Hu, L.; Zhang, Y.; Zou, R.; Gao, S. Sustainable CO2 Management through Integrated CO2 Capture and Conversion. J. CO2 Util. 2023, 72, 102493. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar] [CrossRef]
- Bistline, J.E.T. Roadmaps to Net-Zero Emissions Systems: Emerging Insights and Modeling Challenges. Joule 2021, 5, 2551–2563. [Google Scholar] [CrossRef]
- Falcke, L.; Zobel, A.K.; Comello, S.D. How Firms Realign to Tackle the Grand Challenge of Climate Change: An Innovation Ecosystems Perspective. J. Prod. Innov. Manag. 2024, 41, 403–427. [Google Scholar] [CrossRef]
- Ali, Q.; Di Silvestre, M.L.; Lombardi, P.A.; Riva Sanseverino, E.; Zizzo, G. Electrifying the Road to Net-Zero: Implications of Electric Vehicles and Carbon Emission Coefficient Factors in European Power Systems. Sustainability 2024, 16, 5084. [Google Scholar] [CrossRef]
- Xu, C.; Behrens, P.; Gasper, P.; Smith, K.; Hu, M.; Tukker, A.; Steubing, B. Electric Vehicle Batteries Alone Could Satisfy Short-Term Grid Storage Demand by as Early as 2030. Nat. Commun. 2023, 14, 119. [Google Scholar] [CrossRef]
- Sadhukhan, J.; Christensen, M. An In-Depth Life Cycle Assessment (Lca) of Lithium-Ion Battery for Climate Impact Mitigation Strategies. Energies 2021, 14, 5555. [Google Scholar] [CrossRef]
- Mahmud, S.; Rahman, M.; Kamruzzaman, M.; Ali, M.O.; Emon, M.S.A.; Khatun, H.; Ali, M.R. Recent Advances in Lithium-Ion Battery Materials for Improved Electrochemical Performance: A Review. Results Eng. 2022, 15, 100472. [Google Scholar] [CrossRef]
- Miao, Y.; Hynan, P.; Von Jouanne, A.; Yokochi, A. Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements. Energies 2019, 12, 1074. [Google Scholar] [CrossRef]
- Kasri, M.A.; Mohd Halizan, M.Z.; Harun, I.; Bahrudin, F.I.; Daud, N.; Aizamddin, M.F.; Amira Shaffee, S.N.; Rahman, N.A.; Shafiee, S.A.; Mahat, M.M. Addressing Preliminary Challenges in Upscaling the Recovery of Lithium from Spent Lithium Ion Batteries by the Electrochemical Method: A Review. RSC Adv. 2024, 14, 15515–15541. [Google Scholar] [CrossRef]
- European Commission. Study on the Critical Raw Materials for the EU 2023—Final Report; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Kim, T.; Song, W.; Son, D.Y.; Ono, L.K.; Qi, Y. Lithium-Ion Batteries: Outlook on Present, Future, and Hybridized Technologies. J. Mater. Chem. A Mater. 2019, 7, 2942–2964. [Google Scholar] [CrossRef]
- Rahman, M.; Hoq, M.; Shin, H. Influence of Green Solvents on the Recovery of Cathode Active Materials from Electrode Scraps: A Comparative Study. Electrochim. Acta 2024, 508, 145225. [Google Scholar] [CrossRef]
- Shi, M.; Diaz, L.A.; Klaehn, J.R.; Wilson, A.D.; Lister, T.E. Li2CO3 Recovery through a Carbon-Negative Electrodialysis of Lithium-Ion Battery Leachates. ACS Sustain. Chem. Eng. 2022, 10, 11773–11781. [Google Scholar] [CrossRef]
- Yu, H.; Yang, H.; Chen, K.; Yang, L.; Huang, M.; Wang, Z.; Lv, H.; Xu, C.; Chen, L.; Luo, X. Non–Closed–Loop Recycling Strategies for Spent Lithium–Ion Batteries: Current Status and Future Prospects. Energy Storage Mater. 2024, 67, 103288. [Google Scholar] [CrossRef]
- Lee, Y.R.; Ra Cho, A.; Kim, S.; Kim, R.; Wang, S.; Han, Y.; Nam, H.; Lee, D. Utilizing Waste Carbon Residue from Spent Lithium-Ion Batteries as an Adsorbent for CO2 Capture: A Recycling Perspective. Chem. Eng. J. 2023, 470, 144232. [Google Scholar] [CrossRef]
- Fu, Y.; Dong, X.; Ebin, B. Resource Recovery of Spent Lithium-Ion Battery Cathode Materials by a Supercritical Carbon Dioxide System. Molecules 2024, 29, 1638. [Google Scholar] [CrossRef]
- Afroze, S.; Reza, M.S.; Kuterbekov, K.; Kabyshev, A.; Kubenova, M.M.; Bekmyrza, K.Z.; Azad, A.K. Emerging and Recycling of Li-Ion Batteries to Aid in Energy Storage, A Review. Recycling 2023, 8, 48. [Google Scholar] [CrossRef]
- Ma, W.; Liang, Z.; Zhang, X.; Liu, Y.; Zhao, Q. Selective Recovery of Battery-Grade Li2CO3 from Spent NCM Cathode Materials Using a One-Step Method of CO2 Carbonation Recovery Without Acids or Bases. ChemSusChem 2024, 17, e202400459. [Google Scholar] [CrossRef]
- Tembo, P.M.; Dyer, C.; Subramanian, V. Lithium-Ion Battery Recycling—A Review of the Material Supply and Policy Infrastructure. NPG Asia Mater. 2024, 16, 43. [Google Scholar] [CrossRef]
- Ma, X.; Meng, Z.; Bellonia, M.V.; Spangenberger, J.; Harper, G.; Gratz, E.; Olivetti, E.; Arsenault, R.; Wang, Y. The Evolution of Lithium-Ion Battery Recycling. Nat. Rev. Clean Technol. 2025, 1, 75–94. [Google Scholar] [CrossRef]
- Wang, H.; Burke, S.; Yuan, R.; Whitacre, J.F. Effective Direct Recycling of Inhomogeneously Aged Li-Ion Battery Cathode Active Materials. J. Energy Storage 2023, 60, 106616. [Google Scholar] [CrossRef]
- Yang, W.; Tong, Z.; Bu, X.; Dong, L. Research Progress on the Separation of Cathode Materials from Metal Current Collectors of Spent Lithium-Ion Batteries. J. Ind. Eng. Chem. 2025. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, Y.; Cao, H.; Nawaz, F.; Zhang, Y. A Novel Process for Recycling and Resynthesizing LiNi1/3Co1/3Mn1/3O2 from the Cathode Scraps Intended for Lithium-Ion Batteries. Waste Manag. 2014, 34, 1715–1724. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Appleberry, M.; Li, W.; Chen, Z. Direct Recycling Industrialization of Li-Ion Batteries: The Pre-Processing Barricade. Next Energy 2024, 2, 100091. [Google Scholar] [CrossRef]
- Ahuis, M.; Aluzoun, A.; Keppeler, M.; Melzig, S.; Kwade, A. Direct Recycling of Lithium-Ion Battery Production Scrap—Solvent-Based Recovery and Reuse of Anode and Cathode Coating Materials. J. Power Sources 2024, 593, 233995. [Google Scholar] [CrossRef]
- Kaya, M. State-of-the-Art Lithium-Ion Battery Recycling Technologies. Circ. Econ. 2022, 1, 100015. [Google Scholar] [CrossRef]
- Liu, S.; Dolotko, O.; Bergfeldt, T.; Ehrenberg, H.; Knapp, M. Towards Sustainable Direct Recycling: Unraveling Structural Degradation Induced by Thermal Pretreatment of Lithium-Ion Battery Electrodes. ChemSusChem 2024, 18, e202400727. [Google Scholar] [CrossRef]
- Bai, Y.; Muralidharan, N.; Li, J.; Essehli, R.; Belharouak, I. Sustainable Direct Recycling of Lithium-Ion Batteries via Solvent Recovery of Electrode Materials. ChemSusChem 2020, 13, 5664–5670. [Google Scholar] [CrossRef]
- Sahu, S.; Agrawala, M.; Patra, S.R.; Devi, N. Synergistic Approach for Selective Leaching and Separation of Strategic Metals from Spent Lithium-Ion Batteries. ACS Omega 2024, 9, 10556–10565. [Google Scholar] [CrossRef]
- Gupta, V.; Yu, X.; Gao, H.; Brooks, C.; Li, W.; Chen, Z. Scalable Direct Recycling of Cathode Black Mass from Spent Lithium-Ion Batteries. Adv. Energy Mater. 2023, 13, 2203093. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, H.; Dou, W.; Wang, K.; Wang, T.; Su, X. High Rate Performance of Single-Crystalline NCM Upcycled from Spent Lithium-Ion Batteries Via Direct Recovery and Modification. Adv. Funct. Mater. 2024, 2418866. [Google Scholar] [CrossRef]
- Fei, Z.; Su, Y.; Meng, Q.; Dong, P.; Zhang, Y. Direct Regeneration of Spent Cathode Materials by Deep Eutectic Solvent. Energy Storage Mater. 2023, 60, 102833. [Google Scholar] [CrossRef]
- Wang, J.; Liang, Z.; Zhao, Y.; Sheng, J.; Ma, J.; Jia, K.; Li, B.; Zhou, G.; Cheng, H.M. Direct Conversion of Degraded LiCoO2 Cathode Materials into High-Performance LiCoO2: A Closed-Loop Green Recycling Strategy for Spent Lithium-Ion Batteries. Energy Storage Mater. 2022, 45, 768–776. [Google Scholar] [CrossRef]
- Choi, J.; Dong, L.; Yu, C.Y.; O’Meara, C.; Lee, E.; Kim, J.H. Relationship of Chemical Composition and Moisture Sensitivity in LiNixMnyCo1−X−YO2 for Lithium-Ion Batteries. J. Electrochem. Energy Convers. Storage 2021, 18, 041009. [Google Scholar] [CrossRef]
- Hu, C.Y.; Guo, J.; Du, Y.; Xu, H.H.; He, Y.H. Effects of Synthesis Conditions on Layered Li[Ni1/3Co 1/3Mn1/3]O2 Positive-Electrode via Hydroxide Co-Precipitation Method for Lithium-Ion Batteries. Trans. Nonferrous Met. Soc. China 2011, 21, 114–120. [Google Scholar] [CrossRef]
- Giles, E.C.; Jarvis, A.; Sargent, A.T.; Anderson, P.A.; Allan, P.K.; Slater, P.R. Direct Recycling of EV Production Scrap NMC532 Cathode Materials. RSC Sustain. 2024, 2, 3014–3021. [Google Scholar] [CrossRef]
Methodology | ID | Operational Conditions | Muffle Treatment | |||
---|---|---|---|---|---|---|
T [°C] | Stirring/Ultrasonication | S/L Ratio [g/mL] | Time [h] | T [°C] | ||
Thermal pretreatment | TH-1 | 25 | 400 rpm | 1/30 | 2 | 570 |
TH-2 | 25 | 400 rpm | 1/30 | 4 | 570 | |
TH-3 | 25 | 300 rpm | 1/30 | 2 | 720 | |
NaOH leaching | NaOH-L1 | 70 | 500 rpm | 1/10 | 2 | 570 |
NaOH-L2 | 90 | 500 rpm | 1/20 | 4 | 570 | |
NMP pretreatment | NMP-1 | 100 | 300 rpm | 1/10 | 1 | 800 |
NMP-2 | 50 | ultrasonication | 1/10 | 3 | 800 | |
TEP pretreatment | TEP-1 | 120 | 400 rpm | 1/20 | 2 | 570 |
Methodology | ID | Operational Conditions | Muffle Treatment | ||||
---|---|---|---|---|---|---|---|
T [°C] | Stirring/Ultrasonication | S/L Ratio [g/mL] | Time [h] | T [°C] | |||
1° | 2° | ||||||
Thermal Pretreatment (air) | THCa-1 | 25 | 400 rpm | 1/30 | 4 | 350 | 720 |
THCa-2 | 25 | ultrasonication | 1/30 | 3 | 350 | 720 | |
THCa-3 | 25 | ultrasonication | 1/30 | 1 | 350 | 720 | |
Thermal Pretreatment (N2) | THCi-1 | 25 | 500 rpm | 1/30 | 4 | 350 | 720 |
TEP Pretreatment | TEPC-1 | 120 | 400 rpm | 1/20 | 2 | / | 720 |
TEPC-1R | 120 | 400 rpm | 1/20 | 2 | / | 720 | |
TEPCC | 120 | 400 rpm | 1/20 | 2 | / | 720 |
ID | |||||
---|---|---|---|---|---|
TH-1 | 30.1 | 95.5 | 96.5 | 95.4 | 87.3 |
TH-2 | 27.7 | 91.1 | 89.8 | 89.4 | 79.7 |
TH-3 | 27.3 | 89.7 | 88.4 | 88.6 | 79.1 |
NaOH-L1 | 31.4 | 98.2 | 99.6 | 98.2 | 95.4 |
NaOH-L2 | 29.4 | 93.3 | 97.7 | 93.5 | 90.2 |
NMP-1 | 12.2 | 39.3 | 38.6 | 39.2 | 35.6 |
NMP-2 | 20.6 | 65.7 | 64.2 | 65.3 | 61.7 |
TEP-1 | 31.1 | 97 | 95.8 | 96.4 | 100 |
ID | Weight Percentages in the Cathode Material [%] | [mol/mol] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ni | Mn | Co | Li | Al | Fe | Zn | Cu | Ni | Mn | Co | Li | |
TH-1 | 28.59 | 16.84 | 11.94 | 6.08 | 0.21 | 0.03 | 0.20 | 0.30 | 0.489 | 0.308 | 0.203 | 0.879 |
TH-2 | 29.60 | 17.00 | 12.15 | 6.02 | 0.54 | 0.19 | 0.22 | 0.70 | 0.494 | 0.303 | 0.202 | 0.850 |
TH-3 | 29.48 | 16.94 | 12.18 | 6.05 | 0.40 | 0.19 | 0.22 | 0.70 | 0.494 | 0.303 | 0.203 | 0.857 |
NaOH-L1 | 28.16 | 16.66 | 11.78 | 6.37 | 1.14 | 0.05 | 0.17 | 0.22 | 0.488 | 0.308 | 0.203 | 0.933 |
NaOH-L2 | 28.59 | 17.45 | 11.98 | 6.43 | 0.13 | 0.15 | 0.36 | 0.15 | 0.483 | 0.315 | 0.202 | 0.919 |
NMP-1 | 29.11 | 16.65 | 12.15 | 6.13 | 0.09 | 0.08 | 0.96 | 0.00 | 0.493 | 0.301 | 0.205 | 0.879 |
NMP-2 | 28.72 | 16.35 | 11.94 | 6.27 | 0.28 | 0.38 | 1.34 | 0.00 | 0.494 | 0.301 | 0.205 | 0.912 |
TEP-1 | 28.06 | 16.16 | 11.66 | 6.94 | 0.03 | 0.10 | 0.23 | 0.50 | 0.493 | 0.303 | 0.204 | 1.03 |
ID | Mean Area [µm2] | Mean Diameter [µm] |
---|---|---|
Cathode ref. | 56.2 | 8.5 |
TH-1 | 47.5 | 7.8 |
TH-2 | 18.9 | 4.9 |
TH-3 | 43.8 | 7.5 |
NaOH-L1 | 30.7 | 6.3 |
NaOH-L2 | 2.30 | 1.7 |
NMP-1 | 38.0 | 7.0 |
NMP-2 | 38.0 | 7.0 |
TEP-1 | 50.2 | 8.0 |
ID | |||||
---|---|---|---|---|---|
THCa-1 | 29.33 | 96.02 | 95.29 | 94.68 | 80.74 |
THCa-2 | 28.44 | 93.04 | 91.96 | 92.26 | 78.69 |
THCa-3 | 28.26 | 92.93 | 91.13 | 91.26 | 73.93 |
THCi-1 | 9.13 | 25.78 | 25.53 | 25.27 | 23.07 |
TEPC-1 | 27.87 | 90.35 | 89.46 | 89.09 | 86.62 |
TEPC-1R | 27.31 | 86.61 | 85.09 | 84.76 | 79.45 |
TEPCC | 28.90 | 93.49 | 91.18 | 92.98 | 87.00 |
ID | Weight Percentages in the Cathode Material [%] | [mol/mol] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ni | Mn | Co | Li | Al | Fe | Zn | Cu | Ni | Mn | Co | Li | |
THCa-1 | 29.41 | 17.01 | 12.12 | 5.75 | 0.28 | 0.12 | 0.72 | 3.03 | 0.493 | 0.305 | 0.202 | 0.815 |
THCa-2 | 29.39 | 16.93 | 12.18 | 5.78 | 0.05 | 0.02 | 0.15 | 2.24 | 0.493 | 0.303 | 0.204 | 0.820 |
THCa-3 | 29.55 | 16.89 | 12.13 | 5.47 | 0.21 | 0.12 | 0.18 | 2.26 | 0.495 | 0.302 | 0.202 | 0.775 |
THCi-1 | 25.39 | 14.65 | 10.40 | 5.28 | 1.73 | 0.04 | 0.41 | 1.68 | 0.494 | 0.305 | 0.202 | 0.869 |
TEPC-1 | 29.13 | 16.81 | 12.01 | 6.49 | 0.05 | 0.02 | 0.14 | 0.95 | 0.493 | 0.304 | 0.203 | 0.930 |
TEPC-1R | 28.50 | 16.32 | 11.66 | 6.08 | 0.06 | 0.02 | 0.23 | 1.36 | 0.495 | 0.303 | 0.202 | 0.893 |
TEPCC | 29.07 | 16.53 | 12.09 | 6.29 | 0.07 | 0.01 | 0.22 | 1.69 | 0.495 | 0.300 | 0.205 | 0.905 |
ID | Mean Area [µm2] | Mean Diameter [µm] |
---|---|---|
Cathode ref. | 56.2 | 8.5 |
THCa-1 | 17.7 | 4.7 |
THCa-2 | 31.1 | 6.3 |
THCa-3 | 21.2 | 5.2 |
THCi-1 | 23.0 | 5.4 |
TEPC-1 | 51.6 | 8.1 |
TEPC-1R | 49.8 | 8.0 |
TEPCC | 49.4 | 7.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barontini, F.; Francalanci, F.; Stefanelli, E.; Puccini, M. Pretreatment Methods for Recovering Active Cathode Material from Spent Lithium-Ion Batteries. Environments 2025, 12, 119. https://doi.org/10.3390/environments12040119
Barontini F, Francalanci F, Stefanelli E, Puccini M. Pretreatment Methods for Recovering Active Cathode Material from Spent Lithium-Ion Batteries. Environments. 2025; 12(4):119. https://doi.org/10.3390/environments12040119
Chicago/Turabian StyleBarontini, Federica, Flavio Francalanci, Eleonora Stefanelli, and Monica Puccini. 2025. "Pretreatment Methods for Recovering Active Cathode Material from Spent Lithium-Ion Batteries" Environments 12, no. 4: 119. https://doi.org/10.3390/environments12040119
APA StyleBarontini, F., Francalanci, F., Stefanelli, E., & Puccini, M. (2025). Pretreatment Methods for Recovering Active Cathode Material from Spent Lithium-Ion Batteries. Environments, 12(4), 119. https://doi.org/10.3390/environments12040119