Livestock and Climate Change: How Do Livestock Practices Impact Greenhouse Gas Emissions in Holders Fields in Zamora Chinchipe?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Greenhouse Gas Emission Estimation
2.4. Sampling and Soil Analysis
2.5. Data Analysis
3. Results
3.1. Livestock Emission
3.2. Altitude and Animal Density
3.3. Soil Carbon Stocks
4. Discussion
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez, D.I.; Anríquez, G.; Riveros, J.L. Food security and livestock: The case of Latin America and the Caribbean. Cienc. E Investig. Agrar. 2016, 43, 5–15. [Google Scholar] [CrossRef]
- Torres, B.; Andrade, V.; Heredia-R, M.; Toulkeridis, T.; Estupiñán, K.; Luna, M.; Bravo, C.; García, A. Productive Livestock Characterization and Recommendations for Good Practices Focused on the Achievement of the SDGs in the Ecuadorian Amazon. Sustainability 2022, 14, 10738. [Google Scholar] [CrossRef]
- Carrera, R.; Fierro, N.; Jiménez, L.; Capa-Mora, D. Buenas prácticas de ganadería sostenible en ecosistema de Páramo y Bosque Alto Andino, una alternativa de resiliencia al cambio climático. Fave. Secc. Cienc. Agrar. 2021, 20, 7–19. [Google Scholar]
- Jiménez, L.S.; Mezquida, E.T.; Benito Capa, M.; Rubio Sánchez, A. Cambio en las propiedades del suelo por transformación de áreas boscosas en pastizales en Zamora-Chinchipe (Ecuador). Cuad. Soc. Española Cienc. For. 2007, 22, 65–70. [Google Scholar]
- Ministerio del Ambiente y Agua y Transición Ecológica (MAATE). 4ta Comunicación Nacional y 2do Informe Bienal de Actualización del Ecuador a la Convención Marco de las Naciones Unidas sobre el Cambio Climático. 2022. Available online: https://drive.google.com/file/d/15Tr7xPZ9V3ary99QxzEpq7pjft03KGk5/view (accessed on 18 February 2025).
- Cornejo, C.; Wilkie, A.C. Greenhouse gas emissions and biogas potential from livestock in Ecuador. Energy Sustain. Dev. 2010, 14, 256–266. [Google Scholar] [CrossRef]
- Mottet, A.; Henderson, B.; Opio, C.; Falcucci, A.; Tempio, G.; Silvestri, S.; Chesterman, S.; Gerber, P.J. Climate change mitigation and productivity gains in livestock supply chains: Insights from regional case studies. Reg. Environ. Change 2017, 17, 129–141. [Google Scholar] [CrossRef]
- Kristensen, T.; Mogensen, L.; Knudsen, M.T.; Hermansen, J.E. Effect of production system and farming strategy on greenhouse gas emissions from commercial dairy farms in a life cycle approach. Livest. Sci. 2011, 140, 136–148. [Google Scholar] [CrossRef]
- Arango, J.; Ruden, A.; Martinez-Baron, D.; Loboguerrero, A.M.; Berndt, A.; Chacón, M.; Chirinda, N.; Oyhantcabal, W.; Gomez, C.A.; Ricci, P.; et al. Ambition meets reality: Achieving GHG emission reduction targets in the livestock sector of Latin America. Front. Sustain. Food Syst. 2020, 4, 65. [Google Scholar] [CrossRef]
- Lassey, K.R. Livestock methane emission: From the individual grazing animal through national inventories to the global methane cycle. Agric. For. Meteorol. 2007, 142, 120–132. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef]
- Lai, L.; Kumar, S. A global meta-analysis of livestock grazing impacts on soil properties. PLoS ONE 2020, 15, e0236638. [Google Scholar] [CrossRef] [PubMed]
- Grijalva, J.; Ramos Veintimilla, R. Pasturas para sistemas silvopastoriles: Alternativas para el desarrollo sostenible de la ganadería en la Amazonia Baja del Ecuador. In Boletín Técnico N 156; Programa Nacional de Forestería del INIAP; Impresión: NINA Comunicaciones: Quito, Ecuador, 2011; p. 24. [Google Scholar]
- Bashar, M.K.; Sarker, N.R.; Sultana, N.; Hossain, S.M.J. Assessment of GHG emissions in dairy production systems based on existing feed resources through the GLEAM model under different climatic zones of Bangladesh and their mitigation options. J. Adv. Vet. Anim. Res. 2024, 11, 664. [Google Scholar] [CrossRef] [PubMed]
- Caro, D.; Kebreab, E.; Mitloehner, F.M. Mitigation of enteric methane emissions from global livestock systems through nutrition strategies. Clim. Change 2016, 137, 467–480. [Google Scholar] [CrossRef]
- Stewart, A.A.; Little, S.M.; Ominski, K.H.; Wittenberg, K.M.; Janzen, H.H. Evaluating greenhouse gas mitigation practices in livestock systems: An illustration of a whole-farm approach. J. Agric. Sci. 2009, 147, 367–382. [Google Scholar] [CrossRef]
- Yan, M.J.; Humphreys, J.; Holden, N.M. An evaluation of life cycle assessment of European milk production. J. Environ. Manag. 2011, 92, 372–379. [Google Scholar] [CrossRef]
- Gaitán, L.; Läderach, P.; Graefe, S.; Rao, I.; Van der Hoek, R. Climate-smart livestock systems: An assessment of carbon stocks and GHG emissions in Nicaragua. PLoS ONE 2016, 11, e0167949. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-León, F.A.; Bolívar Lastra-Bravo, X.; Cali Aguirre, V.A. Estimación de la huella de carbono de las ganaderías de leche de la zona andina del Ecuador. Chil. J. Agric. Anim. Sci. 2023, 39, 305–318. [Google Scholar] [CrossRef]
- MacLeod, M.J.; Vellinga, T.; Opio, C.; Falcucci, A.; Tempio, G.; Henderson, B.; Gerber, P.J.; Mottet, A.; Robinson, T.; Steinfeld, H.; et al. Invited review: A position on the global livestock environmental assessment model (GLEAM). Animal 2018, 12, 383–397. [Google Scholar] [CrossRef]
- Garnett, T. Livestock-related greenhouse gas emissions: Impacts and options for policy makers. Environ. Sci. Policy 2009, 12, 491–503. [Google Scholar] [CrossRef]
- Polley, H.W.; Briske, D.D.; Morgan, J.A.; Wolter, K.; Bailey, D.W.; Brown, J.R. Climate change and North American rangelands: Trends, projections, and implications. Rangel. Ecol. Manag. 2013, 66, 493–511. [Google Scholar] [CrossRef]
- Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef]
- Lin, D.; Xia, J.; Wan, S. Climate warming and biomass accumulation of terrestrial plants: A meta-analysis. New Phytol. 2010, 188, 187–198. [Google Scholar] [CrossRef]
- Garnett, T. Meat and dairy production and consumption. In Food Climate Research Network; University of Surrey: Guildford, UK, 2007; pp. 54–55. [Google Scholar]
- Bilotto, F.; Harrison, M.T.; Vibart, R.; Mackay, A.; Christie-Whitehead, K.M.; Ferreira, C.S.; Cottrell, R.S.; Forster, D.; Chang, J. Towards resilient, inclusive, sustainable livestock farming systems. Trends Food Sci. Technol. 2024, 152, 104668. [Google Scholar] [CrossRef]
- Bordignon, F.; Provolo, G.; Riva, E.; Caria, M.; Todde, G.; Sara, G.; Pezzuolo, A. Smart technologies to improve the management and resilience to climate change of livestock housing: A systematic and critical review. Ital. J. Anim. Sci. 2025, 24, 376–392. [Google Scholar] [CrossRef]
- Kome, G.K.; Enang, R.K.; Yerima, B.P.K. Knowledge and management of soil fertility by farmers in western Cameroon. Geoderma Reg. 2018, 13, 43–51. [Google Scholar] [CrossRef]
- Suzuki, W.; Sugawara, M.; Miwa, K.; Morikawa, M. Plant growth-promoting bacterium Acinetobacter calcoaceticus P23 increases the chlorophyll content of the monocot Lemna minor (duckweed) and the dicot Lactuca sativa (lettuce). J. Biosci. Bioeng. 2014, 118, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Dumanski, J.; Peiretti, R. Modern concepts of soil conservation. Int. Soil Water Conserv. Res. 2013, 1, 19–23. [Google Scholar] [CrossRef]
- Harvey, C.A.; Komar, O.; Chazdon, R.; Ferguson, B.G.; Finegan, B.; Griffith, D.M.; Martínez-Ramos, M.I.; Morales, H.; Nigh, R.; Soto-Pinto, L.O.; et al. Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conserv. Biol. 2008, 22, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, D.; Merlo, J.; Haro, R.; Acosta, M.; Bernal, G. Soils from the Amazonia. In The Soils of Ecuador; Springer International Publishing: Cham, Germany, 2017; pp. 113–137. [Google Scholar] [CrossRef]
- Ministerio de Agricultura y Ganadería (MAG). Mapa Geopedológico del Ecuador Continental (Versión Editada por el Ministerio de Agricultura y Ganadería en 2019), Escala 1:25.000, año 2009–2015. 2019. Available online: http://geoportal.agricultura.gob.ec/geonetwork/srv/spa/catalog.search#/metadata/0a26e971-5722-4a10-8a5e-d04298b0f017 (accessed on 22 May 2025).
- Torres, B.; Bravo, C.; Torres, A.; Tipán-Torres, C.; Vargas, J.C.; Herrera-Feijoo, R.J.; Heredia-R, M.; Barba, C.; García, A. Carbon Stock Assessment in Silvopastoral Systems along an Elevational Gradient: A Study from Cattle Producers in the Sumaco Biosphere Reserve, Ecuadorian Amazon. Sustainability 2022, 15, 449. [Google Scholar] [CrossRef]
- Torres, B.; Eche, D.; Torres, Y.; Bravo, C.; Velasco, C.; García, A. Identification and assessment of livestock best management practices (BMPs) using the REDD+ approach in the Ecuadorian Amazon. Agronomy 2021, 11, 1336. [Google Scholar] [CrossRef]
- Chuquirima, D.; García, M.E.; Hidalgo, Y.N. Componentes del sistema de producción de bovinos doble propósito en los cantones Nangaritza y Palanda, provincia Zamora Chinchipe, Ecuador. Rev. Investig. Vet. Perú 2023, 34, e23850. [Google Scholar] [CrossRef]
- Tapia-Armijos, M.F.; Homeier, J.; Espinosa, C.I.; Leuschner, C.; De La Cruz, M. Deforestation and forest frag-mentation in South Ecuador since the 1970s–losing a hotspot of biodiversity. PLoS ONE 2015, 10, e0133701. [Google Scholar]
- Camacho-López, O.; Paqui, N.S.C.; Villa, A.F.J. Análisis multitemporal de la deforestación y cambio de la cobertura del suelo en Zamora Chinchipe. Polo Del Conoc. Rev. Científico-Prof. 2021, 6, 1228–1241. [Google Scholar]
- Jiménez, L.S.; Mezquida, E.T.; Benito Capa, M.; Rubio Sánchez, A. Fertilidad del suelo de bosques tropicales y pastizales de uso ganadero en el sur del Ecuador. Cuad. Soc. Española Cienc. For. 2008, 25, 241–245. [Google Scholar]
- Jiménez, L.; Capa-Mora, D.; Fierro, N.; Lasso, J.; Roa, J.; Bermeo, J.; Carrera, R. Uncovering the Potential of Carbon Stocks and Nutrients in Livestock Systems in Zamora Chinchipe. Appl. Environ. Soil Sci. 2025, 2025, 8821033. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Censos (INEC). Mujeres y Hombres del Ecuador en Cifras III. 2014. Available online: https://www.ecuadorencifras.gob.ec/wp-content/d (accessed on 11 June 2025).
- Israel, G. Determining Sample Size; EDIS, University of Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences: Gainesville, FL, USA, 1992; Volume 85, pp. 108–113. [Google Scholar] [CrossRef]
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Boton, X.; Nitschelm, L.; Juillard, M.; van der Werf, H.M. Modelling greenhouse gas emissions of land use and land-use change using spatially explicit land conversion data for French crops. Int. J. Life Cycle Assess. 2025, 30, 285–300. [Google Scholar] [CrossRef]
- Instituto Nacional de Investigaciones Agropecuarias. Análisis Químico y Físico en Muestras de Suelos, Plantas y Aguas. 2025. Available online: https://www.iniap.gob.ec/?p=1676 (accessed on 15 January 2025).
- Konen, M.E.; Jacobs, P.M.; Burras, C.L.; Talaga, B.J.; Mason, J.A. Equations for predicting soil organic carbon using loss-on-ignition for north central US soils. Soil Sci. Soc. Am. J. 2002, 66, 1878–1881. [Google Scholar] [CrossRef]
- Solano, M.H.S.; Ramón, P.; Gusmán, E.; Burneo, J.I.; Quichimbo, P.; Jiménez, L.S. Efecto del gradiente altitudinal sobre las reservas de carbono y nitrógeno del suelo en un matorral seco en Ecuador. Ecosistemas 2018, 27, 116–122. Available online: https://www.iniap.gob.ec/ (accessed on 11 June 2025).
- Shedayi, A.A.; Xu, M.; Naseer, I.; Khan, B. Altitudinal gradients of soil and vegetation carbon and nitrogen in a high altitude nature reserve of Karakoram ranges. SpringerPlus. 2016, 5, 320. [Google Scholar] [CrossRef]
- Baul, T.K.; Peuly, T.A.; Nandi, R.; Schmidt, L.H.; Karmakar, S. Carbon stocks of homestead forests have a mitigation potential to climate change in Bangladesh. Sci. Rep. 2021, 11, 9254. [Google Scholar] [CrossRef]
- Toru, T.; Kibret, K. Carbon stock under major land use/land cover types of Hades sub-watershed, eastern Ethiopia. Carbon Balance Manag. 2019, 14, 7. [Google Scholar] [CrossRef]
- Jacot, K.A.; Lüscher, A.; Nösberger, J.; Hartwig, U.A. The relative contribution of symbiotic N2 fixation and other nitrogen sources to grassland ecosystems along an altitudinal gradient in the Alps. Plant Soil 2000, 225, 201–211. [Google Scholar] [CrossRef]
- Neina, D. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Taboada, M.A.; Rubio, G.; Chaneton, E.J. Grazing impacts on soil physical, chemical, and ecological properties in forage production systems. In Soil Management: Building a Stable Base for Agriculture; Scientific Research Publishing: Wuhan, China, 2011; pp. 301–320. [Google Scholar] [CrossRef]
- Bahr, E.; Zaragocin, D.C.; Makeschin, F. Soil nutrient stock dynamics and land-use management of annuals, perennials and pastures after slash-and-burn in the Southern Ecuadorian Andes. Agric. Ecosyst. Environ. 2014, 188, 275–288. [Google Scholar] [CrossRef]
- Rayne, N.; Aula, L. Livestock manure and the impacts on soil health: A review. Soil Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Broom, D.M.; Galindo, F.A.; Murgueitio, E. Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc. R. Soc. B Biol. Sci. 2013, 280, 20132025. [Google Scholar] [CrossRef]
- Valarezo, J.J.M. Los sistemas silvopastoriles como alternativa para la producción sostenible de bovinos en la amazonía sur ecuatoriana. Cedamaz 2012, 2. Available online: https://revistas.unl.edu.ec/index.php/cedamaz/article/view/104 (accessed on 11 June 2025).
- Bravo, C.; Benítez, D.; Vargas Burgos, J.C.; Alemán, R.; Torres Navarrete, S.B.; Marín, H. Caracterización socio-ambiental de unidades de producción agropecuaria en la Región Amazónica Ecuatoriana: Caso Pastaza y Napo. Rev. Amaz. Cienc. Y Tecnol. 2015, 4, 03–31. [Google Scholar] [CrossRef]
- Delgado, J.A.; Groffman, P.M.; Nearing, M.A.; Goddard, T.; Reicosky, D.; Lal, R.; Kitchen, N.R.; Rice, C.W.; Towery, D.; Salon, P. Conservation practices to mitigate and adapt to climate change. J. Soil Water Conserv. 2011, 66, 118A–129A. [Google Scholar] [CrossRef]
- Casey, J.W.; Holden, N.M. Analysis of greenhouse gas emissions from the average Irish milk production system. Agric. Syst. 2005, 86, 97–114. [Google Scholar] [CrossRef]
- Ministerio de Agricultura y Ganadería (MAG). Informe de Emisiones de Gases de Efecto Invernadero en el Sector Agropecuario; Ministerio de Agricultura y Ganadería del Ecuador: Quito, Ecuador, 2020.
- FAO. Greenhouse Gas Emissions from the Dairy Sector: A Life Cycle Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- Opio, C.; Gerber, P.; Mottet, A.; Falcucci, A.; Tempio, G.; MacLeod, M.; Steinfeld, H. Greenhouse Gas Emissions from Ruminant Supply Chains–A Global Life Cycle Assessment; FAO: Rome, Italy, 2013. [Google Scholar]
- Nair, P.R. Climate change mitigation: A low-hanging fruit of agroforestry. In Agroforestry-The Future of Global Land Use; Springer: Dordrecht, The Netherlands, 2012; pp. 31–67. [Google Scholar] [CrossRef]
- Montagnini, F.; Nair, P.R. Carbon sequestration: An underexploited environmental benefit of agroforestry systems. Agrofor. Syst. 2004, 61, 281–295. [Google Scholar] [CrossRef]
- Delgado Fernández, E.; León Peralta, M.; Cantos Guamán, C.; Guzmán Juárez, M. Effect of mining activity on biodiversity in a sector of the Paquisha parish, province of Zamora Chinchipe-Ecuador. LA GRANJA. Rev. Cienc. Vida 2023, 38, 106–123. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis Contribution of Working Group Ito the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Meinen, R.; Montes, F.; Rotz, A.; Dell, C.; et al. Mitigation of methane and nitrous oxide emissions from animal operations—II. A review of manure management mitigation options. J. Dairy Sci. 2015, 98, 5171–5198. [Google Scholar]
- Reay, D.S.; Davidson, E.A.; Smith, K.A.; Smith, P.; Melillo, J.M.; Dentener, F.; Crutzen, P.J. Global agriculture and nitrous oxide emissions. Nat. Rev. Earth Environ. 2021, 2, 410–416. [Google Scholar] [CrossRef]




| Parameter Queried | Specific Features | |
|---|---|---|
| General Information | Farm name, main product (meat or milk), canton, parish. | |
| Production system | Marginal (Traditional farming practices; income sources are not primarily from the farm itself; the farm generates little surplus for selling products). Commercial (Products from the farm are regularly sold; the main source of labor on the farm is family labor; low level of mechanization). Mixed (Semi-mechanized; the main source of labor is hired workers; products from the farm are regularly sold) Enterprise-level (Highly mechanized; production is intended for the agro-industry and export markets). | |
| Weights (minimum of three animals per category (cows, bulls, etc.) are weighed; the average weight is reported (excluding sick animals) | Live weight of cows, heifers, bulls, and calves (kg/animal). Live weight at slaughter or sale of young heifers and bulls (kg/animal). Weight at culling of cows (kg/animal). | |
| Herd composition | Number: Cows, cows in production, heifers (1–2 years old), calves (under 1 year old), bulls, bull calves (1–2 years old), newborn calves, dead cows and calves, dead bulls and bull calves, cows slaughtered and sold, bulls slaughtered and sold, total births, age at first calving (months). | |
| Production | Percentage of fat and protein in milk, milk production (liters/animal/day). Average over the period (lactation period in months). | |
| Main pasture | None Ahicoria Alfalfa Brachiarias Estrella Festuca Gramalote Kikuyo King Grass Llantén Maní forrajero Maralfalfa Pasto azul Pasto miel Rye Grass Saboya Trébol blanco Trébol rojo | Cichorium intybus L. Medicago sativa L. Urochloa spp. (sin. Brachiaria spp.). Cynodon nlemfuensis Vanderyst. Festuca arundinacea Schreb. Bouteloua curtipendula (Michx.) Torr. Cenchrus clandestinus (Hochst. ex Chiov.) Morrone. Pennisetum purpureum × Pennisetum glaucum. Plantago major L. Arachis pintoi Krapov. & W.C.Gregory Pennisetum sp. (probably a cultivar of P. purpureum). Poa pratensis L. Melinis minutiflora P. Beauv. Lolium perenne L. Trifolium repens L. Trifolium pratense L. |
| Main forage consumption | Time for cows to return to the pasture (days), time for heifers, bulls, and young bulls to return to the pasture (days). | |
| Feed supplementation for cows (kg/animal/day). Other categories | Hay or silage from legumes and grasses, corn silage, wheat, corn, rice and sugarcane byproducts, corn kernels, other grain byproducts, palm oil meal, molasses, balanced feed, alfalfa silage, and brewery byproducts. | |
| Manure (%) | Composting, anaerobic digester, liquid sludge, daily spreading, no management. | |
| Areas (ha) | Farm, total pasture area (includes native pastures, fodder mixtures, cut forage crops, and other areas used for livestock feeding), fodder mixtures, crops grown for livestock feed, pastures under agroforestry systems. | |
| Pasture management | Do you plant or replant grasses on your farm? Do you fertilize your pastures? Do you practice paddock division or rotational grazing? Please indicate the area of land where you implement these practices. | |
| Forage mixtures and cut grass | The same species mentioned in the main pasture section are listed here. | |
| Forage consumption (cut grass) (kg/animal/day) | Amount of cut grass consumed by cows. Amount of cut grass consumed by other categories (heifer calves, bulls, bull calves). | |
| Parameter | Mean | Standard Deviation |
|---|---|---|
| Farm area (ha) | 41.48 | ±39.13 |
| Forest area (CUT 2022-MAATE) (ha) * | 8.43 | ±18.58 |
| Soil carbon stocks Mg/ha | 94.72 | 32.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez, L.; Capa-Mora, D.; Fierro, N.; Lasso, J.; Roa, J.; Bermeo, J.; Merino, J.; Carrera, R. Livestock and Climate Change: How Do Livestock Practices Impact Greenhouse Gas Emissions in Holders Fields in Zamora Chinchipe? Environments 2025, 12, 443. https://doi.org/10.3390/environments12110443
Jiménez L, Capa-Mora D, Fierro N, Lasso J, Roa J, Bermeo J, Merino J, Carrera R. Livestock and Climate Change: How Do Livestock Practices Impact Greenhouse Gas Emissions in Holders Fields in Zamora Chinchipe? Environments. 2025; 12(11):443. https://doi.org/10.3390/environments12110443
Chicago/Turabian StyleJiménez, Leticia, Daniel Capa-Mora, Natacha Fierro, Jefferson Lasso, Junior Roa, Juan Bermeo, Juan Merino, and Rubén Carrera. 2025. "Livestock and Climate Change: How Do Livestock Practices Impact Greenhouse Gas Emissions in Holders Fields in Zamora Chinchipe?" Environments 12, no. 11: 443. https://doi.org/10.3390/environments12110443
APA StyleJiménez, L., Capa-Mora, D., Fierro, N., Lasso, J., Roa, J., Bermeo, J., Merino, J., & Carrera, R. (2025). Livestock and Climate Change: How Do Livestock Practices Impact Greenhouse Gas Emissions in Holders Fields in Zamora Chinchipe? Environments, 12(11), 443. https://doi.org/10.3390/environments12110443

