Carbonaceous Aerosols and Ice Nucleation Activity in Iceland Environmental Samples
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Snow Sample Collection
2.3. Light-Absorbing Particles Analysis
2.4. Dust Measurements
2.5. Measurement Setup and Calculations for Ice Nucleation Activity
2.6. Sample Treatments
2.6.1. Freeze Drying of Snow Samples
2.6.2. Extraction
3. Results and Discussion
3.1. Ice Nucleation Activity
3.1.1. Untreated and Freeze-Dried Samples
3.1.2. Extracted Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BC | Black Carbon |
| ED-XRF | Energy-Dispersive X-ray Fluorescence |
| HEPA | High-Efficiency Particulate Air |
| HLD | High Latitude Dust |
| INPs | Ice Nucleating Particles |
| INA | Ice Nucleation Activity |
| LLD | Low Latitude Dust |
| MFT | Mean Freezing Temperature |
| TO | Onset Ice Nucleation Temperature |
| PTFE | Polytetrafluoroethylene |
| rBC | Refractory Black Carbon |
| SP2 | Single Particle Soot Photometer |
| VODCA | Vienna Optical Droplet Crystallization Analyzer |
| WBF | Wegener–Bergeron–Findeisen process |
| Glossary | |
| Aerosols | Tiny solid or liquid particles suspended in the atmosphere, which can come from natural sources or human activities. |
| Black Carbon (BC) | A component of particulate matter derived from the incomplete combustion of fossil fuels, biofuel, and biomass, characterized by its strong light-absorbing properties. |
| Energy-Dispersive X-ray Fluorescence (ED-XRF) | A technique used for elemental analysis of a sample by measuring the characteristic X-rays emitted when the sample is bombarded with high-energy X-rays or gamma rays. |
| High-Efficiency Particulate Air (HEPA) | A type of air filter that meets standards of efficiency set by the United States Department of Energy by removing at least 99.97% of dust, pollen, mold, bacteria, and any airborne particles with a size of 0.3 microns (µm). |
| High Latitude Dust (HLD) | Dust originating from high latitude regions, often with unique chemical and physical properties compared to dust from other regions. |
| Ice Nucleating Particles (INPs) | Particles that act as nuclei for the formation of ice crystals in the atmosphere, critical for the process of cloud formation and precipitation. |
| Ice Nucleation Activity (INA) | The ability of certain particles or surfaces to facilitate the formation of ice, typically under supercooled conditions. |
| Low Latitude Dust (LLD) | Dust that originates from low latitude arid regions such as deserts. |
| Mean Freezing Temperature (MFT) | The average temperature at which a sample starts to freeze in a controlled laboratory setting. |
| Onset Ice Nucleation Temperature (TO) | The temperature at which the initial formation of ice occurs in a supercooled liquid. |
| Polytetrafluoroethylene (PTFE) | A synthetic fluoropolymer known for its non-reactive, hydrophobic, and friction-reducing properties, often used in applications where a non-stick surface is essential. |
| Refractory Black Carbon (rBC) | A form of black carbon that is resistant to heat and does not decompose or react chemically at high temperatures. |
| Single Particle Soot Photometer (SP2) | An instrument used to measure the black carbon content of individual particles in the air by detecting the light emitted by these particles when heated. |
| Vienna Optical Droplet Crystallization Analyzer (VODCA) | A laboratory instrument used to study the freezing behavior of droplets under controlled environmental conditions to assess their ice nucleation activity. |
| Wegener–Bergeron–Findeisen (WBF) process | A meteorological process that describes the rapid growth of ice crystals at the expense of supercooled water droplets in mixed-phase clouds, leading to precipitation. |
References
- Turner, D.D. Arctic Mixed-Phase Cloud Properties from AERI Lidar Observations: Algorithm and Results from SHEBA. J. Appl. Meteorol. 2005, 44, 427–444. [Google Scholar] [CrossRef]
- Pinto, J.O. Autumnal mixed-phase cloudy boundary layers in the Arctic. J. Atmos. Sci. 1998, 55, 2016–2038. [Google Scholar] [CrossRef]
- Mülmenstädt, J.; Sourdeval, O.; Delanoë, J.; Quaas, J. Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals. Geophys. Res. Lett. 2015, 42, 6502–6509. [Google Scholar] [CrossRef]
- Korolev, A. Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci. 2007, 64, 3372–3375. [Google Scholar] [CrossRef]
- Pruppacher, H.R.; Klett, J.D. (Eds.) Microphysics of Clouds and Precipitation, 2nd ed.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Turnball, D.; Fisher, J.C. Rate of nucleation in condensed systems. J. Chem. Phys. 1949, 17, 71–73. [Google Scholar] [CrossRef]
- Cantrell, W.; Heymsfield, A. Production of ice in tropospheric clouds: A review. Bull. Am. Meteorol. Soc. 2005, 86, 795–807. [Google Scholar] [CrossRef]
- Kanji, Z.A.; Ladino, L.A.; Wex, H.; Boose, Y.; Burkert-Kohn, M.; Cziczo, D.J.; Kräme, M. Overview of Ice Nucleating Particles. Meteorol. Monogr. 2017, 58, 1.1–1.33. [Google Scholar] [CrossRef]
- Dorsey, N.E. The freezing of supercooled water. Trans. Am. Philos. Soc. 1948, 38, 247–328. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Johnson, B.T.; Shine, K.P.; Forster, P.M. The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus. Q. J. R. Meteorol. Soc. 2004, 130, 1407–1422. [Google Scholar] [CrossRef]
- Brioude, J.; Cooper, O.R.; Feingold, G.; Trainer, M.; Freitas, S.R.; Kowal, D.; Ayers, J.K.; Prins, E.; Minnis, P.; McKeen, S.A.; et al. Effect of biomass burning on marine stratocumulus clouds off the California coast. Atmos. Chem. Phys. 2009, 9, 8841–8856. [Google Scholar] [CrossRef]
- Wilcox, E.M.; Thomas, R.M.; Praveen, P.S.; Pistone, K.; Bender, F.A.; Ramanathan, V. Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer. Proc. Natl. Acad. Sci. USA 2012, 109, 11699–11704. [Google Scholar] [CrossRef]
- Fan, J.; Yuan, T.; Comstock, J.M.; Ghan, S.; Khain, A.; Leung, L.R.; Li, Z.; Martins, V.J.; Ovchinnikov, M. Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res. 2009, 114, D22206. [Google Scholar] [CrossRef]
- Heintzenberg, J.; Charlson, R.J. Earth’s Climate: The Ocean-Atmosphere Interaction; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Twomey, S. The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Geofis. Pura E Appl. 1959, 43, 243–249. [Google Scholar] [CrossRef]
- Bauer, S.E.; Menon, S.; Koch, D.; Bond, T.C.; Tsigaridis, K. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects. Atmos. Chem. Phys. 2010, 10, 7439–7456. [Google Scholar] [CrossRef]
- Ferek, R.J.; Garrett, T.; Hobbs, P.V.; Strader, S.; Johnson, D.; Taylor, J.P.; Nielsen, K.; Ackerman, A.S.; Kogan, Y.; Liu, Q.; et al. Drizzle suppression in ship tracks. J. Atmos. Sci. 1998, 55, 1740–1750. [Google Scholar] [CrossRef]
- Ackerman, A.S.; Kirkpatrick, M.P.; Stevens, D.E.; Toon, O.B. The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature 2004, 432, 1014–1017. [Google Scholar] [CrossRef] [PubMed]
- Sandu, I.; Brenguier, J.L.; Geoffroy, O.; Thouron, O.; Masson, V. Aerosol impacts on the diurnal cycle of marine stratocumulus. J. Atmos. Sci. 2008, 65, 2705–2718. [Google Scholar] [CrossRef]
- Lohmann, U.; Feichter, J. Global indirect aerosol effects: A review. Atmos. Chem. Phys. 2005, 5, 715–737. [Google Scholar] [CrossRef]
- Lohmann, U. A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett. 2002, 29, 1052. [Google Scholar] [CrossRef]
- Girard, E.; Blanchet, J.P.; Dubois, Y. Effects of arctic sulphuric acid aerosols on wintertime low-level atmospheric ice crystals, humidity and temperature at Alert, Nunavut. Atmos. Res. 2005, 73, 131–148. [Google Scholar] [CrossRef]
- Storelvmo, T.; Kristjansson, J.E.; Muri, H.; Pfeffer, M.; Barahona, D.; Nenes, A. Cirrus cloud seeding has potential to cool climate. Geophys. Res. Lett. 2008, 35, L18818. [Google Scholar]
- Hoose, C.; Kristjansson, J.E.; Burrows, S.M. How important is biological ice nucleation in clouds on a global scale? Environ. Res. Lett. 2010, 5, 024009. [Google Scholar] [CrossRef]
- Paramonov, M.; David, R.; Kretzschmar, R.; Kanji, Z. A laboratory investigation of the ice nucleation efficiency of three types of mineral and soil dust. Atmos. Chem. Phys. 2018, 18, 16515–16536. [Google Scholar] [CrossRef]
- Kanji, Z.A.; Welti, A.; Corbin, J.C.; Mensah, A.A. Black carbon particles do not matter for immersion mode ice nucleation. Geophys. Res. Lett. 2020, 46, e2019GL086764. [Google Scholar] [CrossRef]
- Harrison, A.D.; O’Sullivan, D.; Adams, M.P.; Porter, G.C.E.; Blades, E.; Brathwaite, C.; Chewitt-Lucas, R.; Gaston, C.; Hawker, R.; Krüger, O.O.; et al. The ice-nucleating activity of African mineral dust in the Caribbean boundary layer. Atmos. Chem. Phys. 2022, 22, 9663–9680. [Google Scholar] [CrossRef]
- Boose, Y.; Baloh, P.; Plötze, M.; Ofner, J.; Grothe, H.; Sierau, B.; Lohmann, U.; Kanji, Z.A. Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide—Part 2: Deposition nucleation and condensation freezing. Atmos. Chem. Phys. 2019, 19, 1059–1076. [Google Scholar] [CrossRef]
- Atkinson, J.D.; Murray, B.J.; Woodhouse, M.T.; Whale, T.F.; Baustian, K.J.; Carslaw, K.S.; Dobbie, S.; O’Sullivan, D.; Malkin, T.L. The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature 2013, 498, 355–358. [Google Scholar] [CrossRef]
- Häusler, T.; Witek, L.; Felgitsch, L.; Hitzenberger, R.; Grothe, H. Freezing on a chip—A new approach to determine heterogeneous ice nucleation of micrometer-sized water droplets. Atmosphere 2018, 9, 140. [Google Scholar] [CrossRef]
- Sanchez-Marroquin, A.; Arnalds, O.; Baustian-Dorsi, K.J.; Browse, J.; Dagsson-Waldhauserova, P.; Harrison, A.D.; Maters, E.C.; Pringle, K.J.; Vergara-Temprado, J.; Burke, I.T.; et al. Iceland is an episodic source of atmospheric ice-nucleating particles relevant for mixed-phase clouds. Sci. Adv. 2020, 6, eaba8137. [Google Scholar] [CrossRef]
- Cook, S.J.; Swift, D.A.; Graham, D.J.; Midgley, N.G. Origin and significance of ‘dispersed facies’ basal ice: Svínafellsjökull, Iceland. J. Glaciol. 2011, 57, 710–720. [Google Scholar] [CrossRef]
- Hannesdóttir, H.; Björnsson, H.; Pálsson, F.; Aðalgeirsdóttir, G.; Guðmundsson, S. Changes in the southeast Vatnajökull ice cap, Iceland, between ~1890 and 2010. Cryosphere 2015, 9, 565–585. [Google Scholar] [CrossRef]
- Magnússon, E.; Pálsson, F.; Björnsson, H.; Guðmundsson, S. Removing the ice cap of Öraefajokull central volcano, SE-Iceland: Mapping and interpretation of bedrock topography, ice volumes, subglacial troughs and implications for hazards assessments. Jökull 2012, 62, 131–150. [Google Scholar] [CrossRef]
- Adhikari, S.; Marshall, S.J. Influence of high-order mechanics on simulation of glacier response to climate change: Insights from Haig Glacier, Canadian Rocky Mountains. Cryosphere 2013, 7, 1527–1541. [Google Scholar] [CrossRef]
- Wendl, I.A.; Menking, J.A.; Färber, R.; Gysel, M.; Kaspari, S.D.; Laborde, M.J.; Schwikowski, M. Optimized method for black carbon analysis in ice and snow using the Single Particle Soot Photometer. Atmos. Meas. Tech. 2014, 7, 2667–2681. [Google Scholar] [CrossRef]
- Drab, E.; Gaudichet, A.; Jaffrezo, J.L.; Colin, J.L. Mineral particles content in recent snow at Summit (Greenland). Atmos. Environ. 2002, 36, 5365–5376. [Google Scholar] [CrossRef]
- Ryan, J.C.; Smith, L.C.; van As, D.; Cooley, S.W.; Cooper, M.G.; Pitcher, L.H.; Hubbard, A. Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure. Sci. Adv. 2019, 5, eaav3738. [Google Scholar] [CrossRef]
- Dumont, M.; Brun, E.; Picard, G.; Michou, M.; Libois, Q.; Petit, J.R.; Geyer, M.; Morin, S.; Josse, B. Contribution of light-absorbing impurities in snow to Greenland’s darkening since 2009. Nat. Geosci. 2014, 7, 509–512. [Google Scholar] [CrossRef]
- Bisiaux, M.M.; Edwards, R.; McConnell, J.R.; Curran, M.A.J.; Van Ommen, T.D.; Smith, A.M.; Neumann, T.A.; Pasteris, D.R.; Penner, J.E.; Taylor, K. Changes in black carbon deposition to Antarctica from two high-resolution ice core records, 1850–2000 AD. Atmos. Chem. Phys. 2012, 12, 4107–4115. [Google Scholar] [CrossRef]
- Creamean, J.; Barry, K.; Hill, T.; Hume, C.; DeMott, P.; Shupe, M.; Dahlke, S.; Willmes, S.; Schmale, J.; Beck, I.; et al. Annual cycle observations of aerosols capable office formation in central Arctic clouds. Nat. Commun. 2022, 13, 3537. [Google Scholar] [CrossRef]
- Marquetto, L.; Kaspari, S.; Gysel-Beer, M. The import of black carbon from lower latitudes to the Arctic: An overlooked source of climate forcing. Environ. Res. Lett. 2020, 15, 124042. [Google Scholar]
- Zender, C.S.; Bian, H.; Newman, D. Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res. 2003, 108, 4416. [Google Scholar] [CrossRef]
- McConnel, J.R.; Edwards, R.; Kok, G.L.; Flanner, M.G.; Zender, C.S.; Saltzman, E.S.; Banta, J.R.; Pasteris, D.R.; Carter, M.M.; Kahl, J.D.W. 20th-century industrial black carbon emissions altered arctic climate forcing. Science 2007, 317, 1381–1384. [Google Scholar] [CrossRef]
- Schwarz, J.P.; Gao, R.S.; Fahey, D.W.; Thomson, D.S.; Watts, L.A.; Wilson, J.C.; Reeves, J.M.; Darbeheshti, M.; Baumgardner, D.G.; Kok, G.L.; et al. Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. J. Geophys. Res. 2006, 111, D16207. [Google Scholar] [CrossRef]
- Nagorski, S.A.; Kaspari, S.D.; Hood, E.; Fellman, J.B.; Skiles, S.M.K. Radiative forcing by dust and black carbon on the Juneau Icefield, Alaska. J. Geophys. Res. Atmos. 2019, 124, 3943–3959. [Google Scholar] [CrossRef]
- Si, M.; Irish, V.E.; Mason, R.H.; Vergara-Temprado, J.; Hanna, S.J.; Ladino, L.A.; Yakobi-Hancock, J.D.; Schiller, C.L.; Wentzell, J.J.B.; Abbatt, J.P.D.; et al. Ice-nucleating ability of aerosol particles and possible sources at three coastal marine sites. Atmos. Chem. Phys. 2019, 19, 15287–15306. [Google Scholar] [CrossRef]
- Huang, S.; Hu, W.; Chen, J.; Wu, Z.; Zhang, D.; Fu, P. Overview of biological ice nucleating particles in the atmosphere. Environ. Int. 2021, 146, 106197. [Google Scholar] [CrossRef]
- Hoose, C.; Möhler, O. Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys. 2012, 12, 9817–9854. [Google Scholar] [CrossRef]
- Van Curren, K.J.; Lamsal, L.N.; Duncan, B.N.; Beirle, S.; Theys, N.; de Smedt, I. Improved ground-level NO2 concentrations over the United States. Atmos. Chem. Phys. 2012, 12, 10637–10650. [Google Scholar]
- Bory, A.J.M.; Biscaye, P.E.; Svensson, A.; Grousset, F.E. Seasonal variability in the origin of recent atmospheric mineral dust at NorthGRIP, Greenland. Earth Planet. Sci. Lett. 2002, 196, 123–134. [Google Scholar] [CrossRef]
- Groot Zwaaftink, C.D.; Grythe, H.; Skov, H.; Stohl, A. Substantial contribution of northern high-latitude sources to mineral dust in the Arctic. J. Geophys. Res. Atmos. 2016, 121, 13678–13697. [Google Scholar] [CrossRef]
- Arnalds, O.; Olafsson, H.; Dagsson-Waldhauserova, P. Quantification of iron-rich volcanogenic dust emissions and deposition over the ocean from Icelandic dust sources. Biogeosciences 2014, 11, 6623–6632. [Google Scholar] [CrossRef]
- Dagsson-Waldhauserova, P.; Arnalds, O.; Olafsson, H. Long-term variability of dust events in Iceland (1949–2011). Atmos. Chem. Phys. 2014, 14, 13411–13422. [Google Scholar] [CrossRef]
- Prospero, J.M.; Bullard, J.E.; Hodgkins, R. High-latitude dust over the North Atlantic: Inputs from Icelandic proglacial lake sediments. Science 2012, 335, 1078–1082. [Google Scholar] [CrossRef] [PubMed]
- Dörnbrack, A.; Stachlewska, I.S.; Ritter, C.; Neuber, R. Aerosol distribution around Svalbard during intense easterly winds. Atmos. Chem. Phys. 2010, 10, 1473–1490. [Google Scholar] [CrossRef]
- Crusius, J.; Schroth, A.W.; Gassó, S.; Moy, C.M.; Levy, R.C.; Gatica, M. Glacial flour dust storms in the Gulf of Alaska: Hydrologic and meteorological controls and their importance as a source of bioavailable iron. Geophys. Res. Lett. 2011, 38, L06602. [Google Scholar] [CrossRef]
- Bullard, J.E.; Austin, M.J. Dust generation on a proglacial floodplain, West Greenland. Aeolian Res. 2011, 3, 43–54. [Google Scholar] [CrossRef]
- Meinander, O.; Dagsson-Waldhauserova, P.; Amosov, P.; Aseyeva, E.; Atkins, C.; Baklanov, A.; Baldo, C.; Barr, S.L.; Barzycka, B.; Benning, L.G.; et al. Newly identified climatically and environmentally significant high-latitude dust sources. Atmos. Chem. Phys. 2022, 22, 11889–11930. [Google Scholar] [CrossRef]
- Bullard, J.E. The distribution and biogeochemical importance of high-latitude dust in the Arctic and Southern Ocean-Antarctic regions. J. Geophys. Res. Atmos. 2017, 122, 3098–3103. [Google Scholar] [CrossRef]
- Kaspari, S. Accelerated glacier melt on Snow Dome, Mount Olympus, Washington, USA, due to deposition of black carbon and mineral dust from wildfire. J. Geophys. Res. Atmos. 2014, 119, 2793–2803. [Google Scholar] [CrossRef]
- Kaspari, S.; Mayewski, P.A.; Handley, M.; Osterberg, E.; Kang, S.; Sneed, S.; Hou, S.; Qin, D. Recent increases in atmospheric concentrations of Bi, U, Cs, S and Ca from a 350-year Mount Everest ice core record. J. Geophys. Res. 2009, 114, D04302. [Google Scholar] [CrossRef]
- EPA. Method 160.2: Total Suspended Solids (TSS) (Gravimetric, Dried at 103–105 °C); Environmental Protection Agency: Washington, DC, USA, 1998.
- Felgitsch, L.; Baloh, P.; Burkart, J.; Mayr, M.; Momken, M.; Seifried, T.; Winkler, P.; Schmale, D.; Grothe, H. Birch leaves and branches as a source of ice-nucleating macromolecules. Atmos. Chem. Phys. 2018, 18, 16063–16079. [Google Scholar] [CrossRef]
- Pummer, B.G.; Bauer, H.; Bernardi, J.; Bleicher, S.; Grothe, H. Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen. Atmos. Chem. Phys. 2012, 12, 2541–2550. [Google Scholar] [CrossRef]
- Hauptmann, A.; Handle, K.; Baloh, P.; Grothe, H.; Loerting, T. Does the emulsification procedure influence freezing and thawing of aqueous droplets? J. Chem. Phys. 2016, 145, 211923. [Google Scholar] [CrossRef]
- DeMott, P.J.; Möhler, O.; Cziczo, D.J.; Hiranuma, N.; Petters, M.D.; Petters, S.S.; Belosi, F.; Bingemer, H.G.; Brooks, S.D.; Budke, C.; et al. The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): Laboratory intercomparison of ice nucleation measurements. Atmos. Meas. Tech. 2018, 11, 6231–6257. [Google Scholar] [CrossRef]
- Murray, B. Enhanced formation of cubic ice in aqueous organic acid droplets. Environ. Res. Lett. 2008, 3, 025008. [Google Scholar] [CrossRef]
- Baloh, P.; Hanlon, R.; Anderson, C.; Dolan, E.; Pacholik, G.; Stinglmayr, D.; Burkart, J.; Felgitsch, L.; Schmale, D.; Grothe, H. Seasonal ice nucleation activity of water samples from alpine rivers and lakes in Obergurgl, Austria. Sci. Total Environ. 2021, 800, 149442. [Google Scholar] [CrossRef]
- Felgitsch, L.; Bichler, M.; Burkart, J.; Fiala, B.; Häusler, T.; Hitzenberger, R.; Grothe, H. Heterogeneous Freezing of Liquid Suspensions Including Juices and Extracts from Berries and Leaves from Perennial Plants. Atmosphere 2019, 10, 37. [Google Scholar] [CrossRef]
- Diehl, K.; Wurzler, S. Heterogeneous drop freezing in the immersion mode: Model calculations considering soluble and insoluble particles in the drops. J. Atmos. Sci. 2004, 61, 2063–2072. [Google Scholar] [CrossRef]
- Khvorostyanov, V.I.; Curry, J.A. The theory of ice nucleation by heterogeneous freezing of deliquescent mixed CCN. part II: Parcel model simulation. J. Atmos. Sci. 2005, 62, 261–285. [Google Scholar] [CrossRef]
- Bergeron, T. On the physics of clouds and precipitation. In Proceedings of the 5th Assembly U.G.G.I., Lisbon, Portugal, 17–24 September 1933; Volume 2, pp. 156–178. [Google Scholar]
- Findeisen, W. Kolloid-meterologische Vorgänge bei der Neiderschlagsbildung. Meteorol. Z. 1938, 55, 121–133. [Google Scholar]
- Kärcher, B.; Lohmann, U. A parameterization of cirrus cloud formation: Heterogeneous freezing. J. Geophys. Res. 2003, 108, 4402. [Google Scholar] [CrossRef]
- Jensen, E.J.; Pfister, L.; Ackerman, A.S.; Tabazadeh, A.; Toon, O.B. A conceptual model of the dehydration of air due to freeze-drying by optically thin, laminar cirrus rising slowly across the tropical tropopause. J. Geophys. Res. 2001, 106, 17237–17252. [Google Scholar] [CrossRef]
- Yan, C.; Zheng, M.; Bosch, C.; Andersson, A.; Desyaterik, Y.; Sullivan, A.P.; Collett, J.L.; Zhao, B.; Wang, S.; He, K.; et al. Important fossil source contribution to brown carbon in Beijing during winter. Sci. Rep. 2018, 8, 43182. [Google Scholar] [CrossRef]
- Lin, P.; Aiona, P.K.; Li, Y.; Shiraiwa, M.; Laskin, J.; Nizkorodov, S.A.; Laskin, A. Molecular characterization of brown carbon in biomass burning aerosol particles, Environ. Sci. Technol. 2016, 50, 11815–11824. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Bergin, M.; Guo, H.; King, L.; Kotra, N.; Edgerton, E.; Weber, R.J. Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption. Atmos. Chem. Phys. 2013, 13, 12389–12404. [Google Scholar] [CrossRef]
- Chen, Y.; Bond, T.C. Light absorption by organic carbon from wood combustion. Atmos. Chem. Phys. 2010, 10, 1773–1787. [Google Scholar] [CrossRef]
- Meriander, O. Light-Absorbing Impurities in European Arctic and Seasonal Snow: Identification, Variation and Effects on Albedo; Finnish Meteorological Institute: Helsinki, Finland, 2017. [Google Scholar]
- Dragosics, M.; Meinander, O.; Jónsdóttir, T.; Dürig, T.; De Leeuw, G.; Pálsson, F.; Dagsson-Waldhauserová, P.; Thorsteinsson, T. Insulation effects of Icelandic dust and volcanic ash on snowand ice. Arab. J. Geosci. 2016, 9, 126. [Google Scholar] [CrossRef]
- Wittmann, M.; Groot, C.; Steffensen, L.; Guðmundsson, S.; Pálsson, F.; Arnalds, O.; Björnsson, H.; Thorsteinsson, T.; Stohl, A. Impact of dust deposition on the albedo of Vatnajökull ice cap, Iceland. Cryosphere 2017, 11, 741–754. [Google Scholar] [CrossRef]
- Rogers, D.C.; DeMott, P.J.; Kreidenweis, S.M. Airborne measurements of tropospheric ice-nucleating aerosol particles in the Arctic spring. Geophys. Res. 2001, 106, 15053–15063. [Google Scholar] [CrossRef]
- Borys, R.D. Studies of ice nucleation by Arctic aerosol on AGASP-II. J. Atmos. Chem. 1989, 9, 169–185. [Google Scholar] [CrossRef]
- Vergara-Temprado, J.; Holden, M.A.; Orton, T.R.; O’Sullivan, D.; Umo, N.S.; Browse, J.; Reddington, C.; Baeza-Romero, M.T.; Jones, J.M.; Lea-Langton, A.; et al. Is black carbon an unimportant ice-nucleating particle in mixed-phase clouds? J. Geophys. Res. Atmos. 2018, 123, 4273–4283. [Google Scholar] [CrossRef] [PubMed]
- Jahn, L.; Fahy, W.; Williams, D.B.; Sullivan, R.C. The role of feldspar and pyroxene minerals in the ice nucleating ability of three volcanic ashes. ACS Earth Space Chem. 2019, 3, 626–636. [Google Scholar] [CrossRef]
- Diao, Y.; Myerson, A.; Hatton, T.; Trout, B. Surface design for controlled crystallization: The role of surface chemistry and nanoscale pores in heterogeneous nucleation. Langmuir 2011, 27, 5324–5334. [Google Scholar] [CrossRef]
- Asanithi, P. Surface porosity and roughness of micrographite film for nucleation of hydroxyapatite. J. Biomed. Mater. Res. A 2014, 102, 2590–2599. [Google Scholar] [CrossRef]
- Chayen, N.; Saridakis, E.; Sear, R. Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium. Proc. Natl. Acad. Sci. USA 2006, 103, 597–601. [Google Scholar] [CrossRef]
- Isono, K.; Ikebe, Y. On the ice-nucleating ability of rock-forming minerals and soil particles. J. Meteorol. Soc. Jpn. 1960, 38, 213–230. [Google Scholar] [CrossRef]
- Porter, G.C.E.; Adams, M.P.; Brooks, I.M.; Ickes, L.; Karlsson, L.; Leck, C.; Salter, M.; Schmale, J.; Siegel, K.; Sikora, S.; et al. Highly active ice-nucleating particles at the summer North Pole. J. Geophys. Res. Atmos. 2022, 127, e2021JD036059. [Google Scholar] [CrossRef]
- Yun, J.; Evoy, E.; Worthy, S.; Fraser, M.; Veber, D.; Platt, A.; Rawlings, K.; Sharma, S.; Leaitch, W.; Bertram, A. Ice nucleating particles in the Canadian High Arctic during the fall of 2018. Environ. Sci. Atmos. 2022, 2, 279–290. [Google Scholar] [CrossRef]
- Zolles, T.; Burkart, J.; Häusler, T.; Pummer, B.; Hitzenberger, R.; Grothe, H. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles. J. Phys. Chem. A 2015, 119, 2692–2700. [Google Scholar] [CrossRef]
- Klier, K.; Shen, J.H.; Zettlemoyer, A.C. Water on Silica and Silicate Surfaces. I. Partially Hydrophobic Silicas. J. Phys. Chem. 1973, 77, 1458–1465. [Google Scholar] [CrossRef]
- Welti, A.; Lüönd, F.; Stetzer, O.; Lohmann, U. Influence of Particle Size on the Ice Nucleating Ability of Mineral Dusts. Atmos. Chem. Phys. 2009, 9, 6705–6715. [Google Scholar] [CrossRef]
- Connolly, P.J.; Möhler, O.; Field, P.R.; Saathoff, H.; Burgess, R.; Choularton, T.; Gallagher, M. Studies of heterogeneous freezing by three different desert dust samples. Atmos. Chem. Phys. 2009, 9, 2805–2824. [Google Scholar] [CrossRef]
- Petters, M.D.; Parsons, M.T.; Prenni, A.J.; DeMott, P.J.; Kreidenweis, S.M.; Carrico, C.M.; Sullivan, A.P.; McMeeking, G.R.; Levin, E.; Wold, C.E.; et al. Ice nuclei emissions from biomass burning. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Möhler, O.; Linke, C.; Saathoff, H.; Schnaiter, M.; Wagner, R.; Schneider, S.; Walter, V.; Ebert, V.; Wagner, S. The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols. Environ. Res. Lett. 2008, 3, 025007. [Google Scholar] [CrossRef]
- Möhler, O.; Büttner, S.; Linke, C.; Schnaiter, M.; Saathoff, H.; Stetzer, O.; Wagner, R.; Krämer, M.; Mangold, A.; Ebert, V.; et al. Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles. J. Geophys. Res. 2005, 110, D11210. [Google Scholar] [CrossRef]
- Boose, Y.; Kanji, Z.A.; Kohn, M.; Sierau, B.; Zipori, A.; Crawford, I.; Lloyd, G.; Bukowiecki, N.; Herrmann, E.; Kupiszewski, P.; et al. Ice nucleating particle measurements at 241 K during winter months at three different sites in the Swiss Alps. J. Atmos. Sci. 2016, 73, 2203–2228. [Google Scholar] [CrossRef]
- Mangan, T.P.; Atkinson, J.D.; Neuberg, J.W.; O’Sullivan, D.; Wilson, T.W.; Whale, T.F.; Neve, L.; Umo, N.S.; Malkin, T.L.; Murray, B.J. Heterogeneous ice nucleation by Soufriere Hills volcanic ash immersed in water droplets. PLoS ONE 2017, 12, e0169720. [Google Scholar] [CrossRef] [PubMed]
- Schill, G.P.; Genareau, K.; Tolbert, M.A. Deposition and immersion-mode nucleation of ice by three distinct samples of volcanic ash. Atmos. Chem. Phys. 2015, 15, 7523–7536. [Google Scholar] [CrossRef]
- Maters, E.C.; Dingwell, D.B.; Cimarelli, C.; Müller, D.; Whale, T.F.; Murray, B.J. The importance of crystalline phases in ice nucleation by volcanic ash. Atmos. Chem. Phys. 2019, 19, 5451–5465. [Google Scholar] [CrossRef]
- Klett, J.D.; Pruppbacher, H.R. Microphysics of Clouds and Precipitation; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]








| Site Locations | Latitude (°N) | Longitude (°E) |
| Site A | 63.997344 | −16.86844 |
| Site B | 63.998344 | −16.86452 |
| Site C | 63.996139 | −16.86589 |
| Weather Conditions | Parameter | Value |
| Air Temperature | −0.7 °C | |
| Precipitation (within last 48 h) * | 10.4 mm | |
| Relative Humidity | 41% | |
| Wind Speed | 6.8 m/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cintrón-Rodríguez, I.M.; Grothe, H.; Baloh, P. Carbonaceous Aerosols and Ice Nucleation Activity in Iceland Environmental Samples. Environments 2025, 12, 416. https://doi.org/10.3390/environments12110416
Cintrón-Rodríguez IM, Grothe H, Baloh P. Carbonaceous Aerosols and Ice Nucleation Activity in Iceland Environmental Samples. Environments. 2025; 12(11):416. https://doi.org/10.3390/environments12110416
Chicago/Turabian StyleCintrón-Rodríguez, Isatis M., Hinrich Grothe, and Philipp Baloh. 2025. "Carbonaceous Aerosols and Ice Nucleation Activity in Iceland Environmental Samples" Environments 12, no. 11: 416. https://doi.org/10.3390/environments12110416
APA StyleCintrón-Rodríguez, I. M., Grothe, H., & Baloh, P. (2025). Carbonaceous Aerosols and Ice Nucleation Activity in Iceland Environmental Samples. Environments, 12(11), 416. https://doi.org/10.3390/environments12110416

