Which American Wild Species Could Be Used in Grapevine Breeding Programs? A Review
Abstract
1. Introduction
2. Vitis spp.
2.1. Vitis berlandieri (=Vitis cinerea var. helleri Bailey)
2.1.1. Area of Origin
2.1.2. Susceptibility to Abiotic Stresses
2.1.3. Susceptibility to Biotic Stresses
2.1.4. Propagation Aptitude
2.2. Vitis riparia
2.2.1. Area of Origin
2.2.2. Susceptibility to Abiotic Stresses
2.2.3. Susceptibility to Biotic Stresses
2.2.4. Propagation Aptitude
2.3. Vitis rupestris
2.3.1. Area of Origin
2.3.2. Susceptibility to Abiotic Stresses
2.3.3. Susceptibility to Biotic Stresses
2.3.4. Propagation Aptitude
2.4. Vitis labrusca
2.4.1. Area of Origin
2.4.2. Susceptibility to Abiotic Stresses
2.4.3. Susceptibility to Biotic Stresses
2.4.4. Propagation Aptitude
2.5. Vitis cinerea (=Vitis simpsonii Munson)
2.5.1. Area of Origin
2.5.2. Susceptibility to Abiotic Stresses
2.5.3. Susceptibility to Biotic Stresses
2.5.4. Propagation Aptitude
2.6. Vitis X champinii
2.6.1. Area of Origin
2.6.2. Susceptibility to Abiotic Stresses
2.6.3. Susceptibility to Biotic Stresses
2.6.4. Propagation Aptitude
2.7. Vitis aestivalis (=Vitis rufotomentosa Small)
2.7.1. Area of Origin
2.7.2. Susceptibility to Abiotic Stresses
2.7.3. Susceptibility to Biotic Stresses
2.7.4. Propagation Aptitude
2.8. Vitis arizonica
2.8.1. Area of Origin
2.8.2. Susceptibility to Abiotic Stresses
2.8.3. Susceptibility to Biotic Stresses
2.8.4. Propagation Aptitude
2.9. Vitis californica
2.9.1. Area of Origin
2.9.2. Susceptibility to Abiotic Stresses
2.9.3. Susceptibility to Biotic Stresses
2.9.4. Propagation Aptitude
2.10. Vitis rotundifolia (=Muscadinia rotundifolia)
2.10.1. Area of Origin
2.10.2. Susceptibility to Abiotic Stresses
2.10.3. Susceptibility to Biotic Stresses
2.10.4. Propagation Aptitude
2.11. Vitis vulpina (=Vitis cordifolia Michaux)
2.11.1. Area of Origin
2.11.2. Susceptibility to Abiotic Stresses
2.11.3. Susceptibility to Biotic stresses
2.11.4. Propagation Aptitude
2.12. Vitis mustangensis (=Vitis candicans Engelmann)
2.12.1. Area of Origin
2.12.2. Susceptibility to Abiotic Stresses
2.12.3. Susceptibility to Biotic Stresses
2.12.4. Propagation Aptitude
2.13. Vitis girdiana
2.13.1. Area of Origin
2.13.2. Susceptibility to Abiotic Stresses
2.13.3. Susceptibility to Biotic Stresses
2.14. Vitis acerifolia (=Vitis longii Prince)
2.14.1. Area of Origin
2.14.2. Susceptibility to Abiotic Stresses
2.14.3. Susceptibility to Biotic Stresses
2.14.4. Propagation Aptitude
2.15. Vitis palmata (=Vitis rubra Michaux)
2.15.1. Area of Origin
2.15.2. Susceptibility to Abiotic Stresses
2.15.3. Susceptibility to Biotic Stresses
2.15.4. Propagation Aptitude
2.16. Vitis shuttleworthii (=Vitis coriacea Planchon)
2.16.1. Area of Origin
2.16.2. Susceptibility to Abiotic Stresses
2.16.3. Susceptibility to Biotic Stresses
2.17. Vitis X doaniana
2.17.1. Area of Origin
2.17.2. Susceptibility to Abiotic Stresses
2.17.3. Susceptibility to Biotic Stresses
2.18. Vitis monticola
2.18.1. Area of Origin
2.18.2. Susceptibility to Abiotic Stresses
2.18.3. Susceptibility to Biotic Stresses
2.18.4. Propagation Aptitude
2.19. Vitis popenoei (Muscadinia subgenus)
2.19.1. Area of Origin
2.19.2. Susceptibility to Abiotic Stresses
2.19.3. Susceptibility to Biotic Stresses
2.20. Vitis tiliifolia
2.20.1. Area of Origin
2.20.2. Susceptibility to Biotic Stresses
2.21. Vitis blancoi
2.21.1. Area of Origin
2.21.2. Susceptibility to Abiotic Stresses
2.21.3. Propagation Aptitude
2.22. Vitis baileyana
2.22.1. Area of Origin
2.22.2. Susceptibility to Abiotic Stresses
2.22.3. Susceptibility to Biotic Stresses
2.23. Vitis nesbittiana
2.23.1. Area of Origin
2.23.2. Susceptibility to Abiotic Stresses
2.23.3. Susceptibility to Biotic Stresses
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A

References
- Wen, J. Vitaceae. Flowering Plants · Eudicots. In The Families and Genera of Vascular Plants; Kubitzki, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 9, pp. 467–479. [Google Scholar]
- Wen, J.; Lu, L.; Nie, Z.; Liu, X.; Zhang, N.; Ickert-Bond, S.; Gerrath, J.; Manchester, S.R.; Boggan, J.; Chen, Z. A New Phylogenetic Tribal Classification of the Grape Family (Vitaceae). J. Syst. Evol. 2018, 56, 262–272. [Google Scholar] [CrossRef]
- This, P.; Lacombe, T.; Thomas, M. Historical Origins and Genetic Diversity of Wine Grapes. Trends Genet. 2006, 22, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Parihar, S.; Sharma, D. A Breif Overview on Vitis vinifera. Sch. Acad. J. Pharm. 2021, 10, 231–239. [Google Scholar] [CrossRef]
- Comeaux, B.L.; Nesbitt, W.B.; Fantz, P.R. Taxonomy of the Native Grapes of North Carolina. Castanea 1987, 52, 197–215. [Google Scholar]
- Moore, M.O. Classification and Systematics of Eastern North American Vitis L. (Vitaceae) North of Mexico. SIDA Contrib. Bot. 1991, 14, 339–367. [Google Scholar]
- Galet, P. Cépages et Vignobles de France: Les Vignes Américaines. In Tome 1, Les Vignes Américanes; Dehan, C., Ed.; Imprimerie: Montpellier, France, 1988. [Google Scholar]
- Chen, Z.; Hui, R.; Wen, J. Vitaceae. In Flora of China; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2007; Volume 12. [Google Scholar]
- Reisch, B.I.; Pratt, C. Grapes. In Fruit Breeding, 2nd ed.; Janick, J., Moore, J.N., Eds.; Wiley: New York, NY, USA, 1996; pp. 297–369. [Google Scholar]
- Meyer, R.S.; DuVal, A.E.; Jensen, H.R. Patterns and Processes in Crop Domestication: An Historical Review and Quantitative Analysis of 203 Global Food Crops. New Phytol. 2012, 196, 29–48. [Google Scholar] [CrossRef]
- Miller, A.J.; Gross, B.L. From Forest to Field: Perennial Fruit Crop Domestication. Am. J. Bot. 2011, 98, 1389–1414. [Google Scholar] [CrossRef]
- Zhou, Y.; Muyle, A.; Gaut, B.S. Evolutionary Genomics and the Domestication of Grapes. In The Grape Genome; Springer International Publishing: Cham, Switzerland, 2019; pp. 39–55. [Google Scholar]
- Maghradze, D.; Kikilashvili, S.; Gotsiridze, O.; Maghradze, T.; Fracassetti, D.; Failla, O.; Rustioni, L. Comparison between the Grape Technological Characteristics of Vitis vinifera subsp. sylvestris and subsp. sativa. Agronomy 2021, 11, 472. [Google Scholar] [CrossRef]
- Gepts, P. Crop Domestication as a Long-Term Selection Experiment. Plant Breed. Rev. 2003, 24, 1–44. [Google Scholar] [CrossRef]
- Maghradze, D.; Rehman, S.; Chutlashvili, A.; Kikilashvili, S.; Kikvadze, M.; Shamugia, A.; Charkviani, S.; McGovern, P.; Failla, O.; Gotsiridze, O.; et al. Differences in rooting ability between wild and cultivated Vitis vinifera. OENO One 2025, 59, 9371. [Google Scholar] [CrossRef]
- Myles, S.; Boyko, A.R.; Owens, C.L.; Brown, P.J.; Grassi, F.; Aradhya, M.K.; Prins, B.; Reynolds, A.; Chia, J.-M.; Ware, D.; et al. Genetic Structure and Domestication History of the Grape. Proc. Natl. Acad. Sci. USA 2011, 108, 3530–3535. [Google Scholar] [CrossRef]
- Grassi, F.; Arroyo-Garcia, R. Origins and Domestication of the Grape. Front. Plant Sci. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Baquerizo, M.; Guerra, C.A.; Cano-Díaz, C.; Egidi, E.; Wang, J.-T.; Eisenhauer, N.; Singh, B.K.; Maestre, F.T. The Proportion of Soil-Borne Pathogens Increases with Warming at the Global Scale. Nat. Clim. Chang. 2020, 10, 550–554. [Google Scholar] [CrossRef]
- Harvell, C.D.; Mitchell, C.E.; Ward, J.R.; Altizer, S.; Dobson, A.P.; Ostfeld, R.S.; Samuel, M.D. Climate Warming and Disease Risks for Terrestrial and Marine Biota. Science 2002, 296, 2158–2162. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Romero, À.; Iturbide, M.; Moralejo, E.; Gutiérrez, J.M.; Matías, M.A. Global Warming Significantly Increases the Risk of Pierce’s Disease Epidemics in European Vineyards. Sci. Rep. 2024, 14, 9648. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.J.; Tucker, E.J.; Tester, M. Genetic Analysis of Abiotic Stress Tolerance in Crops. Curr. Opin. Plant Biol. 2011, 14, 232–239. [Google Scholar] [CrossRef]
- Ollat, N.; Cookson, S.J.; Destrac-Irvine, A.; Lauvergeat, V.; Ouaked-Lecourieux, F.; Marguerit, E.; Barrieu, F.; Dai, Z.; Duchêne, E.; Gambetta, G.A.; et al. Grapevine Adaptation to Abiotic Stress: An Overview. Acta Hortic. 2019, 1248, 497–512. [Google Scholar] [CrossRef]
- Koyro, H.-W.; Ahmad, P.; Geissler, N. Abiotic Stress Responses in Plants: An Overview. In Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change; Ahmad, P., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, 2012; pp. 1–28. [Google Scholar]
- Dudney, J.; Willing, C.E.; Das, A.J.; Latimer, A.M.; Nesmith, J.C.B.; Battles, J.J. Nonlinear Shifts in Infectious Rust Disease Due to Climate Change. Nat. Commun. 2021, 12, 5102. [Google Scholar] [CrossRef]
- Chaloner, T.M.; Gurr, S.J.; Bebber, D.P. Plant Pathogen Infection Risk Tracks Global Crop Yields under Climate Change. Nat. Clim. Chang. 2021, 11, 710–715. [Google Scholar] [CrossRef]
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate Change Impacts on Plant Pathogens, Food Security and Paths Forward. Nat. Rev. Microbiol. 2023, 21, 640–656. [Google Scholar] [CrossRef]
- Wapshere, A.J.; Helm, K.F. Phylloxera and Vitis: An Experimentally Testable Coevolutionary Hypothesis. Am. J. Enol. Vitic. 1987, 38, 216–222. [Google Scholar] [CrossRef]
- Benheim, D.; Rochfort, S.; Robertson, E.; Potter, I.D.; Powell, K.S. Grape Phylloxera (Daktulosphaira vitifoliae)—A Review of Potential Detection and Alternative Management Options. Ann. Appl. Biol. 2012, 161, 91–115. [Google Scholar] [CrossRef]
- Gale, G. Saving the Vine from Phylloxera. In Wine; CRC Press: Boca Raton, FL, USA, 2002; pp. 70–91. [Google Scholar]
- Van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Sgubin, G.; Bois, B.; Ollat, N.; Swingedouw, D.; Zito, S.; Gambetta, G.A. Climate Change Impacts and Adaptations of Wine Production. Nat. Rev. Earth Environ. 2024, 5, 258–275. [Google Scholar] [CrossRef]
- Zaldea, G.; Nechita, A.; Damian, D.; Ghiur, A.D.; Cotea, V.V. Climate Changes in Recent Decades, the Evolution of the Drought Phenomenon and Their Influence on Vineyards in North-Eastern Romania. Not. Bot. Horti Agrobot. Cluj. Napoca 2021, 49, 12448. [Google Scholar] [CrossRef]
- Meladze, M.; Mamasakhlisashvili, L.; Ujmajuridze, L.; Migliaro, D.; Domanda, C.; Rustioni, L. Neglected Cultivars for the Mtskheta-Mtianeti Region (East Georgia): Ampelography, Phenology, and Agro-Climatology. Vitis 2023, 62, 75–84. [Google Scholar] [CrossRef]
- Salinar, F.; Giosuè, S.; Tubiello, F.N.; Rettori, A.; Rossi, V.; Spanna, F.; Rosenzweig, C.; Gullino, M.L. Downy Mildew (Plasmopara viticola) Epidemics on Grapevine under Climate Change. Glob. Chang. Biol. 2006, 12, 1299–1307. [Google Scholar] [CrossRef]
- Angelotti, F.; Hamada, E.; Magalhães, E.E.; Ghini, R.; Garrido, L.d.R.; Pedro Júnior, M.J. Climate Change and the Occurrence of Downy Mildew in Brazilian Grapevines. Pesqui. Agropecu. Bras. 2017, 52, 426–434. [Google Scholar] [CrossRef]
- Lalic, B.; Jankovic, D.; Ninkov, M. Assessment of Climate Change Impact on Downy Mildew Appearance in Serbia Using ECHAM5 Climate Model Outputs. In Proceedings of the Environmental Changes and Adaptation Strategies, Skalice, Slovakia, 9–11 September 2013; pp. 9–11. [Google Scholar]
- Caffarra, A.; Rinaldi, M.; Eccel, E.; Rossi, V.; Pertot, I. Modelling the Impact of Climate Change on the Interaction between Grapevine and Its Pests and Pathogens: European Grapevine Moth and Powdery Mildew. Agric. Ecosyst. Environ. 2012, 148, 89–101. [Google Scholar] [CrossRef]
- Dinoor, A. Sources of Oat Crown Rust Resistance in Hexaploid and Tetraploid Wild Oats in Israel. Can. J. Bot. 1970, 48, 153–161. [Google Scholar] [CrossRef]
- Burdon, J.J.; Thompson, J.N. Changed Patterns of Resistance in a Population of Linum marginale Attacked by the Rust Pathogen Melampsora lini. J. Ecol. 1995, 83, 199. [Google Scholar] [CrossRef]
- Brown, J.K.M. Little Else But Parasites. Science 2003, 299, 1680–1681. [Google Scholar] [CrossRef]
- De Nooij, M.P.; Van Damme, J.M.M. Variation in Host Susceptibility among and within Populations of Plantago lanceolata L. Infected by the Fungus Phomopsis subordinaria (Desm.) Trav. Oecologia 1988, 75, 535–538. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.A. Polymorphism for Disease Resistance in the Annual Legume Amphicarpaea bracteata. Heredity 1988, 60, 27–31. [Google Scholar] [CrossRef]
- Burdon, J.J.; Jarosz, A.M. Host-pathogen Interactions in Natural Populations of Linum marginale and Melampsora lini: I. Patterns of Resistance and Racial Variation in a Large Host Population. Evolution 1991, 45, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Bevan, J.R.; Clarke, D.D.; Crute, I.R. Resistance to Erysiphe fischeri in Two Populations of Senecio vulgaris. Plant Pathol. 1993, 42, 636–646. [Google Scholar] [CrossRef]
- Antonovics, J.; Thrall, P.H.; Jarosz, A.M.; Stratton, D. Ecological Genetics of Metapopulations: The Silene-Ustilago Plant-Pathogen System. In Ecological genetics; Real, L., Ed.; Princeton University Press: Princeton, NJ, USA, 1994; pp. 146–170. [Google Scholar]
- Thrall, P.H.; Burdon, J.J.; Young, A. Variation in Resistance and Virulence among Demes of a Plant Host-Pathogen Metapopulation. J. Ecol. 2001, 89, 736–748. [Google Scholar] [CrossRef]
- Laine, A.L. Resistance Variation within and among Host Populations in a Plant–Pathogen Metapopulation: Implications for Regional Pathogen Dynamics. J. Ecol. 2004, 92, 990–1000. [Google Scholar] [CrossRef]
- Volynkin, V.A.; Levchenko, S.V. Genetic Regularities Governing the Expression and the Inheritance of Resistance to Pathogens in Grapevine from a Standpoint of Co-Evolution of Biological Objects. Acta Hortic. 2018, 1205, 603–608. [Google Scholar] [CrossRef]
- Schröder, S. Plant Immunity as a Result of Co-Evolution: Using the Pair Grapevine, Downy Mildew as a Model. Doctoral Dissertation, Karlsruher Insitute of Technology (KIT), Karlsruhe, Germany, 2010. [Google Scholar]
- Dick, M.W. Towards and Understanding of the Evolution of the Downy Mildews. In Advances in Downy Mildew Research; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 1–57. [Google Scholar]
- European Commission Farm to Fork Strategy. 2020. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 4 June 2025).
- Eurostat The Use of Plant Protection Products in the European Union. Data 1992–2003; Euopean Union: Luxenbourg, 2007. [Google Scholar]
- Eurostat Agri-Environmental Indicator—Consumption of Pesticides; Eurostat: Luxembourg, 2023.
- Mullins, M.G. Biology of the Grapevine; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Blois, L.; de Miguel, M.; Bert, P.; Girollet, N.; Ollat, N.; Rubio, B.; Segura, V.; Voss-Fels, K.P.; Schmid, J.; Marguerit, E. Genetic Structure and First Genome-wide Insights into the Adaptation of a Wild Relative of Grapevine, Vitis berlandieri. Evol. Appl. 2023, 16, 1184–1200. [Google Scholar] [CrossRef] [PubMed]
- Keller, M. (Ed.) The Science of Grapevines; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Antcliff, A.J.; Newman, H.P.; Barrett, H.C. Variation in Chloride Accumulation in Some American Species of Grapevine. Vitis 1983, 22, 357–362. [Google Scholar]
- Lebrun, L.; Rajasekaran, K.; Mullins, M.G. Selection in Vitro for NaCI-Tolerance in Vitis rupestris Scheele. Ann. Bot. 1985, 56, 733–740. [Google Scholar] [CrossRef]
- Striegler, R.K.; Allen, A.; Bergmeier, E.; Caple, H. Understanding and Preventing Freeze Damage in Vineyards: Workshop Proceedings; University of Missouri Extension: Colombia, MO, USA, 2007. [Google Scholar]
- Fennell, A. Freezing Tolerance and Injury in Grapevines. J. Crop Improv. 2004, 10, 201–235. [Google Scholar] [CrossRef]
- Köse, B.; Uray, Y.; Bayram, K.; Türk, F. Cold Hardiness Degrees of Some Vitis vinifera L. and Vitis labrusca L. Cultivars Grown in Temperate Climate Condition. Rend. Lincei Sci. Fis. Nat. 2024, 35, 253–262. [Google Scholar] [CrossRef]
- Schmid, J.; Manty, F.; Cousins, P. Collecting Vitis berlandieri from Native Habitat Sites. Acta Hortic. 2009, 827, 151–154. [Google Scholar] [CrossRef]
- Pavlousek, P. Evaluation of Drought Tolerance of New Grapevine Rootstock Hybrids. J. Environ. Biol. 2011, 32, 543–549. [Google Scholar] [PubMed]
- Lowe, K.M.; Walker, M.A. Genetic Linkage Map of the Interspecific Grape Rootstock Cross Ramsey (Vitis champinii) × Riparia Gloire (Vitis riparia). Theor. Appl. Genet. 2006, 112, 1582–1592. [Google Scholar] [CrossRef]
- Knipfer, T.; Eustis, A.; Brodersen, C.; Walker, A.M.; Mclerone, A.J. Grapevine Species from Varied Native Habitats Exhibit Differences in Embolism Formation/Repair Associated with Leaf Gas Exchange and Root Pressure. Plant Cell Environ. 2015, 38, 1503–1513. [Google Scholar] [CrossRef]
- Adams, D.B. Genetic Analysis of Cold Hardiness in a Population of Norton (Vitis aestivalis) and Cabernet Sauvignon (Vitis vinifera) Hybrids. Master’s Thesis, The Graduate College of Missouri State University, Springfield, MO, USA, 2017. [Google Scholar]
- Zhang, J.; Wu, X.; Niu, R.; Liu, Y.; Liu, N.; Xu, W.; Wang, Y. Cold-Resistance Evaluation in 25 Wild Grape Species. Vitis 2012, 51, 153–160. [Google Scholar]
- Bavaresco, L.; Fregoni, M.; Perino, A. Physiological Aspects of Lime-Induced Chlorosis in Some Vitis Species. I. Pot Trial on Calcareous Soil. Vitis 1994, 33, 123–126. [Google Scholar]
- Heinitz, C.C.; Fort, K.; Walker, M.A. Developing Drought and Salt Resistant Grape Rootstocks. Acta Hortic. 2015, 1082, 305–312. [Google Scholar] [CrossRef]
- Munson, T.V. Foundations of American Grape Culture; Orange Judd Company: New York, NY, USA, 1909. [Google Scholar]
- Greene, S.L.; Williams, K.A.; Khoury, C.K.; Kantar, M.B.; Marek, L.F. North American Crop Wild Relatives; Greene, S.L., Williams, K.A., Khoury, C.K., Kantar, M.B., Marek, L.F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 2, ISBN 978-3-319-97120-9. [Google Scholar]
- Ickert-Bond, S.M.; Harris, A.; Lutz, S.; Wen, J. A Detailed Study of Leaf Micromorphology and Anatomy of New World Vitis L. Subgenus Vitis within a Phylogenetic and Ecological Framework Reveals Evolutionary Convergence. J. Syst. Evol. 2018, 56, 309–330. [Google Scholar] [CrossRef]
- Jackson, R.S. Wine Science: Principles and Applications; Academic press: Oxford, UK, 2020. [Google Scholar]
- Han, Y.; Li, X. Current Progress in Research Focused on Salt Tolerance in Vitis vinifera L. Front Plant Sci. 2024, 15, 1353436. [Google Scholar] [CrossRef]
- Buck, K.; Worthington, M. Genetic Diversity of Wild and Cultivated Muscadine Grapes (Vitis rotundifolia Michx.). Front. Plant Sci. 2022, 13, 852130. [Google Scholar] [CrossRef] [PubMed]
- Cousins, P. Evolution, Genetics, and Breeding: Viticultural Applications of the Origins of Our Rootstocks, in Grapevine Rootstocks: Current Use, Research and Application. In Proceedings of the 2005 Rootstock Symposium, Osage Beach, MO, USA, 5 February 2005; Cousins, P., Striegler, R.K., Eds.; Mid-America Viticulture and Enology Center, Southwest Missouri State University, Mountain Grove Campus: Springfield, MO, USA, 2005; pp. 1–7. [Google Scholar]
- Macías-Gallardo, F.; Castro-Palafox, J.; Ozuna, C. Mexican Wines: Impact of Geography, Climate, and Soil on the Quality of the Grape and Wine─A Review. ACS Food Sci. Technol. 2024, 4, 1598–1609. [Google Scholar] [CrossRef]
- Cruz-Castillo, J.G.; Franco-Mora, O.; Famiani, F. Presence and Uses of Wild Grapevine (Vitis spp.) in the Central Region of Veracruz in Mexico. OENO One 2009, 43, 77. [Google Scholar] [CrossRef]
- Grundler, S.; Schmid, J.; Meßner, J.; Rühl, E.H. Variability in Vitis berlandieri. Acta Hortic. 2015, 1082, 123–129. [Google Scholar] [CrossRef]
- Gu, S. Effect of Rootstocks on Grapevines—Rootstock Review. 2003. Available online: https://www.semanticscholar.org/paper/Effect-of-Rootstocks-on-Grapevines-Gu/89f6307fb00baf15529b7e28e711560264c109e8 (accessed on 7 July 2025).
- Khan, M.M.; Akram, M.T.; Qadri, R.W.K.; Al-Yahyai, R. Role of Grapevine Rootstocks in Mitigating Environmental Stresses: A Review. J. Agric. Mar. Sci. 2020, 25, 1. [Google Scholar] [CrossRef]
- Granett, J.; Walker, M.A.; Kocsis, L.; Omer, A.D. Biology and Management of Grape Phylloxera. Annu. Rev. Entomol. 2001, 46, 387–412. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.R.; Blackmore, D.H.; Clingeleffer, P.R.; Correll, R.L. Rootstock Effects on Salt Tolerance of Irrigated Field-Grown Grapevines (Vitis vinifera L. Cv. Sultana). Ion Concentrations in Leaves and Juice. Aust. J. Grape Wine Res. 2004, 10, 90–99. [Google Scholar] [CrossRef]
- Aguirre-Liguori, J.A.; Morales-Cruz, A.; Gaut, B.S. Evaluating the Persistence and Utility of Five Wild Vitis Species in the Context of Climate Change. Mol. Ecol. 2022, 31, 6457–6472. [Google Scholar] [CrossRef]
- Goheen, A.C.; Pearson, R.C. Compendium of Grape Diseases; APS Press: Saint Paul, MN, USA, 1988. [Google Scholar]
- English-Loeb, G.; Norton, A. Lack of Trade-off between Direct and Indirect Defence against Grape Powdery Mildew in Riverbank Grape. Ecol. Entomol. 2006, 31, 415–422. [Google Scholar] [CrossRef]
- Millardet, A. Histoire Des Principales Variétés et Espèces de Vigne d’Origine Américaine Qui Résistent Au Phylloxéra; Masson, G., Ed.; Univercity of Bordeaux: Paris, France, 1885. [Google Scholar]
- Rahemi, A.; Dale, A.; Fisher, H.; Taghavi, T.; Bonnycastle, A.; Kelly, J. A Report on Vitis riparia in Ontario, Canada. Acta Hortic. 2016, 1136, 33–38. [Google Scholar] [CrossRef]
- Ferris, H.; Zheng, L.; Walker, M.A. Resistance of Grape Rootstocks to Plant-Parasitic Nematodes. J. Nematol. 2012, 44, 377–386. [Google Scholar] [PubMed]
- Pongrácz, D.P. Rootstocks for Grapevines; David Philip Publisher: Cape Town, South Africa, 1983. [Google Scholar]
- Takacs, E.M.; Isby, A.D.; Appleton, P.M.; Reisch, B.I. Delineating the Mechanism and Inheritance of Black Rot Resistance from Vitis rupestris and V. cinerea. In Proceedings of the 11th International Conference on Grapevine Breeding and Genetics, Beijing, China, 28 July–2 August 2014. [Google Scholar]
- Barba, P.; Cadle-Davidson, L.; Harriman, J.; Glaubitz, J.C.; Brooks, S.; Hyma, K.; Reisch, B. Grapevine Powdery Mildew Resistance and Susceptibility Loci Identified on a High-Resolution SNP Map. Theor. Appl. Genet. 2014, 127, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Barba, P.; Cadle-Davidson, L.; Galarneau, E.; Reisch, B. Vitis rupestris B38 Confers Isolate-Specific Quantitative Resistance to Penetration by Erysiphe necator. Phytopathology 2015, 105, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Di Gaspero, G.; Copetti, D.; Coleman, C.; Castellarin, S.D.; Eibach, R.; Kozma, P.; Lacombe, T.; Gambetta, G.; Zvyagin, A.; Cindrić, P.; et al. Selective Sweep at the Rpv3 Locus during Grapevine Breeding for Downy Mildew Resistance. Theor. Appl. Genet. 2012, 124, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Nascimento-Gavioli, M.C.; Rockenbach, M.F.; Welter, L.J.; Guerra, M.P. Histopathological Study of Resistant (Vitis labrusca L.) and Susceptible (Vitis vinifera L.) Cultivars of Grapevine to the Infection by Downy Mildew. J. Hortic. Sci. Biotechnol. 2020, 95, 521–531. [Google Scholar] [CrossRef]
- Gabler, F.M.; Smilanick, J.L.; Mansour, M.; Ramming, D.W.; Mackey, B.E. Correlations of Morphological, Anatomical, and Chemical Features of Grape Berries with Resistance to Botrytis cinerea. Phytopathology 2003, 93, 1263–1273. [Google Scholar] [CrossRef]
- Atak, A.; Akkurt, M.; Polat, Z.; Çelik, H.; Kahraman, K.A.; Akgül, D.S.; Özer, N.; Söylemezoğlu, G.; Şire, G.G.; Eibach, R. Susceptibility to Downy Mildew (Plasmopara viticola) and Powdery Mildew (Erysiphe necator) of Different Vitis Cultivars and Genotypes. Ciência E Técnica Vitivinícola 2017, 32, 23–32. [Google Scholar] [CrossRef]
- Yıldırım, Z.; Atak, A.; Akkurt, M. Determination of Downy and Powdery Mildew Resistance of Some Vitis spp. Ciência E Técnica Vitivinícola 2019, 34, 15–24. [Google Scholar] [CrossRef]
- Wan, Y.; Schwaninger, H.; He, P.; Wang, Y. Comparison of Resistance to Powdery Mildew and Downy Mildew in Chinese Wild Grapes. Vitis 2007, 46, 132. [Google Scholar]
- Barros, L.B.; Biasi, L.A.; Carisse, O.; De Mio, L.L.M. The Influence of Table Grape Rootstock and Cultivar Combinations on Susceptibility to Downy Mildew. Australas. Plant Pathol. 2018, 47, 171–179. [Google Scholar] [CrossRef]
- Schurig, J.; Ipach, U.; Helmstätter, B.; Kling, L.; Hahn, M.; Trapp, O.; Winterhagen, P. Selected Genotypes with the Genetic Background of Vitis aestivalis and Vitis labrusca Are Resistant to Xiphinema index. Plant Dis. 2021, 105, 4132–4137. [Google Scholar] [CrossRef] [PubMed]
- Dalbó, M.A.; Ye, G.N.; Weeden, N.F.; Wilcox, W.F.; Reisch, B.I. Marker-Assisted Selection for Powdery Mildew Resistance in Grapes. J. Am. Soc. Hortic. Sci. 2001, 126, 83–89. [Google Scholar] [CrossRef]
- Ochssner, I.; Hausmann, L.; Töpfer, R. Rpv14, a New Genetic Source for Plasmopara Viticola Resistance Conferred by Vitis Cinerea. VITIS-J. Grapevine Res. 2016, 55, 79–81. [Google Scholar]
- Smith, H.M.; Smith, B.P.; Morales, N.B.; Moskwa, S.; Clingeleffer, P.R.; Thomas, M.R. SNP Markers Tightly Linked to Root Knot Nematode Resistance in Grapevine (Vitis cinerea) Identified by a Genotyping-by-Sequencing Approach Followed by Sequenom MassARRAY Validation. PLoS ONE 2018, 13, e0193121. [Google Scholar] [CrossRef]
- Pavloušek, P. Screening of Rootstock Hybrids with Vitis cinerea Arnold for Phylloxera Resistance. Open Life Sci. 2012, 7, 708–719. [Google Scholar] [CrossRef]
- Schmid, J.; Manty, F.; Rühl, E.H. Utilizing the Complete Phylloxera Resistance of Vitis cinerea Arnold in Rootstock Breeding. Acta Hortic. 2003, 604, 393–400. [Google Scholar] [CrossRef]
- Reisch, B.I.; Goodman, R.N.; Martens, M.H.; Weeden, N.F. The Relationship between Norton and Cynthiana, Red. Wine Cultivars Derived from Vitis aestivalis. Am. J. Enol. Vitic. 1993, 44, 441–444. [Google Scholar] [CrossRef]
- Fung, R.W.M.; Qiu, W.; Su, Y.; Schachtman, D.P.; Huppert, K.; Fekete, C.; Kovács, L.G. Gene Expression Variation in Grapevine Species Vitis vinifera L. and Vitis aestivalis Michx. Genet. Resour. Crop Evol. 2007, 54, 1541–1553. [Google Scholar] [CrossRef]
- Sapkota, S.D.; Chen, L.L.; Yang, S.; Hyma, K.E.; Cadle-Davidson, L.E.; Hwang, C.F. Quantitative Trait Locus Mapping of Downy Mildew and Botrytis Bunch Rot Resistance in a Vitis aestivalis -Derived ‘Norton’-Based Population. Acta Hortic. 2019, 1248, 305–312. [Google Scholar] [CrossRef]
- Ramming, D.W.; Gabler, F.; Smilanick, J.L.; Margosan, D.A.; Cadle-Davidson, M.; Barba, P.; Mahanil, S.; Frenkel, O.; Milgroom, M.G.; Cadle-Davidson, L. Identification of Race-Specific Resistance in North American Vitis Spp. Limiting Erysiphe necator Hyphal Growth. Phytopathology 2012, 102, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, S.; Chen, L.-L.; Schreiner, K.; Ge, H.; Hwang, C.-F. A Phenotypic Study of Botrytis Bunch Rot Resistance in Vitis aestivalis-Derived ‘Norton’ Grape. Trop. Plant Pathol. 2015, 40, 279–282. [Google Scholar] [CrossRef]
- Kamas, J.; Appel, D.; Black, M.; Hellman, E.; Lauziere, I.; Mitchell, F.; Morano, L.; Wendel, L. Unraveling Pierce’s Disease in Its Native Environment. Wine Bus. Mon. 2004, 11, 35–38. [Google Scholar]
- Hedrick, U.P. The Grapes of New York. State of New York; Albany, J.R., Ed.; Lyon Co.: Albany, NY, USA, 1908; Volume 3. [Google Scholar]
- Grzegorczyk, W.; Walker, M.A. Evaluating Resistance to Grape Phylloxera in Vitis Species with an in Vitro Dual Culture Assay. Am. J. Enol. Vitic. 1998, 49, 17–22. [Google Scholar] [CrossRef]
- Boyden, L.E.; Cousins, P. Evaluation of Vitis aestivalis and Related Taxa as Sources of Resistance to Root-Knot Nematodes. Acta Hortic. 2003, 623, 283–290. [Google Scholar] [CrossRef]
- Riaz, S.; Tenscher, A.C.; Graziani, R.; Krivanek, A.F.; Ramming, D.W.; Walker, M.A. Using Marker-Assisted Selection to Breed Pierce’s Disease-Resistant Grapes. Am. J. Enol. Vitic. 2009, 60, 199–207. [Google Scholar] [CrossRef]
- Downie, D.; Granett, J. A Life Cycle Variation in Grape Phylloxera, Daktulosphaira vitifoliae (Fitch). Southwest. Entomol. 1998, 23, 11–16. [Google Scholar]
- Van Zyl, S.; Vivier, M.A.; Riaz, S.; Walker, M.A. The Genetic Mapping of Xiphinema index Resistance Derived from Vitis arizonica. Acta Hortic. 2014, 1046, 165–168. [Google Scholar] [CrossRef]
- Boubals, D. Etude des causes de la résistance des Vitacées à l’oïdium de la Vigne et de leur mode de transmission héréditaire. Ann. Amélior. Plantes 1961, 11, 401–500. [Google Scholar]
- Galet, P. Les Maladies et Les Parasites de La Vigne; Impr. du Paysan du Midi: Lattes, France, 1977; Volume 1. [Google Scholar]
- Fayyaz, L.; Tenscher, A.; Viet Nguyen, A.; Qazi, H.; Walker, M.A. Vitis Species from the Southwestern United States Vary in Their Susceptibility to Powdery Mildew. Plant Dis. 2021, 105, 2418–2425. [Google Scholar] [CrossRef] [PubMed]
- Viala, P.; Ravaz, L. American Vines. In Complete Translation, 2nd ed.; Dubois, R., Twight, E.H., Eds.; Freygang-Leary: San Francisco, CA, USA, 1903. [Google Scholar]
- Granett, J.; De Benedictis, J.; Marston, J. Host Suitability of Vitis Californica Bentham to Grape Phylloxera, Daktulosphaira vitifoliae (Fitch). Am. J. Enol. Vitic. 1992, 43, 249–252. [Google Scholar] [CrossRef]
- Merdinoglu, D.; Wiedeman-Merdinoglu, S.; Coste, P.; Dumas, V.; Haetty, S.; Butterlin, G.; Greif, C. Genetic Analysis of Downy Mildew Resistance Derived from Muscadinia rotundifolia. Acta Hortic. 2003, 603, 451–456. [Google Scholar] [CrossRef]
- Hickey, C.C.; Smith, E.D.; Cao, S.; Conner, P. Muscadine (Vitis rotundifolia Michx., Syn. Muscandinia rotundifolia (Michx.): The Resilient, Native Grape of the Southeastern U.S. Agriculture 2019, 9, 131. [Google Scholar] [CrossRef]
- Barker, C.L.; Donald, T.; Pauquet, J.; Ratnaparkhe, M.B.; Bouquet, A.; Adam-Blondon, A.-F.; Thomas, M.R.; Dry, I. Genetic and Physical Mapping of the Grapevine Powdery Mildew Resistance Gene, Run1, Using a Bacterial Artificial Chromosome Library. Theor. Appl. Genet. 2005, 111, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Blanc, S.; Wiedemann-Merdinoglu, S.; Dumas, V.; Mestre, P.; Merdinoglu, D. A Reference Genetic Map of Muscadinia rotundifolia and Identification of Ren5, a New Major Locus for Resistance to Grapevine Powdery Mildew. Theor. Appl. Genet. 2012, 125, 1663–1675. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.J.; Mortensen, J.A. The Native Grape Species of Florida. Proc. Fla. State Hortic. Soc. 1979, 92, 286–289. [Google Scholar]
- Cousins, P.; Lauver, M. Segregation of Resistance to Root-Knot Nematodes in a Vitis vulpina Hybrid Population. Acta Hortic. 2003, 623, 313–318. [Google Scholar] [CrossRef]
- Lider, L.A. Inheritance of Resistance to Root-Knot Nematode (Meloidogyne incognita, Kofoid and White) in Vitis spp. Doctoral Dissertation, University of California, Davis, CA, USA, 1952. [Google Scholar]
- Botos, E.P.; Hajdú, E.; Borbás, É. Genetic analysis of root-knot nematode resistance derived from Vitis mustangensis. In Proceedings of the 8th International Conference on Grape Genetics and Breeding, Keeskemét, Hungary, 26–31 August 2020; Proceedings of the No. 603. International Society for Horticultural Science: Toronto, Canada, 2002; pp. 149–155. [Google Scholar]
- Rombough, L. The Grape Grower: A Guide to Organic Viticultur; Chelsea Green Publishing: White River Junction, VT, USA, 2002. [Google Scholar]
- André, M. Vitis acerifolia Rafinesque et Ses Principaux Hybrides Postculturaux En France, Contribution à Leur Caractérisation. Les Nouv. Arch. De La Flore Jurassienne Et Du Nord.-Est De La Fr. 2022, 20, 173–188. [Google Scholar]
- Staudt, G.; Kassemeyer, H.H. Evaluation of Downy Mildew Resistance in Various Accessions of Wild Vitis Species. VITIS-J. Grapevine Res. 2015, 34, 225–228. [Google Scholar]
- Lu, J.; Hunter, W.; Dang, P. Towards Identifying Pierce’s Disease Resistant Genes from a Native American Grape Species (Vitis shuttleworthii)—A Genomic Approach. In Proceedings of the Pierce’s Disease Research Symp, Coronado, CA, USA, 7–10 December 2004; pp. 31–34. [Google Scholar]
- Mortensen, J.A.; Stover, L.H.; Balerdi, C.F. Sources of Resistance to Pierce’s Disease in Vitis. J. Am. Soc. Hortic. Sci. 1977, 102, 695–697. [Google Scholar] [CrossRef]
- Cheng, D.W.; Lin, H.; Andrew Walker, M.; Stenger, D.C.; Civerolo, E.L. Effects of Grape Xylem Sap and Cell Wall Constituents on in Vitro Growth, Biofilm Formation and Cellular Aggregation of Xylella fastidiosa. Eur. J. Plant Pathol. 2009, 125, 213–222. [Google Scholar] [CrossRef]
- Lu, J.; Huang, H.; Ren, Z.; Bradeley, F.; Hunter, W. Towards Identification, Isolation and Characterization of Disease Resistant Genes from the Native North American Grape Species Vitis shuttleworthii. Acta Hortic. 2007, 738, 767–772. [Google Scholar] [CrossRef]
- Staudt, G. Evaluation of Resistance to Grapevine Powdery Mildew (Uncinula necator [Schw.] Burr., Anamorph Oidium tuckeri Berk.) in Accessions of Vitis Species. VITIS-J. Grapevine Res. 2015, 36, 151. [Google Scholar]
- Snyder, E. Susceptibility of Grape Rootstocks to Root Knot Nematode (No. 405); US Department of Agriculture: Washington, DC, USA, 1936.
- Andersen, P.C.; Sarkhosh, A.; Huff, D.; Breman, J. The Muscadine Grape (Vitis rotundifolia Michx). EDIS 2020, 2020, HS100–HS763. [Google Scholar] [CrossRef]
- Fritschi, F.B.; Lin, H.; Walker, M.A. Xylella fastidiosa Population Dynamics in Grapevine Genotypes Differing in Susceptibility to Pierce’s Disease. Am. J. Enol. Vitic. 2007, 58, 326–332. [Google Scholar] [CrossRef]
- Boyden, L.E.; Cousins, P. Segregation of Resistance to Root-Knot Nematodes in a Vitis nesbittiana Hybrid Population. HortScience 2004, 39, 804. [Google Scholar] [CrossRef]
- Dami, I.E.; Ennahli, S.; Zhang, Y. Assessment of Winter Injury in Grape Cultivars and Pruning Strategies Following a Freezing Stress Event. Am. J. Enol. Vitic. 2012, 63, 106–111. [Google Scholar] [CrossRef]
- Dixon, C.W.; Gschwend, A.R. Trichomes and Unique Gene Expression Confer Insect Herbivory Resistance in Vitis labrusca Grapevines. BMC Plant Biol. 2024, 24, 609. [Google Scholar] [CrossRef]
- Bilir Ekbic, H.; Gecene, İ.; Ekbic, E. Determination of the Tolerance of Fox Grapes (Vitis labrusca L.) to Drought Stress by PEG Application in Vitro. Erwerbs-Obstbau 2022, 64, 87–94. [Google Scholar] [CrossRef]
- Atak, A. Vitis Species for Stress Tolerance/Resistance. Genet. Resour. Crop Evol. 2025, 72, 2425–2444. [Google Scholar] [CrossRef]
- Remaily, G.W. Diversity of North American Species of Vitis. IBPGR Plant Genet. Resour. Newsl. 1987, 71, 25–30. [Google Scholar]
- Alleweldt, G.; Possingham, J.V. Progress in Grapevine Breeding. Theoretical and Applied Genetics. Theor. Appl. Genet. 1988, 75, 669–673. [Google Scholar] [CrossRef]
- Dry, I.B.; Feechan, A.; Anderson, C.; Jermakow, A.M.; Bouquet, A.; Adam-Blondon, A.-F.; Thomas, M.R. Molecular Strategies to Enhance the Genetic Resistance of Grapevines to Powdery Mildew. Aust. J. Grape Wine Res. 2010, 16, 94–105. [Google Scholar] [CrossRef]
- van Heerden, C.J.; Burger, P.; Vermeulen, A.; Prins, R. Detection of Downy and Powdery Mildew Resistance QTL in a ‘Regent’ × ‘RedGlobe’ Population. Euphytica 2014, 200, 281–295. [Google Scholar] [CrossRef]
- Boso, S.; Alonso-Villaverde, V.; Gago, P.; Santiago, J.L.; Martínez, M.C. Susceptibility to Downy Mildew (Plasmopara viticola) of Different Vitis Varieties. Crop Prot. 2014, 63, 26–35. [Google Scholar] [CrossRef]
- Polesani, M.; Bortesi, L.; Ferrarini, A.; Zamboni, A.; Fasoli, M.; Zadra, C.; Lovato, A.; Pezzotti, M.; Delledonne, M.; Polverari, A. General and Species-Specific Transcriptional Responses to Downy Mildew Infection in a Susceptible (Vitis vinifera) and a Resistant (V. riparia) Grapevine Species. BMC Genom. 2010, 11, 117. [Google Scholar] [CrossRef]
- Alleweldt, G.; Spiegel-Roy, P.; Reisch, B. Genetic Resources of Temperate Fruit and Nut Crops. Int. Soc. Hortic. Sci. 1991, 290, 291–330. [Google Scholar]
- Cui, X.; Xue, J.; Zhang, B.; Chen, C.; Tang, Y.; Zhang, P.; Zhang, J. Physiological Change and Screening of Differentially Expressed Genes of Wild Chinese Vitis Yeshanensis and American Vitis riparia in Response to Drought Stress. Sci. Hortic. 2020, 266, 109140. [Google Scholar] [CrossRef]
- Reisch, B.I.; Owens, L.C.; Cousins, S.P. Grape. In Fruit Breeding; Badenes, M.L., Byrne, D.H., Eds.; Springer Science: Philadelphia, PA, USA, 2012. [Google Scholar]
- Smiley, L.; Cochran, D.; Domoto, P.; Nonnecke, G.; Miller, W.W. A Review of Cold Climate Grape Cultivars; Iowa State University Extension Publisher: Ames, IA, USA, 2016. [Google Scholar]
- Svyantek, A.; Stenger, J.; Auwarter, C.; Shikanai, A.; Köse, B.; Wang, Z.; Kadium, V.R.; Brooke, M.; Delavar, H.; Pilli, R.; et al. This Is How We Chill from 23 Til: Breeding Cold Hardy Grapevines for Unprecedented and Unpredictable Climate Challenges. Acta Hortic. 2024, 1385, 127–138. [Google Scholar] [CrossRef]
- Bailey, L.H. Vites Peculiares Ad Americum Borealem. Gentes Herbarum. Gentes Herbarum 1934, 3, 149–244. [Google Scholar]
- Steyermark, J.A. Flora of Missouri; The Iowa State University Press: Ames, IA, USA, 1963. [Google Scholar]
- Pap, D.; Miller, A.J.; Londo, J.P.; Kovács, L.G. Population Structure of Vitis rupestris, an Important Resource for Viticulture. Am. J. Enol. Vitic. 2015, 66, 403–410. [Google Scholar] [CrossRef]
- Morano, L.; Walker, M.A. Soils and Plant Communities Associated with Three Vitis Species. Am. Midl. Nat. 1995, 134, 254. [Google Scholar] [CrossRef]
- Londo, J.P.; Johnson, L.M. Variation in the Chilling Requirement and Budburst Rate of Wild Vitis Species. Environ. Exp. Bot. 2014, 106, 138–147. [Google Scholar] [CrossRef]
- Riaz, S.; Pap, D.; Uretsky, J.; Laucou, V.; Boursiquot, J.-M.; Kocsis, L.; Andrew Walker, M. Genetic Diversity and Parentage Analysis of Grape Rootstocks. Theor. Appl. Genet. 2019, 132, 1847–1860. [Google Scholar] [CrossRef]
- Rajasekaran, K.; Mullins, M.G. Influence of Genotype and Sex-Expression on Formation of Plantlets by Cultured Anthers of Grapevines. Agronomie 1983, 3, 233–238. [Google Scholar] [CrossRef]
- Hardie, W.J.; Cirami, R.M. Grapevine Rootstock. In Viticulture; Coombe, B.G., Dry, P.R., Eds.; Winetitles, Adelaide Press: Adelaide, Australia, 1997; Volume 1, pp. 154–176. [Google Scholar]
- Celik, H.; Kose, B.; Cangi, R. Determination of Fox Grape Genotypes (Vitis labrusca L.) Grown in Northeastern Anatolia. Hortic. Sci. 2008, 35, 162–170. [Google Scholar] [CrossRef]
- Ollat, N.; Laborde, B.; Neveux, M.; Diakou-Verdin, P.; Renaud, C.; Moing, A. Organic Acid Metabolism in Roots of Various Grapevine (Vitis) Rootstocks Submitted to Iron Deficiency and Bicarbonate Nutrition. J. Plant Nutr. 2003, 26, 2165–2176. [Google Scholar] [CrossRef]
- Cadle-Davidson, L. Variation Within and Between Vitis Spp. for Foliar Resistance to the Downy Mildew Pathogen Plasmopara viticola. Plant Dis. 2008, 92, 1577–1584. [Google Scholar] [CrossRef]
- Brown, M.V.; Moore, J.N.; McNew, R.W.; Fenn, P. Inheritance of Downy Mildew Resistance in Table Grapes. J. Am. Soc. Hortic. Sci. 1999, 124, 262–267. [Google Scholar] [CrossRef]
- Kortekamp, A.; Zyprian, E. Leaf Hairs as a Basic Protective Barrier against Downy Mildew of Grape. J. Phytopathol. 1999, 147, 453–459. [Google Scholar] [CrossRef]
- Gee, C.T.; Gadoury, D.M.; Cadle-Davidson, L. Ontogenic Resistance to Uncinula Necator Varies by Genotype and Tissue Type in a Diverse Collection of Vitis Spp. Plant Dis. 2008, 92, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Cadle-Davidson, L.; Chicoine, D.R.; Consolie, N.H. Variation Within and Among Vitis Spp. for Foliar Resistance to the Powdery Mildew Pathogen Erysiphe necator. Plant Dis. 2011, 95, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Köse, B.; Uray, Y.; Karabulut, B.; Türk, F.; Bayram, K.; Çelik, H. Determination of Rooting and Vine Sapling Rates of Single-Bud Cuttings Prepared from Vitis labrusca L. Grape Cultivars. Erwerbs-Obstbau 2023, 65, 2005–2016. [Google Scholar] [CrossRef]
- Barrett, H.C. Vitis cinerea as a Source of Desirable Characters in Grape Breeding. Proc. Amer. Soc. Hort. Sci. 1957, 70, 165–168. [Google Scholar]
- Schmid, J.; Rühl, H. Performance of Vitis cinerea Hybrids in Motherblock and Nursery-Preliminary Results. Acta Hortic. 2003, 117, 141–145. [Google Scholar] [CrossRef]
- Börner, C. Die Ersten Reblausimmunen Rebenkreuzungen. Angew. Bot. 1943, 25, 126–143. [Google Scholar]
- Cochetel, N.; Ghan, R.; Toups, H.S.; Degu, A.; Tillett, R.L.; Schlauch, K.A.; Cramer, G.R. Drought Tolerance of the Grapevine, Vitis champinii Cv. Ramsey, Is Associated with Higher Photosynthesis and Greater Transcriptomic Responsiveness of Abscisic Acid Biosynthesis and Signaling. BMC Plant Biol. 2020, 20, 55. [Google Scholar] [CrossRef]
- Patil, S.G.; Karkamkar, S.P.; Deshmukh, M.R. Evaluation of Grape Varieties for Their Drought Tolerance. J. Maharashtra Agric. Univ. 2003, 28, 250–251. [Google Scholar]
- Perry, R.L.; Lyda, S.D.; Bowen, H.H. Root Distribution of Four Vitis Cultivars. Plant Soil. 1983, 71, 63–74. [Google Scholar] [CrossRef]
- Hao, L.; Zaini, P.A.; Hoch, H.C.; Burr, T.J.; Mowery, P. Grape Cultivar and Sap Culture Conditions Affect the Development of Xylella fastidiosa Phenotypes Associated with Pierce’s Disease. PLoS ONE 2016, 11, e0160978. [Google Scholar] [CrossRef] [PubMed]
- Backus, E.A.; Shugart, H.J.; Gutierrez, J.; Ebert, T.A.; Walker, M.A. Field-Collected Glassy-Winged Sharpshooters (Hemiptera: Cicadellidae) Perform More Xylella fastidiosa Inoculating Behaviors on Susceptible Vitis vinifera Cv. ‘Chardonnay’ Than on Resistant Vitis champinii Grapevines. J. Econ. Entomol. 2021, 114, 1991–2008. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.P.; Hussey, E.E. The Value of Plant Growth Regulators in the Propagation of Vitis champini Rootstocks. Am. J. Enol. Vitic. 1980, 31, 250–253. [Google Scholar] [CrossRef]
- Blennerhassett, R.M.; Considine, J.A. Propagation of Vitis champini Planchon Cv Ramsey, Storage and Field Practices. Am. J. Enol. Vitic. 1979, 30, 79–80. [Google Scholar] [CrossRef]
- Jolley, N. Investigation into Timing of Cuttings for Maximum Propagation Efficiency of Vitis aestivalis ‘Norton/Cynthiana’Grapevines. Doctoral Dissertation, University Honors College, Middle Tennessee State University, Murfreesboro, TN, USA, 2017. [Google Scholar]
- Kadir, S.A. Growth of Vitis vinifera L. and Vitis aestivalis Michx. as Affected by Temperature. Int. J. Fruit. Sci. 2005, 5, 69–82. [Google Scholar] [CrossRef]
- Uhls, A.L.; Jolley, N.; Johnston, T.V.; DuBois, J.D. The Effect of Sample Date and Timing of Cuttings for Maximum Propagation Efficiency of the Grape, Vitis aestivalis “Norton/Cynthiana. ” Food Nutr. Sci. 2018, 09, 268–276. [Google Scholar] [CrossRef]
- Portz, D.; Domoto, P.; Nonnecke, G. Propagation Treatment Effects on Rooting of “Cynthiana” Grape Hardwood Cuttings; Iowa State University Department of Horticulture: Ames, IA, USA, 2004. [Google Scholar]
- Enderton, D.; Dilley, C.; Domoto, P.; Nonnecke, G. Cynthiana Grape Cultivar Propagation Study; Iowa State University Extension: Ames, IA, USA, 2002. [Google Scholar]
- Keeley, K.; Preece, J.E.; Taylor, B.H. Increased Rooting of “Norton” Grape Cuttings Using Auxins and Gibberellin Biosynthesis Inhibitors. HortScience 2003, 38, 281–283. [Google Scholar] [CrossRef]
- Johnson, P.J.; Hilsenbeck, R.A. An Investigation of Vitis arizonica (the Canyon Grape) as a Potential Rootstock in West Texas. Tex. J. Agric. Nat. Resour. 1989, 3, 34–36. [Google Scholar]
- Fiscus, C.J.; Aguirre-Liguori, J.A.; Gaut, G.R.J.; Gaut, B.S. Climate, Population Size, and Dispersal Influences Mutational Load across the Landscape in Vitis Arizonica. BioRxiv 2024. [Google Scholar] [CrossRef]
- Krivanek, A.F.; Famula, T.R.; Tenscher, A.; Walker, M.A. Inheritance of Resistance to Xylella fastidiosa within a Vitis rupestris × Vitis arizonica Hybrid Population. Theor. Appl. Genet. 2005, 111, 110–119. [Google Scholar] [CrossRef]
- Krivanek, A.F.; Riaz, S.; Walker, M.A. Identification and Molecular Mapping of PdR1, a Primary Resistance Gene to Pierce’s Disease in Vitis. Theor. Appl. Genet. 2006, 112, 1125–1131. [Google Scholar] [CrossRef]
- Riaz, S.; Krivanek, A.F.; Xu, K.; Walker, M.A. Refined Mapping of the Pierce’s Disease Resistance Locus, PdR1, and Sex on an Extended Genetic Map of Vitis rupestris × V. arizonica. Theor. Appl. Genet. 2006, 113, 1317–1329. [Google Scholar] [CrossRef]
- Agüero, C.B.; Riaz, S.; Tenscher, A.C.; Bistué, C.; Walker, M.A. Molecular and Functional Characterization of Two RGA Type Genes in the PdR1b Locus for Pierce’s Disease Resistance in Vitis arizonica/candicans. Plant Cell Tissue Organ. Cult. 2022, 151, 497–510. [Google Scholar] [CrossRef]
- Patil, S.G.; Honrao, B.K.; Rao, V.G.; Patil, V.P. Field Evaluation of Grape Germplasm for Resistance against Anthracnose. Biovigyanam 1990, 16, 69–72. [Google Scholar]
- Basinger, A.; Durham, R. In Vitro Rooting of Vitis Species Native to Texas and New Mexico. Small Fruits Rev. 2001, 1, 29–34. [Google Scholar] [CrossRef]
- Everett, R.L.; Meeuwig, R.O.; Robertson, J.H. Propagation of Nevada Shrubs by Stem Cuttings. J. Range Manag. 1978, 31, 426. [Google Scholar] [CrossRef]
- Dangl, G.S.; Mendum, M.L.; Yang, J.; Walker, M.A.; Preece, J.E. Hybridization of Cultivated Vitis vinifera with Wild V. californica and V. girdiana in California. Ecol. Evol. 2015, 5, 5671–5684. [Google Scholar] [CrossRef]
- Gamon, J.A.; Pearcy, R.W. Leaf Movement, Stress Avoidance and Photosynthesis in Vitis californica. Oecologia 1989, 79, 475–481. [Google Scholar] [CrossRef]
- Walker, M.A. Resistance in Vitis and Muscadinia Species to Meloidogyne incognita. Plant Dis. 1994, 78, 1055. [Google Scholar] [CrossRef]
- Robbins, J.; Burger, D. Propagating California Wild Grapes. Calif. Agric. 1986, 40, 9–10. [Google Scholar]
- Bouquet, A. La Muscadine (Vitis rotundifolia) et Sa Culture Aux Etats-Unis. OENO One 1978, 12, 1. [Google Scholar] [CrossRef]
- Bailey, L.H. The Standard Encyclopedia of Horticulture; Macmillan: New York, NY, USA, 1937. [Google Scholar]
- Dearing, C. New Muscadine Grapes; U.S. Department of Agriculture: Washington, DC, USA, 1948; p. 769.
- Weaver, R.J. Grape Growing. In Wiley-Interscience; Wiley-Interscience: New York, NY, USA, 1976. [Google Scholar]
- Olien, W.C. The Muscadine Grape: Botany, Viticulture, History, and Current Industry. HortScience 1990, 25, 732–739. [Google Scholar] [CrossRef]
- Ivasișin, D. The Karyotypes of Interspecific Grapevine Hybrids (Vitis vinifera L. × Vitis rotundifolia Michx.) BC4. J. Nativ. Alien. Plant Stud. 2024, 20, 51–61. [Google Scholar] [CrossRef]
- Patel, G.I.; Olmo, H.P. Cytogenetics of Vitis: I. The Hybrid V. vinifera × V. rotundifolia. Am. J. Bot. 1955, 42, 141–159. [Google Scholar] [CrossRef]
- Hithcock, A.S. The Distribution of the Genus Vitis in Kansas. Trans. Kans. Acad. Sci. 1893, 13, 79–80. [Google Scholar]
- Moore, M.O.C. A Systematic Study of Eastern North American Vitis (Vitaceae) North of Mexico; University of Georgia: Athens, GA, USA, 1990. [Google Scholar]
- Wylie, R.B. The Role of the Epidermis in Foliar Organization and Its Relations to the Minor Venation. Am. J. Bot. 1943, 30, 273–280. [Google Scholar] [CrossRef]
- Luken, J.O.; Kuddes, L.M.; Tholemeier, T.C. Response of Understory Species to Gap Formation and Soil Disturbance m Lonicera Maackii Thickets. Restor. Ecol. 1997, 5, 229–235. [Google Scholar] [CrossRef]
- Engelmann, G.; Gray, A.; Blankinship, J.W. Plantae Lindheimerianae: An Enumeration of F. Lindheimer’s Collection of Texan Plants, with Remarks and Descriptions of New Species, Etc; Printed by Freeman and Bolles: Boston, MA, USA, 1845. [Google Scholar]
- La Cruz, A.A.D.; Hilbert, G.; Mengin, V.; Rivière, C.; Ollat, N.; Vitrac, C.; Bordenave, L.; Decroocq, S.; Delaunay, J.; Mérillon, J.; et al. Anthocyanin Phytochemical Profiles and Anti-oxidant Activities of Vitis candicans and Vitis doaniana. Phytochem. Anal. 2013, 24, 446–452. [Google Scholar] [CrossRef]
- Rombough, L. The Grape Grower: A Guide to Organic Viticulture; Chelsea Green Publishing: Hartford, VT, USA, 2002. [Google Scholar]
- Prince, W.R.; Prince, W. A Treatise on the Vine: Embracing Its History from the Earliest Ages to the Present Day, with Descriptions of Above Two Hundred Foreign and Eighty American Varieties; Together with a Complete Dissertation on the Establishment, Culture, and Management of Vineyards; Swords, T.J., Ed.; William Prince: New York, NY, USA, 1830. [Google Scholar]
- Rafinesque, C.S. American Manual of the Grape Vines and the Art of Making Wine: Including an Account of 62 Species of Vines, with Nearly 300 Varieties. An Account of the Principal Wines, American and Foreign. Properties and Uses of Wines and Grapes. Cultivation of Vines in America; and the Art to Make Good Wines; Printed for the Author: Philadelphia, PA, USA, 1830; 84p. [Google Scholar]
- Engelmann, G. Vitis palmata, Vahl. Bot. Gaz. 1883, 8, 254–255. [Google Scholar] [CrossRef]
- Pavek, D.S.; Lamboy, W.F.; Garvey, E.J. Selecting in Situ Conservation Sites for Grape Genetic Resources in the USA. Genet. Resour. Crop Evol. 2003, 50, 165–173. [Google Scholar] [CrossRef]
- Hilha, A.; Andrade, C.E.L.; Burin, M.R.; Medeiros, R.F.; Almeida, M.P.; Orlandi, F.B.; Freitas, F.R.; Dalbó, M.A.; Souza, A.L.K.; May-de-Mio, L.L.; et al. Vitis Species and Varietal Resistance of Mature Berries against Inoculation of an Isolate of the Colletotrichum acutatum Complex That Causes Grape Ripe Rot. Acta Hortic. 2024, 1385, 95–102. [Google Scholar] [CrossRef]
- Tomás, M.; Flexas, J.; Copolovici, L.; Galmés, J.; Hallik, L.; Medrano, H.; Ribas-Carbó, M.; Tosens, T.; Vislap, V.; Niinemets, Ü. Importance of Leaf Anatomy in Determining Mesophyll Diffusion Conductance to CO2 across Species: Quantitative Limitations and Scaling up by Models. J. Exp. Bot. 2013, 64, 2269–2281. [Google Scholar] [CrossRef] [PubMed]
- Fennell, J.L. Two New North American Species of Vitis. Two New North American Species of Vitis. J. Wash. Acad. Sci. 1940, 30, 15–19. [Google Scholar]
- Graham, C.D.K.; Forrestel, E.J.; Schilmiller, A.L.; Zemenick, A.T.; Weber, M.G. Evolutionary Signatures of a Trade-off in Direct and Indirect Defenses across the Wild Grape Genus, Vitis. Evol. 2023, 77, 2301–2313. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, M.; Juárez, N.; Iménez-Fernández, V.M.; Monribot-Villanueva, J.L.; Guerrero-Analco, J.A. Phenolic Compounds and Antioxidant Activity of Wild Grape (Vitis tiliifolia). Phenolic Compounds and Antioxidant Activity of Wild Grape (Vitis tiliifolia). Ital. J. Food Sci. 2018, 30, 128–144. [Google Scholar]
- Mata-Alejandro, H.; Galindo-Tovar, M.E.; Famiani, F.; Leyva-Ovalle, O.R.; Cruz-Castillo, J.G. Environmental Conditions, and Phenolic Compounds Potential in the Leaves of Vitis tiliifolia Humb.; Bonpl. Ex Schult. Genet. Resour. Crop Evol. 2021, 68, 3435–3444. [Google Scholar] [CrossRef]
- Comeaux, B.L. A New Vitis (Vitaceae) from Veracruz, Mexico. SIDA Contrib. Bot. 1987, 12, 273–277. [Google Scholar]
- Lisek, J. Yielding and Healthiness of Selected Grape Cultivars for Processing in Central Poland. J. Fruit. Ornam. Plant Res. 2010, 37, 265–272. [Google Scholar]
- Yang, Y.; Tilman, D.; Jin, Z.; Smith, P.; Barrett, C.B.; Zhu, Y.-G.; Burney, J.; D’Odorico, P.; Fantke, P.; Fargione, J.; et al. Climate Change Exacerbates the Environmental Impacts of Agriculture. Science 2024, 385, eadn3747. [Google Scholar] [CrossRef]
- You, Y.; Yu, J.; Nie, Z.; Peng, D.; Barrett, R.L.; Rabarijaona, R.N.; Lai, Y.; Zhao, Y.; Dang, V.-C.; Chen, Y.; et al. Transition of Survival Strategies under Global Climate Shifts in the Grape Family. Nat. Plants 2024, 10, 1100–1111. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.S.; Redden, R.; Maxted, N.; Dulloo, M.E.; Guarino, L.; Smith, P. Crop Wild Relatives and Climate Change; Wiley-Blackwell: Hoboken, NJ, USA, 2015. [Google Scholar]
- Pironon, S.; Etherington, T.R.; Borrell, J.S.; Kühn, N.; Macias-Fauria, M.; Ondo, I.; Tovar, C.; Wilkin, P.; Willis, K.J. Potential Adaptive Strategies for 29 Sub-Saharan Crops under Future Climate Change. Nat. Clim. Chang. 2019, 9, 758–763. [Google Scholar] [CrossRef]
- Zhang, H.; Mittal, N.; Leamy, L.J.; Barazani, O.; Song, B. Back into the Wild—Apply Untapped Genetic Diversity of Wild Relatives for Crop Improvement. Evol. Appl. 2017, 10, 5–24. [Google Scholar] [CrossRef] [PubMed]
- Morales-Cruz, A.; Aguirre-Liguori, J.A.; Zhou, Y.; Minio, A.; Riaz, S.; Walker, A.M.; Cantu, D.; Gaut, B.S. Introgression among North American Wild Grapes (Vitis) Fuels Biotic and Abiotic Adaptation. Genome Biol. 2021, 22, 254. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Cao, S.; Liu, Z.; Xiao, H.; Hu, J.; Xu, X.; Chen, P.; Ma, Z.; Ye, J.; Chai, L.; et al. Genomic Conservation of Crop Wild Relatives: A Case Study of Citrus. PLoS Genet. 2023, 19, e1010811. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xin, H.; Fan, P.; Zhang, J.; Liu, Y.; Dong, Y.; Wang, Z.; Yang, Y.; Zhang, Q.; Ming, R.; et al. The Genome of Shanputao (Vitis amurensis) Provides a New Insight into Cold Tolerance of Grapevine. The Plant Journal 2021, 105, 1495–1506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Long, R.; Ma, Z.; Xiao, H.; Xu, X.; Liu, Z.; Wei, C.; Wang, Y.; Peng, Y.; Yang, X.; et al. Evolutionary Genomics of Climatic Adaptation and Resilience to Climate Change in Alfalfa. Mol. Plant 2024, 17, 867–883. [Google Scholar] [CrossRef]
- Foria, S.; Magris, G.; Jurman, I.; Schwope, R.; De Candido, M.; De Luca, E.; Ivanišević, D.; Morgante, M.; Di Gaspero, G. Extent of Wild–to–Crop Interspecific Introgression in Grapevine (Vitis Vinifera) as a Consequence of Resistance Breeding and Implications for the Crop Species Definition. Hortic. Res. 2022, 9, uhab010. [Google Scholar] [CrossRef]
- Wingerter, C.; Eisenmann, B.; Weber, P.; Dry, I.; Bogs, J. Grapevine Rpv3-, Rpv10- and Rpv12-Mediated Defense Responses against Plasmopara viticola and the Impact of Their Deployment on Fungicide Use in Viticulture. BMC Plant Biol. 2021, 21, 470. [Google Scholar] [CrossRef]
- Atak, A. New Perspectives in Grapevine (Vitis Spp.) Breeding. In Case Studies of Breeding Strategies in Major Plant Species; IntechOpen: London, UK, 2023. [Google Scholar]
| Tolerance or Resistance to | ||||||
|---|---|---|---|---|---|---|
| Species | Drought | Limestone | Salinity | Heat | Cold | References |
| Vitis berlandieri Planchon | x | x | x | x | x | [54,55,56,57] |
| V. riparia Michaux | x | [54] | ||||
| V. rupestris Scheele | x | [58] | ||||
| V. labrusca Linnaeus | x | x | [54,56,57,58,59,60,61] | |||
| V. cinerea Engelmann | x | [62,63] | ||||
| Vitis x champinii Planchon | x | x | x | [64,65] | ||
| V. aestivalis Michaux | x | x | x | [54,66] | ||
| V. arizonica Engelmann | x | x | x | [65,67,68] | ||
| V. californica Bentham | x | [68,69] | ||||
| V. rotundifolia Michaux | ||||||
| V. vulpina Linnaues | ||||||
| V. mustangensis Buckley | x | x | [54,70,71] | |||
| V. girdiana Munson | x | x | x | [69,72] | ||
| V. acerifolia Raf. | x | [68,69] | ||||
| V. palmata Vahl | x | x | [70] | |||
| V. shuttleworthii House | x | x | x | [73,74] | ||
| Vitis x doaniana Munson | x | x | x | [69,70] | ||
| V. monticola Buckley | x | x | [68,72] | |||
| V. popenoei Fennel | x | [70,75] | ||||
| V. tiliifolia Humb. & Bonpl. | ||||||
| V. blancoi Munson | ||||||
| V. baileyana Munson | x | [70] | ||||
| V. nesbittiana Comeaux | x | x | [76,77,78] | |||
| Tolerance or Resistance to | ||||||||
|---|---|---|---|---|---|---|---|---|
| Species | Plasmopora viticola | Erisiphe necator | Botrytis cinerea | Guignardia bidwellii | Daktulosphaira vitifoliae | Xylella fastidiosa | Nematodes | References |
| Vitis berlandieri | x | x | x | x | [54,79,80,81,82,83,84] | |||
| V.riparia | x | x | x | x | [64,76,85,86,87,88,89] | |||
| V. rupestris | x | x | x | x | [90,91,92,93,94] | |||
| V.labrusca | x | x | x | x | [54,95,96,97,98,99,100,101] | |||
| V.cinerea | x | x | x | x | [54,102,103,104,105,106] | |||
| Vitis x champinii | x | x | x | [54,64,101] | ||||
| V. aestivalis | x | x | x | x | x | x | x | [107,108,109,110,111,112,113,114,115] |
| V.arizonica | x | x | x | x | [82,116,117,118,119,120] | |||
| V. californica | x | x | [114,121,122,123] | |||||
| V. rotundifolia | x | x | x | x | x | x | [54,106,124,125,126,127] | |
| V. vulpina | x | x | x | [128,129] | ||||
| V. mustangensis | x | x | x | x | x | [54,73,130,131,132] | ||
| V. girdiana | x | [70,114] | ||||||
| V. acerifolia | x | x | x | [70,133] | ||||
| V.palmata | x | x | [70,134] | |||||
| V. shuttleworthii | x | x | x | x | x | [128,134,135,136,137,138,139] | ||
| Vitis x doaniana | x | x | [139,140] | |||||
| V. monticola | x | x | [70] | |||||
| V. popenoei | x | x | x | [75,141] | ||||
| V. tiliifolia | x | [134] | ||||||
| V. blancoi | ||||||||
| V. baileyana | ||||||||
| V. nesbittiana | x | x | [142,143] | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimaglie, M.; Ripa, C.; Accogli, R.A.; Di Sansebastiano, G.-P.; Aprile, A.; Rossetti, G.; Rustioni, L. Which American Wild Species Could Be Used in Grapevine Breeding Programs? A Review. Environments 2025, 12, 402. https://doi.org/10.3390/environments12110402
Dimaglie M, Ripa C, Accogli RA, Di Sansebastiano G-P, Aprile A, Rossetti G, Rustioni L. Which American Wild Species Could Be Used in Grapevine Breeding Programs? A Review. Environments. 2025; 12(11):402. https://doi.org/10.3390/environments12110402
Chicago/Turabian StyleDimaglie, Matteo, Clara Ripa, Rita Annunziata Accogli, Gian-Pietro Di Sansebastiano, Alessio Aprile, Giuseppe Rossetti, and Laura Rustioni. 2025. "Which American Wild Species Could Be Used in Grapevine Breeding Programs? A Review" Environments 12, no. 11: 402. https://doi.org/10.3390/environments12110402
APA StyleDimaglie, M., Ripa, C., Accogli, R. A., Di Sansebastiano, G.-P., Aprile, A., Rossetti, G., & Rustioni, L. (2025). Which American Wild Species Could Be Used in Grapevine Breeding Programs? A Review. Environments, 12(11), 402. https://doi.org/10.3390/environments12110402

