Seasonal Variability of Soil Physicochemical Properties, Potentially Toxic Elements, and PAHs in Crude Oil-Impacted Environments: Chemometric Analysis and Health Risk Assessment
Abstract
1. Introduction
- i.
- Seasonal variation significantly influences the concentrations and distribution patterns of PTEs and PAHs in oil-contaminated soils.
- ii.
- Chemometric techniques such as PCA can effectively differentiate between natural and anthropogenic sources of contamination.
- iii.
- Human health risks, particularly for dermal and ingestion exposure pathways, differ significantly between wet and dry seasons, with higher risks expected during the dry season due to increased contaminant concentration and exposure potential.
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Preparation of Soil Sample
2.3. Determination of PTEs
2.4. Polycyclic Aromatic Hydrocarbons Determinations
2.5. Human Health Risk Assessment
2.6. Statistical Analysis Methods and Software
3. Results and Discussion
3.1. Physicochemical Parameters of Soil
3.1.1. Levels of Physicochemical Parameters of Soil
3.1.2. Principal Component Analysis: Physico-Chemical Parameters
3.2. Potentially Toxic Elements in Soil
3.2.1. Concentration of PTEs in Soil
3.2.2. Principal Component Analysis: Potentially Toxic Elements
3.3. Relationship Between Physicochemical Parameters and Potentially Toxic Elements in Soil
3.4. PAHs in Soil
3.4.1. Concentration and Distribution of Carcinogenic and Total PAHs in Soil During the Wet Season
3.4.2. PAH Levels in Soil During Dry Season
3.4.3. Seasonal and Depth-Related Variation in PAH Concentrations
3.5. Relationship Between PTEs and Total PAHs in the Soil
3.6. Correlation Between Individual PAHs and PTEs Across Depths and Seasons
3.7. Human Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adeola, A.O.; Akingboye, A.S.; Ore, O.T.; Oluwajana, O.A.; Adewole, A.H.; Olawade, D.B.; Ogunyele, A.C. Crude oil exploration in Africa: Socio-economic implications, environmental impacts, and mitigation strategies. Environ. Syst. Decis. 2022, 42, 26–50. [Google Scholar] [CrossRef] [PubMed]
- Petruzzelli, G.; Pezzarossa, B.; Pedron, F. The Fate of Chemical Contaminants in Soil with a View to Potential Risk to Human Health: A Review. Environments 2025, 12, 183. [Google Scholar] [CrossRef]
- Edo, G.I.; Samuel, P.O.; Oloni, G.O.; Ezekiel, G.O.; Ikpekoro, V.O.; Obasohan, P.; Ongulu, J.; Otunuya, C.F.; Opiti, A.R.; Ajakaye, R.S.; et al. Environmental persistence, bioaccumulation, and ecotoxicology of heavy metals. Chem. Ecol. 2024, 40, 322–349. [Google Scholar] [CrossRef]
- Thakare, M.; Sarma, H.; Datar, S.; Roy, A.; Pawar, P.; Gupta, K.; Pandit, S.; Prasad, R. Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Curr. Res. Biotechnol. 2021, 3, 84. [Google Scholar] [CrossRef]
- Abbaspour, A.; Zohrabi, F.; Dorostkar, V.; Faz, A.; Acosta, J.A. Remediation of an oil contaminated soil by two native plants treated with biochar and mycorrhizae. J. Environ. Manag. 2020, 254, 109755. [Google Scholar] [CrossRef]
- Innocent, M.O.; Mustapha, A.; Abdulsalam, M.; Livinus, M.U.; Samuel, J.O.; Elelu, S.A.; Lateefat, S.O.; Muhammad, A.S. Soil Microbes and Soil Contamination. In Soil Microbiome in Green Technology Sustainability; Springer Nature: Cham, Switzerland, 2024; pp. 3–35. [Google Scholar]
- Angon, P.B.; Islam, M.S.; Das, A.; Anjum, N.; Poudel, A.; Suchi, S.A. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon 2024, 10, e28357. [Google Scholar] [CrossRef]
- Gogoi, A.; Taki, K.; Kumar, M. Seasonal dynamics of metal phase distributions in the perennial tropical (Brahmaputra) river: Environmental fate and transport perspective. Environ. Res. 2020, 183, 109265. [Google Scholar] [CrossRef]
- Khan, M.Y.A.; Gani, K.M.; Chakrapani, G.J. Spatial and temporal variations of physicochemical and heavy metal pollution in Ramganga River—A tributary of River Ganges, India. Environ. Earth Sci. 2017, 76, 231. [Google Scholar] [CrossRef]
- Sharma, S.; Kaur, I.; Nagpal, A.K. Contamination of rice crop with potentially toxic elements and associated human health risks—A review. Environ. Sci. Pollut. Res. 2021, 28, 12282–12299. [Google Scholar] [CrossRef]
- Okpebenyo, W.; Onoh, C.; Cornell, C.; Igwe, A. Revisiting the resource curse in Nigeria: The case of Niger Delta. KIU Interdiscip. J. Humanit. Soc. Sci. 2023, 4, 259–276. [Google Scholar]
- Abenabe, G.K.; Ekpotuatin, C.A. Nigeria’s Oil Complex: The Tragedy of the Commons. Rev. Bras. Estud. Afr. 2024, 9, 123–138. [Google Scholar] [CrossRef]
- Chinedu, E.; Chukwuemeka, C.K. Oil spillage and heavy metals toxicity risk in the Niger Delta, Nigeria. J. Health Pollut. 2018, 8, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Borah, G.; Deka, H. Crude oil associated heavy metals (HMs) contamination in agricultural land: Understanding risk factors and changes in soil biological properties. Chemosphere 2023, 310, 136890. [Google Scholar] [CrossRef]
- Mafiana, M.O.; Kang, X.H.; Leng, Y.; He, L.F.; Li, S.W. Petroleum contamination significantly changes soil microbial communities in three oilfield locations in Delta State, Nigeria. Environ. Sci. Pollut. Res. 2021, 28, 31447–31461. [Google Scholar] [CrossRef]
- Adeniran, M.A.; Oladunjoye, M.A.; Doro, K.O. Electrical resistivity imaging of crude oil contaminant in coastal soils—A laboratory sandbox study. J. Appl. Geophys. 2024, 230, 105516. [Google Scholar] [CrossRef]
- Onyeisi, J.O. Characterisation of Spatio-Temporal Pattern of Rainfall and Temperature Over the Lower Niger River. Ph.D. Thesis, Federal University of Technology MINNA, Minaa, Niger, 2022. [Google Scholar]
- Idoga, A.; Dadan-Garba, A.; Shuaibu, I.; Ganiyu, S. Assessment of the Socioeconomic Effects of Illegal Artisanal Petroleum Refineries on Farmers in Gokana Local Government Area, Rivers State, Nigeria. Plasu J. Environ. Sci. 2025, 1, 17–34. [Google Scholar]
- ISO 11464:2006; Soil Quality—Sample Preparation for Physical and Chemical Analysis. International Organization for Standardization: Geneva, Switzerland, 2006.
- Almutawa, N.; Eid, W. Soil moisture content estimation using active infrared thermography technique: An exploratory laboratory study. Kuwait J. Sci. 2023, 50, 399–404. [Google Scholar] [CrossRef]
- Abdul Wahid, A.; Arunbabu, E. Multivariate analysis of water quality dynamics in a highly eutrophic reservoir: Hydrological, meteorological, and environmental contributions. Stoch. Environ. Res. Risk Assess. 2025, 39, 2373–2393. [Google Scholar] [CrossRef]
- Wu, C.Y.; Wu, P.H.; Hseu, Z.Y. Assessing the robustness of VIS-NIR spectroscopy-based soil organic carbon prediction against four wet chemistry methods. Carbon Manag. 2025, 16, 2511337. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Method 3050B—Acid Digestion of Sediments, Sludges, and Soils (Revision); USEPA: Washington, DC, USA, 1996; p. 12.
- USEPA. Method 8270E (SW-846): Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS); USEPA: Washington, DC, USA, 2014.
- Ma, J.; Wu, S.; Shekhar, N.R.; Biswas, S.; Sahu, A.K. Determination of physicochemical parameters and levels of heavy metals in food waste water with environmental effects. Bioinorg. Chem. Appl. 2020, 2020, 8886093. [Google Scholar] [CrossRef]
- Maphuhla, N.G.; Lewu, F.B.; Oyedeji, O.O. The effects of physicochemical parameters on analysed soil enzyme activity from Alice landfill site. Int. J. Environ. Res. Public Health 2021, 18, 221. [Google Scholar] [CrossRef]
- Qiu, Z.; Liu, Q.; Zhang, R.; Zhan, C.; Liu, S.; Zhang, J.; Liu, H.; Xiao, W.; Liu, X. Distribution characteristics and pollution assessment of phosphorus forms, TOC, and TN in the sediments of Daye Lake, Central China. J. Soils Sediments 2023, 23, 1023–1036. [Google Scholar] [CrossRef]
- Okoye, E.A.; Bocca, B.; Ruggieri, F.; Ezejiofor, A.N.; Nwaogazie, I.L.; Domingo, J.L.; Rovira, J.; Frazzoli, C.; Orisakwe, O.E. Metal pollution of soil, plants, feed and food in the Niger Delta, Nigeria: Health risk assessment through meat and fish consumption. Environ. Res. 2021, 198, 111273. [Google Scholar] [CrossRef] [PubMed]
- Okoye, E.A.; Ezejiofor, A.N.; Nwaogazie, I.L.; Frazzoli, C.; Orisakwe, O.E. Polycyclic aromatic hydrocarbons in soil and vegetation of Niger Delta, Nigeria: Ecological risk assessment. J. Toxicol. 2023, 2023, 8036893. [Google Scholar] [CrossRef] [PubMed]
- Mustatea, G.; Ungureanu, E.L. Assessing the presence and health risks of potentially toxic metals in food: A comprehensive overview. Explor. Foods Foodomics 2024, 2, 471–496. [Google Scholar] [CrossRef]
- Rai, S.K.; Xalxo, R.; Patle, T.K.; Verma, A.; Chauhan, R.; Mahish, P.K. Chapter 10: Analyzing contamination of heavy metals-AAS and fluorescence spectroscopy. In Heavy Metals in the Environment: Management Strategies for Global Pollution; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2023; Volume 1456, pp. 167–204. [Google Scholar] [CrossRef]
- Amadi, C.N.; Bocca, B.; Ruggieri, F.; Ezejiofor, A.N.; Uzah, G.; Domingo, J.L.; Rovira, J.; Frazzoli, C.; Orisakwe, O.E. Human dietary exposure to metals in the Niger delta region, Nigeria: Health risk assessment. Environ. Res. 2022, 207, 112234. [Google Scholar] [CrossRef]
- Ekner, H.; Dreij, K.; Sadiktsis, I. Determination of polycyclic aromatic hydrocarbons in commercial olive oils by HPLC/GC/MS–Occurrence, composition and sources. Food Control 2022, 132, 108528. [Google Scholar] [CrossRef]
- Vu-Duc, N.; Phung Thi, L.A.; Le-Minh, T.; Nguyen, L.A.; Nguyen-Thi, H.; Pham-Thi, L.H.; Doan-Thi, V.A.; Le-Quang, H.; Nguyen-Xuan, H.; Thi Nguyen, T.; et al. Analysis of polycyclic aromatic hydrocarbon in airborne particulate matter samples by gas chromatography in combination with tandem mass spectrometry (GC-MS/MS). J. Anal. Methods Chem. 2021, 2021, 6641326. [Google Scholar] [CrossRef]
- Famiyeh, L.; Chen, K.; Xu, J.; Sun, Y.; Guo, Q.; Wang, C.; He, J. A review on analysis methods, source identification, and cancer risk evaluation of atmospheric polycyclic aromatic hydrocarbons. Sci. Total Environ. 2021, 789, 147741. [Google Scholar] [CrossRef]
- United States, Environmental Protection Agency, Office of Emergency and Remedial Response. Risk Assessment Guidance for Superfund: Pt. A. Human Health Evaluation Manual; Office of Emergency and Remedial Response, US Environmental Protection Agency: Washington, DC, USA, 1989; Volume 1.
- USEPA (United States Environmental Protection Agency). Exposure Factors Handbook, 2011 ed.; Office of Research and Development, United States Environmental Protection Agency: Washington, DC, USA, 2011. Available online: https://www.epa.gov/expobox/exposure-factors-handbook-2011-edition (accessed on 13 January 2025).
- JECFA. Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). 2025. Available online: https://apps.who.int/food-additives-contaminants-jecfa-database/ (accessed on 13 January 2025).
- European Food Safety Authority (EFSA). Opinion of the Scientific Committee on a request from EFSA related to a harmonised approach for risk assessment of substances which are both genotoxic and carcinogenic. EFSA J. 2005, 3, 282. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Environmental Criteria and Assessment Office (Cincinnati, Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons; Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, US Environmental Protection Agency: Washington, DC, USA, 1993; Volume 600.
- Abdulai, P.M.; Ossai, C.; Ezejiofor, A.N.; Frazzoli, C.; Rovira, J.; Ekhator, O.C.; Firempong, C.K.; Orisakwe, O.E. Polycyclic Aromatic Hydrocarbons Burden of Meats Singed with Different Fuel Sources from Abattoirs in Ghana and Associated Cancer Risk Assessment. Environ. Health Insights 2025, 19. [Google Scholar] [CrossRef]
- Nyarko, H.D.; Okpokwasili, G.C.; Joel, O.F.; Galyuon, I.A.K. Effect of petroleum fuels and lubricants on soil properties of auto-mechanic workshops and garages in Cape Coast metropolis, Ghana. J. Appl. Sci. Environ. Manag. 2019, 23, 1287–1296. [Google Scholar] [CrossRef]
- Martin, O.I.; Lusweti, J.; Kipkemboi, P.; Anditi, B.C.; Muthoka, T.M. Variation of Selected Metal Pollutants with Depth and Seasons in Petroleum Contaminated Soils. Afr. J. Educ. Sci. Technol. (AJEST) 2015, 2, 181. [Google Scholar]
- Luchian, C.E.; Motrescu, I.; Dumitrașcu, A.I.; Scutarașu, E.C.; Cara, I.G.; Colibaba, L.C.; Cotea, V.V.; Jităreanu, G. Comprehensive Assessment of Soil Heavy Metal Contamination in Agricultural and Protected Areas: A Case Study from Iași County, Romania. Agriculture 2025, 15, 1070. [Google Scholar] [CrossRef]
- Wang, C.; Morrissey, E.M.; Mau, R.L.; Hayer, M.; Piñeiro, J.; Mack, M.C.; Marks, J.C.; Bell, S.L.; Miller, S.N.; Schwartz, E.; et al. The temperature sensitivity of soil: Microbial biodiversity, growth, and carbon mineralization. ISME J. 2021, 15, 2738–2747. [Google Scholar] [CrossRef] [PubMed]
- Nottingham, A.T.; Gloor, E.; Bååth, E.; Meir, P. Soil carbon and microbes in the warming tropics. Funct. Ecol. 2022, 36, 1338–1354. [Google Scholar] [CrossRef]
- Nottingham, A.T.; Whitaker, J.; Ostle, N.J.; Bardgett, R.D.; McNamara, N.P.; Fierer, N.; Salinas, N.; Ccahuana, A.J.; Turner, B.L.; Meir, P. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol. Lett. 2019, 22, 1889–1899. [Google Scholar] [CrossRef]
- Onwuka, B.M.; Nwagbara, M.O.; Oguike, P.C. Evaluation of soil moisture in relation to climate variability across Umudike South eastern Nigeria. Int. J. Hydrol. 2024, 8, 93–98. [Google Scholar] [CrossRef]
- Burdun, I.; Bechtold, M.; Sagris, V.; Lohila, A.; Humphreys, E.; Desai, A.R.; Nilsson, M.B.; De Lannoy, G.; Mander, Ü. Satellite determination of peatland water table temporal dynamics by localizing representative pixels of a SWIR-based moisture index. Remote Sens. 2020, 12, 2936. [Google Scholar] [CrossRef]
- Khoshru, B.; Khoshmanzar, E.; Lajayer, B.A.; Ghorbanpour, M. Soil moisture–mediated changes in microorganism biomass and bioavailability of nutrients in paddy soil. In Plant Stress Mitigators; Academic Press: Cambridge, MA, USA, 2023; pp. 479–494. [Google Scholar]
- USEPA. Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites; EPA 540-R-01-003; U.S. Environmental Protection Agency, Office of Emergency and Remedial Response: Washington, DC, USA, 2002.
- Yu, T.; Liu, X.; Ai, J.; Wang, J.; Guo, Y.; Liu, X.; He, X.; Deng, Z.; Jiang, Y. Microbial community succession during crude oil-degrading bacterial enrichment cultivation and construction of a degrading consortium. Front. Microbiol. 2022, 13, 1044448. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Zaborowska, M.; Kucharski, J. Revitalization of Soil Contaminated by Petroleum Products Using Materials That Improve the Physicochemical and Biochemical Properties of the Soil. Molecules 2024, 29, 5838. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, S.S.; Dubey, S.K.; Kumar, D.; Toor, A.S.; Walia, S.S.; Randhawa, M.K.; Kaur, G.; Brar, S.K.; Khambalkar, P.A.; Shivey, Y.S. Enhanced organic carbon triggers transformations of macronutrients, micronutrients, and secondary plant nutrients and their dynamics in the soil under different cropping Systems—A review. J. Soil Sci. Plant Nutr. 2024, 24, 5272–5292. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; WHO Press: Geneva, Switzerland, 2017; Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 13 January 2025).
- Cecchini, G.; Andreetta, A.; Marchetto, A.; Carnicelli, S. Soil solution fluxes and composition trends reveal risks of nitrate leaching from forest soils of Italy. CATENA 2021, 200, 105175. [Google Scholar] [CrossRef]
- Wang, Z.J.; Li, S.L.; Yue, F.J.; Qin, C.Q.; Buckerfield, S.; Zeng, J. Rainfall driven nitrate transport in agricultural karst surface river system: Insight from high resolution hydrochemistry and nitrate isotopes. Agric. Ecosyst. Environ. 2020, 291, 106787. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, Y.; Wang, K.; He, X.; Dong, Y.; Li, S.; Wang, Y.; Yang, H.; Chen, X.; Zhang, W. The agronomic and environmental assessment of soil phosphorus levels for crop production: A meta-analysis. Agron. Sustain. Dev. 2023, 43, 35. [Google Scholar] [CrossRef]
- Gocke, M.I.; Don, A.; Heidkamp, A.; Schneider, F.; Amelung, W. The phosphorus status of German cropland—An inventory of top- and subsoils. J. Plant Nutr. Soil Sci. 2021, 184, 51–64. [Google Scholar] [CrossRef]
- Eyetan, T.; Ozabor, F. Oil spills deposits effect on soil physicochemical properties in Port Harcourt metropolis: Implication for agricultural planning. J. Manag. Soc. Sci. Res. 2021, 2, 45–58. [Google Scholar] [CrossRef]
- Oyetunji, O.; Jones, O.A.; Subashchandrabose, S.; Yeasmin, M.; Lamb, D. Birnessite-Mediated Phosphorus Transformation and Speciation in Dissolved and Soil Organic Matter. Environ. Sci. Technol. 2025, 59, 15192–15202. [Google Scholar] [CrossRef]
- Mohammed, A.; Mengistou, S.; Fetahi, T. Role of environmental variables and seasonal mixing in dynamics of the phytoplankton community in a Tropical Highland Lake Ardibo, Ethiopia. J. Freshw. Ecol. 2023, 38, 2170484. [Google Scholar] [CrossRef]
- Schaap, K.J.; Fuchslueger, L.; Quesada, C.A.; Hofhansl, F.; Valverde-Barrantes, O.; Camargo, P.B.; Hoosbeek, M.R. Seasonal fluctuations of extracellular enzyme activities are related to the biogeochemical cycling of C, N and P in a tropical terra-firme forest. Biogeochemistry 2023, 163, 1–15. [Google Scholar] [CrossRef]
- Bessah, E.; Boakye, E.A.; Agodzo, S.K.; Nyadzi, E.; Larbi, I.; Awotwi, A. Increased seasonal rainfall in the twenty-first century over Ghana and its potential implications for agriculture productivity. Environ. Dev. Sustain. 2021, 23, 1232–12365. [Google Scholar] [CrossRef]
- Zuccarini, P.; Asensio, D.; Ogaya, R.; Sardans, J.; Peñuelas, J. Effects of seasonal and decadal warming on soil enzymatic activity in a P-deficient Mediterranean shrubland. Glob. Change Biol. 2020, 26, 3698–3714. [Google Scholar] [CrossRef]
- Fischer, S.; Hilger, T.; Piepho, H.P.; Jordan, I.; Karungi, J.; Towett, E.; Shepherd, K.; Cadisch, G. Soil and farm management effects on yield and nutrient concentrations of food crops in East Africa. Sci. Total Environ. 2020, 716, 137078. [Google Scholar] [CrossRef]
- Kalonga, J.; Mtei, K.; Massawe, B.; Kimaro, A.; Winowiecki, L.A. Characterization of soil health and nutrient content status across the North-East Maasai Landscape, Arusha Tanzania. Environ. Chall. 2024, 14, 100847. [Google Scholar] [CrossRef]
- Amaechi, J.U.J.; Onweremadu, B.U.; Uzoho, B.U.; Chukwu, E.D. Physico-chemical properties of wetland soils affected by crude oil spillage in Niger Delta area, Nigeria. Int. J. Plant Soil Sci. 2022, 34, 109–121. [Google Scholar] [CrossRef]
- Santana, C.O.D. Avaliação Taxonômica e Funcional da Comunidade Bacteriana nos Sedimentos do Rio Juliana-Apa do Pratigi; Universidade Federal da Bahia: Bahia, Brazil, 2020. [Google Scholar]
- Soria, R.; González-Pérez, J.A.; de la Rosa, J.M.; San Emeterio, L.M.; Domene, M.A.; Ortega, R.; Miralles, I. Effects of technosols based on organic amendments addition for the recovery of the functionality of degraded quarry soils under semiarid Mediterranean climate: A field study. Sci. Total Environ. 2022, 816, 151572. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, C. Investigating spatially varying relationships between total organic carbon contents and pH values in European agricultural soil using geographically weighted regression. Sci. Total Environ. 2021, 752, 141977. [Google Scholar] [CrossRef] [PubMed]
- Vystavna, Y.; Paule-Mercado, M.C.; Schmidt, S.I.; Hejzlar, J.; Porcal, P.; Matiatos, I. Nutrient dynamics in temperate European catchments of different land use under changing climate. J. Hydrol. Reg. Stud. 2023, 45, 101288. [Google Scholar] [CrossRef]
- Kumar, A.; Chaturvedi, A.K.; Yadav, K.; Arunkumar, K.P.; Malyan, S.K.; Raja, P.; Kumar, R.; Khan, S.A.; Yadav, K.K.; Rana, K.L.; et al. Fungal phytoremediation of heavy metal-contaminated resources: Current scenario and future prospects. In Recent Advancement in White Biotechnology Through Fungi. Volume 3: Perspective for Sustainable Environments; Yadav, A.N., Singh, S., Mishra, S., Gupta, A., Eds.; Springer Nature: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Kumar, S.S.; Ghosh, P.; Malyan, S.K.; Sharma, J.; Kumar, V. A comprehensive review on enzymatic degradation of the organophosphate pesticide malathion in the environment. J. Environ. Sci. Health Part C 2019, 37, 288–329. [Google Scholar] [CrossRef]
- Rolka, E.; Żołnowski, A.C.; Sadowska, M.M. Assessment of Heavy Metal Content in Soils Adjacent to the DK16-Route in Olsztyn (North-Eastern Poland). Pol. J. Environ. Stud. 2020, 29, 4303–4311. [Google Scholar] [CrossRef]
- Adesipo, A.A.; Freese, D.; Nwadinigwe, A.O. Prospects of in-situ remediation of crude oil contaminated lands in Nigeria. Sci. Afr. 2020, 8, e00403. [Google Scholar] [CrossRef]
- FAO ITPS. Status of the World’s Soil Resources (SWSR): Main Report. Rome, Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils. 2015. Available online: https://www.fao.org/fileadmin/templates/lon/Items/Dan_Pennock_IYS_2015.pdf (accessed on 13 January 2025).
- Gupta, N.; Yadav, K.K.; Kumar, V.; Kumar, S.; Chadd, R.P.; Kumar, A. Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration—A review. Sci. Total Environ. 2019, 651, 2927–2942. [Google Scholar] [CrossRef]
- Nieder, R.; Benbi, D.K. Potentially toxic elements in the environment–a review of sources, sinks, pathways and mitigation measures. Rev. Environ. Health 2024, 39, 561–575. [Google Scholar] [CrossRef]
- Caporale, A.G.; Porfido, C.; Roggero, P.P.; Di Palma, A.; Adamo, P.; Pinna, M.V.; Garau, G.; Spagnuolo, M.; Castaldi, P.; Diquattro, S. Long-term effect of municipal solid waste compost on the recovery of a potentially toxic element (PTE)-contaminated soil: PTE mobility, distribution and bioaccessibility. Environ. Sci. Pollut. Res. 2023, 30, 122858–122874. [Google Scholar] [CrossRef] [PubMed]
- Otitolaiye, V.O.; Al-Harethiya, G.M. Impacts of petroleum refinery emissions on the health and safety of local residents. J. Air Pollut. Health 2022, 7, 69–80. [Google Scholar] [CrossRef]
- Mohammadi, L.; Rahdar, A.; Bazrafshan, E.; Dahmardeh, H.; Susan, M.A.B.H.; Kyzas, G.Z. Petroleum hydrocarbon removal from wastewaters: A review. Processes 2020, 8, 447. [Google Scholar] [CrossRef]
- Gupta, V. Vehicle-generated heavy metal pollution in an urban environment and its distribution into various environmental components. In Environmental Concerns and Sustainable Development: Volume 1: Air, Water and Energy Resources; Springer: Singapore, 2020; pp. 113–127. [Google Scholar] [CrossRef]
- Sager, M. Urban soils and road dust—Civilization effects and metal pollution—A review. Environments 2020, 7, 98. [Google Scholar] [CrossRef]
- Ye, J.; Li, J.; Wang, P.; Ning, Y.; Liu, J.; Yu, Q.; Bi, X. Inputs and sources of Pb and other metals in urban area in the post leaded gasoline era. Environ. Pollut. 2022, 306, 119389. [Google Scholar] [CrossRef]
- Spahić, M.P.; Sakan, S.; Cvetković, Ž.; Tančić, P.; Trifković, J.; Nikić, Z.; Manojlović, D. Assessment of contamination, environmental risk, and origin of heavy metals in soils surrounding industrial facilities in Vojvodina, Serbia. Environ. Monit. Assess. 2018, 190, 208. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L.J.E.I. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Gao, L.; Li, R.; Liang, Z.; Hou, L.; Chen, J. Seasonal variations of cadmium (Cd) speciation and mobility in sediments from the Xizhi River basin, South China, based on passive sampling techniques and a thermodynamic chemical equilibrium model. Water Res. 2021, 207, 117751. [Google Scholar] [CrossRef] [PubMed]
- McBride, M.B.; Kelch, S.E.; Schmidt, M.P.; Sherpa, S.; Martinez, C.E.; Aristilde, L. Oxalate-enhanced solubility of lead (Pb) in the presence of phosphate: pH control on mineral precipitation. Environ. Sci. Process. Impacts 2019, 21, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Udo, G.J.; Uwanta, E.J.; Awaka-ama, J.J.; Ubong, U.U.; Igwe, R. Implications of Crude Oil Exploration and Exploitation on Seasonal Variability of pH and Electrical Conductivity of Arable Soil, Water and Sediment of Ibeno Coastal Area, Niger Delta, Nigeria. Res. J. Sci. Technol. 2024, 4, 26–43. [Google Scholar]
- Cramer, M.D.; Hoffman, M.T. The consequences of precipitation seasonality for Mediterranean-ecosystem vegetation of South Africa. PLoS ONE 2015, 10, e0144512. [Google Scholar] [CrossRef]
- Anyanwu, I.N.; Beggel, S.; Sikoki, F.D.; Okuku, E.O.; Unyimadu, J.P.; Geist, J. Pollution of the Niger Delta with total petroleum hydrocarbons, heavy metals and nutrients in relation to seasonal dynamics. Sci. Rep. 2023, 13, 14079. [Google Scholar] [CrossRef]
- Aigberua, A.O.; Okere, U.V. The impact of oil spills on prevailing metal-soil associations. Int. J. Sci. Eng. Res. 2019, 10, 1339–1365. [Google Scholar]
- Mafiana, M.O.; Bashiru, M.D.; Erhunmwunsee, F.; Dirisu, C.G.; Li, S.W. An insight into the current oil spills and on-site bioremediation approaches to contaminated sites in Nigeria. Environ. Sci. Pollut. Res. 2021, 28, 4073–4094. [Google Scholar] [CrossRef]
- Kicińska, A.; Pomykała, R.; Izquierdo-Diaz, M. Changes in soil pH and mobility of heavy metals in contaminated soils. Eur. J. Soil Sci. 2022, 73, e13203. [Google Scholar] [CrossRef]
- Rékási, M.; Filep, T. Factors determining Cd, Co, Cr, Cu, Ni, Mn, Pb and Zn mobility in uncontaminated arable and forest surface soils in Hungary. Environ. Earth Sci. 2015, 74, 6805–6817. [Google Scholar] [CrossRef]
- Suska-Malawska, M.; Vyrakhamanova, A.; Ibraeva, M.; Poshanov, M.; Sulwiński, M.; Toderich, K.; Mętrak, M. Spatial and in-depth distribution of soil salinity and heavy metals (Pb, Zn, Cd, Ni, Cu) in arable irrigated soils in Southern Kazakhstan. Agronomy 2022, 12, 1207. [Google Scholar] [CrossRef]
- Caporale, A.G.; Violante, A. Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Curr. Pollut. Rep. 2016, 2, 15–27. [Google Scholar] [CrossRef]
- Darkwah, E. Developing spatial risk maps of PFAS contamination in farmlands using soil core sampling and GIS. World J. Adv. Res. Rev. 2023, 20, 2305–2325. [Google Scholar] [CrossRef]
- Faboya, O.L.; Sojinu, S.O.; Otugboyega, J.O. Preliminary investigation of polycyclic aromatic hydrocarbons (PAHs) concentration, compositional pattern, and ecological risk in crude oil-impacted soil from Niger delta, Nigeria. Heliyon 2023, 9, e15508. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, S.; Lan, J.; Xie, Z.; Pu, J.; Yuan, D.; Yang, H.; Xing, B. Vertical migration from surface soils to groundwater and source appointment of polycyclic aromatic hydrocarbons in epikarst spring systems, southwest China. Chemosphere 2019, 230, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Obrist, D.; Zielinska, B.; Perlinger, J.A. Accumulation of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) in organic and mineral soil horizons from four US remote forests. Chemosphere 2015, 134, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, D.; Lv, Y.; Wang, W.; Wu, Q.; Huang, L.; Zhu, L. Ecological and health risk assessments of polycyclic aromatic hydrocarbons (PAHs) in soils around a petroleum refining plant in China: A quantitative method based on the improved hybrid model. J. Hazard. Mater. 2024, 461, 132476. [Google Scholar] [CrossRef]
- Oyebamiji, A.R. Modelling the Risk of Hydrocarbon Contamination on Groundwater Quality in the Niger Delta; University of Portsmouth: Portsmouth, UK, 2024. [Google Scholar]
- Shi, R.; Xu, M.; Liu, A.; Tian, Y.; Zhao, Z. Characteristics of PAHs in farmland soil and rainfall runoff in Tianjin, China. Environ. Monit. Assess. 2017, 189, 558. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, S.; Xie, Z.; Lan, J.; Li, T.; Yuan, D.; Yang, H.; Xing, B. Characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons in soil seepage water in karst terrains, southwest China. Ecotoxicol. Environ. Saf. 2020, 190, 110122. [Google Scholar] [CrossRef]
- Barathi, S.; Gitanjali, J.; Rathinasamy, G.; Sabapathi, N.; Aruljothi, K.N.; Lee, J.; Kandasamy, S. Recent trends in polycyclic aromatic hydrocarbons pollution distribution and counteracting bio-remediation strategies. Chemosphere 2023, 337, 139396. [Google Scholar] [CrossRef]
- Offiong, N.A.O.; Inam, E.J.; Etuk, H.S.; Essien, J.P. Current status and challenges of remediating petroleum-derived PAHs in soils: Nigeria as a case study for developing countries. Remediat. J. 2019, 30, 65–75. [Google Scholar] [CrossRef]
- Lopes-Mazzetto, J.M.; Schellekens, J.; Vidal-Torrado, P.; Buurman, P. Impact of drainage and soil hydrology on sources and degradation of organic matter in tropical coastal podzols. Geoderma 2018, 330, 79–90. [Google Scholar] [CrossRef]
- Cheng, H.; Sun, Q.; Bian, Y.; Han, J.; Jiang, X.; Xue, J.; Song, Y. Predicting the bioavailability of polycyclic aromatic hydrocarbons in rhizosphere soil using a new novel in situ solid-phase microextraction technique. Sci. Total Environ. 2024, 930, 172802. [Google Scholar] [CrossRef] [PubMed]
- Rajan, S.; Rex, K.R.; Pasupuleti, M.; Muñoz-Arnanz, J.; Jiménez, B.; Chakraborty, P. Soil concentrations, compositional profiles, sources and bioavailability of polychlorinated dibenzo dioxins/furans, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in open municipal dumpsites of Chennai city, India. Waste Manag. 2021, 131, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Choi, J.; Kang, H.J.; Lee, J.W.; Moon, B.; Joo, Y.S.; Lee, K.W. Monitoring and risk assessment of eight polycyclic aromatic hydrocarbons (PAH8) in daily consumed agricultural products in South Korea. Polycycl. Aromat. Compd. 2022, 42, 1141–1156. [Google Scholar] [CrossRef]
- Nabi, M.; Tabassum, N. Role of environmental toxicants on neurodegenerative disorders. Front. Toxicol. 2022, 4, 837579. [Google Scholar] [CrossRef] [PubMed]
- Iqubal, A.; Ahmed, M.; Ahmad, S.; Sahoo, C.R.; Iqubal, M.K.; Haque, S.E. Environmental neurotoxic pollutants. Environ. Sci. Pollut. Res. 2020, 27, 41175–41198. [Google Scholar] [CrossRef]
- Sharma, B.M.; Kalina, J.; Whaley, P.; Scheringer, M. Towards guidelines for time-trend reviews examining temporal variability in human biomonitoring data of pollutants. Environ. Int. 2021, 151, 106437. [Google Scholar] [CrossRef]
- Chakravarty, P.; Chowdhury, D.; Deka, H. Ecological risk assessment of priority PAHs pollutants in crude oil contaminated soil and its impacts on soil biological properties. J. Hazard. Mater. 2022, 437, 129325. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Ling, W.; Liu, R.; Liu, J.; Kang, F.; Gao, Y. Contamination and health risk assessment of PAHs in soils and crops in industrial areas of the Yangtze River Delta region, China. Chemosphere 2017, 168, 976–987. [Google Scholar] [CrossRef]
- Amjadian, K.; Sacchi, E.; Rastegari Mehr, M. Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in soils of different land uses in Erbil metropolis, Kurdistan Region, Iraq. Environ. Monit. Assess. 2016, 188, 605. [Google Scholar] [CrossRef]
- Magam, S.M.; Masood, N.; Alkhadher, S.A.; Alanazi, T.Y.; Zakaria, M.P.; Sidek, L.M.; Suratman, S.; Alrabie, N.A. Seasonal variations in the distribution of aliphatic hydrocarbons in surface sediments from the Selangor River, Peninsular Malaysia’s West Coast. Environ. Geochem. Health 2024, 46, 38. [Google Scholar] [CrossRef]
- Theophilus, A.T. Studies on Hydrocarbon Pollution in the Upstream and Downstream Areas in the Niger Delta Region of Nigeria. Ph.D. Dissertation, Brunel University, London, UK, 2021. [Google Scholar]
- Reis, A.P.M.; Shepherd, T.; Nowell, G.; Cachada, A.; Duarte, A.C.; Cave, M.; Wragg, J.; Patinha, C.; Dias, A.; Rocha, F.; et al. Source and pathway analysis of lead and polycyclic aromatic hydrocarbons in Lisbon urban soils. Sci. Total Environ. 2016, 573, 324–336. [Google Scholar] [CrossRef] [PubMed]
- Konstantinova, E.; Minkina, T.; Mandzhieva, S.; Nevidomskaya, D.; Bauer, T.; Zamulina, I.; Sushkova, S.; Lychagin, M.; Rajput, V.D.; Wong, M.H. Ecological and human health risks of metal–PAH combined pollution in riverine and coastal soils of Southern Russia. Water 2023, 15, 234. [Google Scholar] [CrossRef]
- Ehis-Eriakha, C.B.; Ajuzieogu, C.A.; Orogu, J.O.; Akemu, S.E. Overview of petroleum hydrocarbon pollution and bioremediation technologies. Bioremediation J. 2024, 29, 1–23. [Google Scholar] [CrossRef]
- Udoh, B.T.; Chukwu, E.D. Post-impact assessment of oil pollution on some soil characteristics in Ikot Abasi, Niger Delta region, Nigeria. J. Biol. Agric. Healthc. 2014, 4, 111–119. [Google Scholar]
- Bineshpour, M.; Payandeh, K.; Nazarpour, A.; Sabzalipour, S. Status, source, human health risk assessment of potential toxic elements (PTEs), and Pb isotope characteristics in urban surface soil, case study: Arak city, Iran. Environ. Geochem. Health 2021, 43, 4939–4958. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Abbasi, S.; Moore, F.; Mehravar, S.; Sorooshian, A.; Soltani, N.; Najmeddin, A. Contamination level, source identification and risk assessment of potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) in street dust of an importantt commercial center in Iran. Environ. Manag. 2018, 62, 803–818. [Google Scholar] [CrossRef]
- Wang, T.; Feng, W.; Kuang, D.; Deng, Q.; Zhang, W.; Wang, S.; He, M.; Zhang, X.; Wu, T.; Guo, H. The effects of heavy metals and their interactions with polycyclic aromatic hydrocarbons on the oxidative stress among coke-oven workers. Environ. Res. 2015, 140, 405–413. [Google Scholar] [CrossRef]
- Ephraim-Emmanuel, B.C.; Ordinioha, B. Exposure and public health effects of polycyclic aromatic hydrocarbon compounds in sub-saharan africa: A systematic review. Int. J. Toxicol. 2021, 40, 250–269. [Google Scholar] [CrossRef]
- Recknagel, R.O.; Glende, E.A.; Britton, R.S. Free radical damage and lipid peroxidation. In Hepatotoxicology; CRC Press: Boca Raton, FL, USA, 2020; pp. 401–436. [Google Scholar]
- Kıran, T.R.; Otlu, O.; Karabulut, A.B. Oxidative stress and antioxidants in health and disease. J. Lab. Med. 2023, 47, 1–11. [Google Scholar] [CrossRef]
- Engwa, G.A.; Nweke, F.N.; Nkeh-Chungag, B.N. Free radicals, oxidative stress-related diseases and antioxidant supplementation. Altern. Ther. Health Med. 2022, 28, 114–128. [Google Scholar]
Contaminants | ADI (mg/kg/Day) | PoD | |
---|---|---|---|
mg/kg/Day | Health Outcome | ||
Pb | Withdrawn | 0.0006 | Loss of 1 IQ in children |
0.0012 | 1 mmHg increase in blood pressure | ||
As | Withdrawn | 0.0052 | Bladder cancer |
Cd | 0.0008 | ||
Cu | 0.5000 | ||
Zn | 0.3000 | ||
PAHs | Withdrawn | 0.1000 | Cancer |
(a) | ||||||||||||
Variables | pH | Temp | Nitrate | TOC | Total Phosphate | Phosphorus | Moisture Content | Pb | As | Cd | Cu | Zn |
pH | 1.00 | |||||||||||
Temp | 0.27 | 1.00 | ||||||||||
Nitrate | −0.23 | −0.18 | 1.00 | |||||||||
TOC | −0.09 | −0.18 | 0.23 | 1.00 | ||||||||
Total Phosphate | −0.18 | −0.27 | 0.60 | 0.20 | 1.00 | |||||||
Phosphorus | −0.18 | −0.19 | 0.31 | 0.28 | 0.07 | 1.00 | ||||||
Moisture Content | 0.53 | 0.64 | −0.33 | −0.21 | −0.46 | −0.19 | 1.00 | |||||
Pb | 0.07 | 0.30 | −0.37 | −0.12 | −0.37 | −0.28 | 0.23 | 1.00 | ||||
As | −0.25 | −0.56 | −0.09 | −0.14 | −0.17 | −0.03 | −0.47 | 0.34 | 1.00 | |||
Cd | −0.34 | −0.67 | 0.30 | 0.06 | 0.23 | 0.18 | −0.71 | −0.08 | 0.69 | 1.00 | ||
Cu | −0.24 | −0.24 | 0.26 | 0.12 | 0.07 | 0.09 | −0.37 | 0.42 | 0.64 | 0.74 | 1.00 | |
Zn | 0.14 | 0.29 | −0.19 | 0.29 | −0.48 | 0.02 | 0.42 | 0.59 | 0.07 | −0.30 | 0.21 | 1.00 |
(b) | ||||||||||||
Variables | pH | Temp | Nitrate | TOC | Total Phosphate | Phosphorus | Moisture Content | Pb | As | Cd | Cu | Zn |
pH | 1.00 | |||||||||||
Temp | −0.04 | 1.00 | ||||||||||
Nitrate | 0.12 | 0.09 | 1.00 | |||||||||
TOC | −0.03 | −0.27 | 0.06 | 1.00 | ||||||||
Total Phosphate | −0.15 | 0.05 | −0.10 | 0.02 | 1.00 | |||||||
Phosphorus | 0.12 | 0.03 | 0.14 | −0.10 | 0.20 | 1.00 | ||||||
Moisture Content | −0.17 | −0.11 | 0.14 | 0.24 | 0.23 | 0.16 | 1.00 | |||||
Pb | −0.03 | 0.43 | 0.11 | −0.22 | 0.24 | −0.10 | −0.34 | 1.00 | ||||
As | −0.19 | 0.53 | 0.09 | −0.33 | 0.27 | −0.08 | −0.24 | 0.82 | 1.00 | |||
Cd | −0.11 | 0.36 | −0.06 | −0.07 | 0.02 | −0.15 | −0.30 | 0.75 | 0.54 | 1.00 | ||
Cu | −0.34 | 0.31 | 0.17 | −0.12 | 0.45 | −0.04 | 0.11 | 0.50 | 0.68 | 0.39 | 1.00 | |
Zn | −0.30 | 0.35 | 0.13 | −0.18 | 0.47 | −0.02 | 0.16 | 0.55 | 0.74 | 0.39 | 0.96 | 1.00 |
(a) | ||||||||||||
Variables | pH | Temp | Nitrate | TOC | Total Phosphate | Phosphorus | Moisture Content | Pb | As | Cd | Cu | Zn |
pH | 1.00 | |||||||||||
Temp | 0.45 | 1.00 | ||||||||||
Nitrate | −0.04 | −0.06 | 1.00 | |||||||||
TOC | 0.06 | −0.33 | 0.21 | 1.00 | ||||||||
Total Phosphate | −0.37 | −0.37 | 0.48 | 0.44 | 1.00 | |||||||
Phosphorus | −0.27 | −0.17 | 0.34 | −0.22 | 0.17 | 1.00 | ||||||
Moisture Content | 0.54 | 0.66 | −0.08 | −0.17 | −0.59 | −0.20 | 1.00 | |||||
Pb | 0.00 | 0.14 | 0.04 | −0.04 | 0.20 | 0.02 | −0.22 | 1.00 | ||||
As | −0.44 | −0.48 | −0.03 | −0.06 | 0.27 | 0.17 | −0.65 | 0.60 | 1.00 | |||
Cd | −0.53 | −0.57 | 0.15 | 0.23 | 0.43 | 0.24 | −0.80 | 0.29 | 0.74 | 1.00 | ||
Cu | −0.42 | −0.12 | 0.23 | 0.10 | 0.29 | 0.27 | −0.39 | 0.62 | 0.70 | 0.68 | 1.00 | |
Zn | 0.12 | 0.49 | −0.03 | −0.21 | −0.29 | −0.13 | 0.45 | 0.52 | 0.07 | −0.31 | 0.39 | 1.00 |
(b) | ||||||||||||
Variables | pH | Temp | Nitrate | TOC | Total Phosphate | Phosphorus | Moisture Content | Pb | As | Cd | Cu | Zn |
pH | 1.00 | |||||||||||
Temp | −0.04 | 1.00 | ||||||||||
Nitrate | −0.32 | −0.46 | 1.00 | |||||||||
TOC | −0.28 | −0.25 | 0.26 | 1.00 | ||||||||
Total Phosphate | −0.04 | −0.51 | 0.64 | −0.05 | 1.00 | |||||||
Phosphorus | −0.03 | −0.20 | 0.21 | 0.54 | 0.23 | 1.00 | ||||||
Moisture Content | 0.12 | 0.64 | −0.67 | −0.20 | −0.58 | −0.21 | 1.00 | |||||
Pb | −0.15 | 0.17 | −0.06 | −0.21 | −0.19 | −0.32 | −0.07 | 1.00 | ||||
As | −0.15 | −0.38 | 0.42 | −0.03 | 0.26 | −0.07 | −0.61 | 0.57 | 1.00 | |||
Cd | −0.08 | −0.69 | 0.63 | 0.09 | 0.59 | 0.12 | −0.81 | 0.40 | 0.83 | 1.00 | ||
Cu | −0.34 | −0.31 | 0.41 | 0.06 | 0.39 | −0.15 | −0.40 | 0.34 | 0.73 | 0.58 | 1.00 | |
Zn | −0.15 | 0.37 | −0.36 | 0.25 | −0.52 | −0.03 | 0.49 | 0.26 | 0.01 | −0.33 | 0.29 | 1.00 |
Sample ID | Season | Soil Level (cm) | 7CarPAHs (mg/kg) | 16PAHs (mg/kg) |
---|---|---|---|---|
Control | Dry | 0–15 | 0.00 ± 0.00 | 0.00 ± 0.00 |
15–30 | 0.00 ± 0.00 | 0.00 ± 0.00 | ||
Wet | 0–15 | 0.24 ± 0.42 | 4.47 ± 1.98 | |
15–30 | 0.51 ± 0.00 | 3.05 ± 1.29 | ||
Ibaa | Dry | 0–15 | 0.00 ± 0.00 | 0.00 ± 0.00 |
15–30 | 0.00 ± 0.00 | 0.00 ± 0.00 | ||
Wet | 0–15 | 2.68 ± 4.64 | 7.09 ± 11.47 | |
15–30 | 4.17 ± 7.22 | 12.29 ± 18.93 | ||
ROW Station 1 | Dry | 0–15 | 3.18 ± 1.18 | 11.68 ± 3.66 |
15–30 | 4.96 ± 1.94 | 11.35 ± 2.83 | ||
Wet | 0–15 | 0.21 ± 0.19 | 0.91 ± 0.88 | |
15–30 | 0.06 ± 0.10 | 0.60 ± 1.04 | ||
ROW Station 2 | Dry | 0–15 | 0.38 ± 0.66 | 4.93 ± 1.98 |
15–30 | 0.42 ± 0.61 | 4.81 ± 0.56 | ||
Wet | 0–15 | 0.87 ± 1.50 | 3.29 ± 3.33 | |
15–30 | 2.30 ± 3.98 | 9.87 ± 12.60 |
(a) | ||||||
Variables | Total PAH | Pb | As | Cd | Cu | Zn |
Total PAH | 1.00 | |||||
Pb | 0.54 | 1.00 | ||||
As | 0.31 | 0.34 | 1.00 | |||
Cd | 0.10 | −0.08 | 0.69 | 1.00 | ||
Cu | 0.15 | 0.42 | 0.64 | 0.74 | 1.00 | |
Zn | 0.21 | 0.59 | 0.07 | −0.30 | 0.21 | 1.00 |
(b) | ||||||
Variables | Total PAH | Pb | As | Cd | Cu | Zn |
Total PAH | 1.00 | |||||
Pb | −0.05 | 1.00 | ||||
As | −0.21 | 0.82 | 1.00 | |||
Cd | 0.05 | 0.75 | 0.54 | 1.00 | ||
Cu | −0.12 | 0.50 | 0.68 | 0.39 | 1.00 | |
Zn | −0.26 | 0.55 | 0.74 | 0.39 | 0.96 | 1.00 |
(c) | ||||||
Variables | Total PAH | Pb | As | Cd | Cu | Zn |
Total PAH | 1.00 | |||||
Pb | 0.06 | 1.00 | ||||
As | 0.06 | 0.62 | 1.00 | |||
Cd | 0.00 | 0.24 | 0.69 | 1.00 | ||
Cu | −0.09 | 0.61 | 0.70 | 0.66 | 1.00 | |
Zn | 0.09 | 0.56 | 0.20 | −0.29 | 0.40 | 1.00 |
(d) | ||||||
Variables | Total PAH | Pb | As | Cd | Cu | Zn |
Total PAH | 1.00 | |||||
Pb | 0.12 | 1.00 | ||||
As | −0.10 | 0.56 | 1.00 | |||
Cd | −0.01 | 0.45 | 0.88 | 1.00 | ||
Cu | −0.02 | 0.37 | 0.74 | 0.62 | 1.00 | |
Zn | −0.08 | 0.21 | −0.11 | −0.35 | 0.27 | 1.00 |
Season | Sample ID | Depth | Adult | Child | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | As | Cd | Cu | Zn | PAHs | Pb | As | Cd | Cu | Zn | PAHs | |||
Wet | ROW Station 1 | 0–15 cm | 5.27 × 10−6 | 1.57 × 10−6 | 1.96 × 10−6 | 1.03 × 10−5 | 1.31 × 10−5 | 1.35 × 10−7 | 4.74 × 10−5 | 1.41 × 10−5 | 1.76 × 10−5 | 9.24 × 10−5 | 1.18 × 10−4 | 1.90 × 10−7 |
15–30 cm | 4.25 × 10−6 | 1.30 × 10−6 | 2.14 × 10−6 | 8.85 × 10−6 | 1.21 × 10−5 | 7.72 × 10−8 | 3.82 × 10−5 | 1.17 × 10−5 | 1.92 × 10−5 | 7.95 × 10−5 | 1.09 × 10−4 | 1.08 × 10−7 | ||
ROW Station 2 | 0–15 cm | 5.05 × 10−6 | 1.00 × 10−6 | 2.10 × 10−6 | 1.02 × 10−5 | 1.31 × 10−5 | 5.19 × 10−7 | 4.54 × 10−5 | 9.01 × 10−6 | 1.89 × 10−5 | 9.19 × 10−5 | 1.18 × 10−4 | 7.28 × 10−7 | |
15–30 cm | 4.82 × 10−6 | 9.92 × 10−7 | 2.20 × 10−6 | 9.73 × 10−6 | 1.28 × 10−5 | 4.78 × 10−6 | 4.33 × 10−5 | 8.91 × 10−6 | 1.97 × 10−5 | 8.74 × 10−5 | 1.15 × 10−4 | 6.71 × 10−6 | ||
Ibaa | 0–15 cm | 3.03 × 10−6 | 9.12 × 10−8 | 1.80 × 10−6 | 8.41 × 10−6 | 1.11 × 10−5 | 9.06 × 10−6 | 2.72 × 10−5 | 8.19 × 10−7 | 1.61 × 10−5 | 7.56 × 10−5 | 9.95 × 10−5 | 1.27 × 10−5 | |
15–30 cm | 3.19 × 10−6 | 8.17 × 10−8 | 1.80 × 10−6 | 8.31 × 10−6 | 1.12 × 10−5 | 9.41 × 10−6 | 2.86 × 10−5 | 7.34 × 10−7 | 1.61 × 10−5 | 7.46 × 10−5 | 1.00 × 10−4 | 1.32 × 10−5 | ||
Control | 0–15 cm | 5.32 × 10−8 | 1.95 × 10−8 | 9.81 × 10−7 | 9.16 × 10−6 | 1.21 × 10−5 | 3.27 × 10−7 | 4.78 × 10−7 | 1.75 × 10−7 | 8.81 × 10−6 | 8.23 × 10−5 | 1.08 × 10−4 | 4.59 × 10−7 | |
15–30 cm | 7.03 × 10−8 | 5.46 × 10−8 | 9.07 × 10−8 | 9.61 × 10−6 | 1.24 × 10−5 | 3.74 × 10−7 | 6.31 × 10−7 | 4.91 × 10−7 | 8.15 × 10−7 | 8.63 × 10−5 | 1.11 × 10−4 | 5.26 × 10−7 | ||
Dry | ROW Station 1 | 0–15 cm | 5.10 × 10−6 | 3.76 × 10−6 | 6.08 × 10−6 | 1.18 × 10−5 | 1.12 × 10−5 | 2.10 × 10−6 | 4.58 × 10−5 | 3.38 × 10−5 | 5.46 × 10−5 | 1.06 × 10−4 | 1.01 × 10−4 | 2.95 × 10−6 |
15–30 cm | 5.19 × 10−6 | 2.77 × 10−6 | 4.79 × 10−6 | 1.06 × 10−5 | 1.05 × 10−5 | 3.12 × 10−6 | 4.66 × 10−5 | 2.49 × 10−5 | 4.30 × 10−5 | 9.48 × 10−5 | 9.42 × 10−5 | 4.38 × 10−6 | ||
ROW Station 2 | 0–15 cm | 5.05 × 10−6 | 1.00 × 10−6 | 2.10 × 10−6 | 1.02 × 10−5 | 1.31 × 10−5 | 1.75 × 10−7 | 4.54 × 10−5 | 9.01 × 10−6 | 1.89 × 10−5 | 9.19 × 10−5 | 1.18 × 10−4 | 2.46 × 10−7 | |
15–30 cm | 4.82 × 10−6 | 9.92 × 10−7 | 2.20 × 10−6 | 9.73 × 10−6 | 1.28 × 10−5 | 2.33 × 10−7 | 4.33 × 10−5 | 8.91 × 10−6 | 1.97 × 10−5 | 8.74 × 10−5 | 1.15 × 10−4 | 3.27 × 10−7 | ||
Ibaa | 0–15 cm | 3.35 × 10−6 | 2.51 × 10−6 | 3.57 × 10−6 | 9.34 × 10−6 | 1.00 × 10−5 | NA | 3.01 × 10−5 | 2.25 × 10−5 | 3.21 × 10−5 | 8.39 × 10−5 | 9.02 × 10−5 | NA | |
15–30 cm | 3.49 × 10−6 | 2.89 × 10−6 | 5.59 × 10−6 | 1.13 × 10−5 | 1.07 × 10−5 | NA | 3.14 × 10−5 | 2.59 × 10−5 | 5.02 × 10−5 | 1.02 × 10−4 | 9.59 × 10−5 | NA | ||
Control | 0–15 cm | 3.78 × 10−6 | 2.05 × 10−6 | 5.92 × 10−6 | 1.17 × 10−5 | 9.91 × 10−6 | NA | 3.40 × 10−5 | 1.84 × 10−5 | 5.32 × 10−5 | 1.05 × 10−4 | 8.90 × 10−5 | NA | |
15–30 cm | 2.18 × 10−6 | 1.53 × 10−6 | 4.51 × 10−6 | 1.03 × 10−5 | 9.18 × 10−6 | NA | 1.96 × 10−5 | 1.37 × 10−5 | 4.05 × 10−5 | 9.25 × 10−5 | 8.25 × 10−5 | NA |
Season | Sample ID | Depth | Adult | Child | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb MoE | As MoE | Cd HQ | Cu HQ | Zn HQ | PAHs MoE | Pb | As | Cd | Cu | Zn | PAHs | |||
Wet | ROW Station 1 | 0–15 cm | 264 | 12,033 | 2.35 × 10−3 | 2.06 × 10−5 | 4.37 × 10−5 | >1,000,000 | 15 | 1340 | 2.11 × 10−2 | 1.85 × 10−4 | 3.92 × 10−4 | 863,651 |
15–30 cm | 305 | 17,672 | 2.57 × 10−3 | 1.77 × 10−5 | 4.05 × 10−5 | 432,030 | 17 | 1967 | 2.31 × 10−2 | 1.59 × 10−4 | 3.64 × 10−4 | 307,821 | ||
ROW Station 2 | 0–15 cm | 273 | 15,661 | 2.52 × 10−3 | 2.05 × 10−5 | 4.38 × 10−5 | >1,000,000 | 15 | 1743 | 2.26 × 10−2 | 1.84 × 10−4 | 3.93 × 10−4 | >1,000,000 | |
15–30 cm | 271 | 13,134 | 2.64 × 10−3 | 1.95 × 10−5 | 4.26 × 10−5 | >1,000,000 | 15 | 1462 | 2.37 × 10−2 | 1.75 × 10−4 | 3.83 × 10−4 | >1,000,000 | ||
Ibaa | 0–15 cm | 396 | 64,277 | 2.15 × 10−3 | 1.68 × 10−5 | 3.69 × 10−5 | >1,000,000 | 22 | 7156 | 1.94 × 10−2 | 1.51 × 10−4 | 3.32 × 10−4 | >1,000,000 | |
15–30 cm | 377 | 153,055 | 2.15 × 10−3 | 1.66 × 10−5 | 3.73 × 10−5 | >1,000,000 | 21 | 17,039 | 1.94 × 10−2 | 1.49 × 10−4 | 3.35 × 10−4 | >1,000,000 | ||
Control | 0–15 cm | 25,962 | 293,036 | 1.18 × 10−3 | 1.83 × 10−5 | 4.02 × 10−5 | 765,461 | 1445 | 32,623 | 1.06 × 10−2 | 1.65 × 10−4 | 3.61 × 10−4 | 545,391 | |
15–30 cm | 18,597 | 228,426 | 1.09 × 10−4 | 1.92 × 10−5 | 4.12 × 10−5 | 671,419 | 1035 | 25,430 | 9.78 × 10−4 | 1.73 × 10−4 | 3.70 × 10−4 | 478,386 | ||
Dry | ROW Station 1 | 0–15 cm | 239 | 1396 | 7.30 × 10−3 | 2.37 × 10−5 | 3.75 × 10−5 | 48,279 | 13 | 155 | 6.56 × 10−2 | 2.13 × 10−4 | 3.36 × 10−4 | 34,399 |
15–30 cm | 236 | 1907 | 5.75 × 10−3 | 2.11 × 10−5 | 3.50 × 10−5 | 37,063 | 13 | 212 | 5.17 × 10−2 | 1.90 × 10−4 | 3.14 × 10−4 | 26,407 | ||
ROW Station 2 | 0–15 cm | 273 | 15,661 | 2.52 × 10−3 | 2.05 × 10−5 | 4.38 × 10−5 | 710,240 | 15 | 1743 | 2.26 × 10−2 | 1.84 × 10−4 | 3.93 × 10−4 | 506,046 | |
15–30 cm | 271 | 13,134 | 2.64 × 10−3 | 1.95 × 10−5 | 4.26 × 10−5 | 435,490 | 15 | 1462 | 2.37 × 10−2 | 1.75 × 10−4 | 3.83 × 10−4 | 310,287 | ||
Ibaa | 0–15 cm | 359 | 2314 | 4.29 × 10−3 | 1.87 × 10−5 | 3.35 × 10−5 | NA | 20 | 258 | 3.85 × 10−2 | 1.68 × 10−4 | 3.01 × 10−4 | NA | |
15–30 cm | 344 | 1938 | 6.71 × 10−3 | 2.27 × 10−5 | 3.56 × 10−5 | NA | 19 | 216 | 6.02 × 10−2 | 2.04 × 10−4 | 3.20 × 10−4 | NA | ||
Control | 0–15 cm | 323 | 2716 | 7.11 × 10−3 | 2.34 × 10−5 | 3.30 × 10−5 | NA | 18 | 302 | 6.38 × 10−2 | 2.10 × 10−4 | 2.97 × 10−4 | NA | |
15–30 cm | 564 | 3636 | 5.41 × 10−3 | 2.06 × 10−5 | 3.06 × 10−5 | NA | 31 | 405 | 4.86 × 10−2 | 1.85 × 10−4 | 2.75 × 10−4 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinkpelumi, V.K.; Ossai, C.M.; Abdulai, P.M.; Rovira, J.; Frazzoli, C.; Orisakwe, O.E. Seasonal Variability of Soil Physicochemical Properties, Potentially Toxic Elements, and PAHs in Crude Oil-Impacted Environments: Chemometric Analysis and Health Risk Assessment. Environments 2025, 12, 363. https://doi.org/10.3390/environments12100363
Akinkpelumi VK, Ossai CM, Abdulai PM, Rovira J, Frazzoli C, Orisakwe OE. Seasonal Variability of Soil Physicochemical Properties, Potentially Toxic Elements, and PAHs in Crude Oil-Impacted Environments: Chemometric Analysis and Health Risk Assessment. Environments. 2025; 12(10):363. https://doi.org/10.3390/environments12100363
Chicago/Turabian StyleAkinkpelumi, Victoria Koshofa, Chika Maurine Ossai, Prosper Manu Abdulai, Joaquim Rovira, Chiara Frazzoli, and Orish Ebere Orisakwe. 2025. "Seasonal Variability of Soil Physicochemical Properties, Potentially Toxic Elements, and PAHs in Crude Oil-Impacted Environments: Chemometric Analysis and Health Risk Assessment" Environments 12, no. 10: 363. https://doi.org/10.3390/environments12100363
APA StyleAkinkpelumi, V. K., Ossai, C. M., Abdulai, P. M., Rovira, J., Frazzoli, C., & Orisakwe, O. E. (2025). Seasonal Variability of Soil Physicochemical Properties, Potentially Toxic Elements, and PAHs in Crude Oil-Impacted Environments: Chemometric Analysis and Health Risk Assessment. Environments, 12(10), 363. https://doi.org/10.3390/environments12100363