Street Planted Trees Alter Leaf Functional Traits to Maintain Their Photosynthetic Activity
Abstract
1. Introduction
2. Materials and Methods
2.1. Characteristics of Sampled Species and Study Locations
- Street site (average distance to impervious surface = 0.7 m): Trees located along paved roads and streets. These trees grow in open canopies, without irrigation, surrounded by gray concrete sidewalks and impervious asphalt surfaces, with restricted soil volume for root growth and an increased risk of drought.
- Urban Park site (average distance to impervious surface = 8.0 m): These trees are situated on non-irrigated green yards, surrounded by other trees and shrubs, and not shaded by buildings. They have access to greater soil volume, are located in managed lawns, and represent a more natural habitat compared to street sites.
2.2. Leaf Morphological Trait Measurements
2.3. Gas Exchange Measurements
2.4. Stomatal Density and Aperture Measurements
2.5. Statistical Analysis
3. Results
3.1. Leaf Morphological Trait Responses to Urban Site Conditions
3.2. Leaf Gas Exchange Traits Exhibit Site Differences
3.3. Stomatal Traits Vary by Urban Site Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watson, G.; Hewitt, A.; Custic, M.; Lo, M. The Management of Tree Root Systems in Urban and Suburban Settings: A Review of Soil Influence on Root Growth. Arboric. Urban For. 2014, 40, 193–217. [Google Scholar] [CrossRef]
- Kjelgren, R.; Montague, T. Urban tree transpiration over turf and asphalt surfaces. Atmos. Environ. 1998, 32, 35–41. [Google Scholar] [CrossRef]
- Georgi, N.J.; Zafiriadis, K. The Impact of Park Trees on Microclimate in Urban Areas. Urban Ecosyst. 2006, 9, 195–209. [Google Scholar] [CrossRef]
- Setälä, H.; Francini, G.; Allen, J.A.; Jumpponen, A.; Hui, N.; Kotze, D.J. Urban Parks Provide Ecosystem Services by Retaining Metals and Nutrients in Soils. Environ. Pollut. 2017, 231, 451–461. [Google Scholar] [CrossRef]
- Gratani, L. Plant Phenotypic Plasticity in Response to Environmental Factors. Adv. Bot. 2014, 2014, 208747. [Google Scholar] [CrossRef]
- Marshall, K.A.; Gonzalez-Meler, M.A. Can Ecosystem Services Be Part of the Solution to Environmental Justice? Ecosyst. Serv. 2016, 22, 202–203. [Google Scholar] [CrossRef]
- Cho, A.; Love, N.; Cintron, R.; Nicholson, J.; Xu, L.; Nunez-Mir, G.C.; Lee, J.; Berkelhammer, M.; Gonzalez-Meler, M.A. Plant Species Selection and Participatory Community Co-Design Are Essential in Balancing Ecosystem Services and Disservices in Urban Areas. Environ. Res. Lett. 2025, 20, 051003. [Google Scholar] [CrossRef]
- Cho, A.; Dziedzic, N.; Davis, A.; Hanson, C.; Lee, J.; Nunez-Mir, G.C.; Gonzalez-Meler, M.A. Leaf Functional Traits Highlight Phenotypic Variation of Two Tree Species in the Urban Environment. Front. Plant Sci. 2024, 15, 1450723. [Google Scholar] [CrossRef] [PubMed]
- Dziedzic, N. Can Plant Functional Traits Be Used as Integrators of Environmental Stressors in Urban Areas? Master’s Thesis, University of Illinois Chicago, Chicago, IL, USA, 2024. [Google Scholar] [CrossRef]
- Horike, H.; Kinoshita, T.; Kume, A.; Hanba, Y.T. Responses of Leaf Photosynthetic Traits, Water Use Efficiency, and Water Relations in Five Urban Shrub Tree Species under Drought Stress and Recovery. Trees 2023, 37, 53–67. [Google Scholar] [CrossRef]
- Wang, X.-M.; Wang, X.-K.; Su, Y.-B.; Zhang, H.-X. Land Pavement Depresses Photosynthesis in Urban Trees Especially under Drought Stress. Sci. Total Environ. 2019, 653, 120–130. [Google Scholar] [CrossRef]
- Huang, S.; Knight, C.A.; Hoover, B.K.; Ritter, M. Leaf functional traits as predictors of drought tolerance in urban trees. Urban For. Urban Green. 2020, 48, 126577. [Google Scholar] [CrossRef]
- Kunakh, O.; Zhukov, O. The Norway maple (Acer platanoides) population space location and vital state in the urban park. Agrology 2025, 8, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Latte, N.; Taverniers, P.; de Jaegere, T.; Claessens, H. Dendroecological assessment of climate resilience of the rare and scattered forest tree species Tilia cordata Mill. in northwestern Europe. For. Int. J. Forest Res. 2020, 93, 675–684. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hoehn, R.E.I.; Bodine, A.R.; Crane, D.E.; Dwyer, J.F.; Bonnewell, V.; Watson, G. Urban Trees and Forests of the Chicago Region; Resource Bulletin, NRS-84, U.S. Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2013; Volume 84, 106p. [Google Scholar] [CrossRef]
- Morton Arboretum. Chicago Region Tree Census Executive Summary. Available online: https://mortonarb.org/app/uploads/2021/05/2020-Chicago-Region-Tree-Census-Executive-Summary__FINAL.pdf (accessed on 10 June 2025).
- Li, P.; Sharma, A. Detailed Height Mapping of Trees and Buildings (HiTAB) in Chicago and Its Implications to Urban Climate Studies. Environ. Res. Lett. 2024, 19, 094013. [Google Scholar] [CrossRef]
- Petri, A.C.; Wilson, B.; Koeser, A. Planning the Urban Forest: Adding Microclimate Simulation to the Planner’s Toolkit. Land Polic. 2019, 88, 104117. [Google Scholar] [CrossRef]
- Botanical Information and Ecology Network (BIEN). Available online: https://bien.nceas.ucsb.edu/bien/biendata/ (accessed on 8 November 2023).
- TRY Plant Trait Database. Available online: https://www.try-db.org (accessed on 21 November 2023).
- Takagi, M.; Gyokusen, K. Light and Atmospheric Pollution Affect Photosynthesis of Street Trees in Urban Environments. Urban For. Urban Green. 2004, 2, 167–171. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, B. Using Clear Nail Polish to Make Arabidopsis Epidermal Impressions for Measuring the Change of Stomatal Aperture Size in Immune Response. Methods Mol. Biol. 2017, 1578, 243–248. [Google Scholar] [CrossRef]
- Ackerly, D.; Knight, C.; Weiss, S.; Barton, K.; Starmer, K. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: Contrasting patterns in species level and community level analyses. Oecologia 2002, 130, 449–457. [Google Scholar] [CrossRef]
- Bierza, K.; Bierza, W. The effect of industrial and urban dust pollution on the ecophysiology and leaf element concentration of Tilia cordata Mill. Environ. Sci. Poll. Res. 2024, 31, 58413–58429. [Google Scholar] [CrossRef]
- Evans, J.R.; Loreto, F. Acquisition and diffusion of CO2 in higher plant leaves. In Photosynthesis: Physiology and Metabolism; Springer: Dordrecht, The Netherlands, 2000; pp. 321–351. ISBN 978-0-306-48137-6. [Google Scholar]
- Niinemets, Ü.; Díaz-Espejo, A.; Flexas, J.; Galmes, J.; Warren, C.R. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J. Exp. Bot. 2009, 60, 2249–2270. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, Z.; Xu, H.; Kong, Z.; Xu, Z.; Liu, Q.; Liu, P.; Zhang, Z. Biophysical regulations of transpiration and water use strategy in a mature Chinese pine (Pinus tabulaeformis) forest in a semiarid urban environment. Hydrol. Process. 2022, 36, e14485. [Google Scholar] [CrossRef]
- Suárez, J.C.; Urban, M.O.; Contreras, A.T.; Noriega, J.E.; Deva, C.; Beebe, S.E.; Polanía, J.A.; Casanoves, F.; Rao, I.M. Water use, leaf cooling and carbon assimilation efficiency of heat resistant common beans evaluated in Western Amazonia. Front. Plant Sci. 2021, 12, 644010. [Google Scholar] [CrossRef]
- Ding, J.; Jiao, X.; Bai, P.; Hu, Y.; Zhang, J.; Li, J. Effect of vapor pressure deficit on the photosynthesis, growth, and nutrient absorption of tomato seedlings. Sci. Hort. 2022, 293, 110736. [Google Scholar] [CrossRef]
- Gillner, S.; Korn, S.; Roloff, A. Leaf-gas exchange of five tree species at urban street sites. Arboric. Urban For. 2015, 41, 113–124. [Google Scholar] [CrossRef]
- Ferdous, J.; Islam, M.; Rahman, M. The role of tree size, wood anatomical and leaf stomatal traits in shaping tree hydraulic efficiency and safety in a South Asian tropical moist forest. Glob. Ecol. Conser. 2023, 43, e02453. [Google Scholar] [CrossRef]
- Balasooriya, B.L.W.K.; Samson, R.; Mbikwa, F.; Vitharana, U.W.A.; Boeckx, P.; Meirvenne, M.V. Biomonitoring of Urban Habitat Quality by Anatomical and Chemical Leaf Characteristics. Environ. Exp. Bot. 2009, 65, 386–394. [Google Scholar] [CrossRef]
- Endreny, T.A. Strategically Growing the Urban Forest Will Improve Our World. Nat. Commun. 2018, 9, 1160. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The Worldwide Leaf Economics Spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
Site | Species | Sample Size | Sampling Dates | DBH (cm) z | Distance from Impervious Surface (m) | Soil Moisture (%) y | ||
---|---|---|---|---|---|---|---|---|
2023 | 2024 | 2023 | 2024 | |||||
Street | Norway Maple | 5 | 21 July | 19 July | 45.3 ± 5.0 | 0.6 ± 0.1 | 15.6 ± 2.2 | 14.9 ± 1.5 |
Little-leaved Linden | 5 | 19, 23 July | 14.5 ± 1.5 | 0.9 ± 0.1 | 17.9 ± 2.0 | 12.8 ± 2.0 | ||
Urban Park | Norway Maple | 4 | 25 July | 23 July | 36.6 ± 3.7 | 7.3 ± 0.5 | 13.3 ± 0.5 | 17.7 ± 5.6 |
Little-leaved Linden | 5 | 24 July | 48.3 ± 9.2 | 8.8 ± 4.6 | 18.8 ± 9.4 | 12.5 ± 1.6 |
Dataset | Site | Norway Maple | Little-Leaved Linden | ||
---|---|---|---|---|---|
LA | SLA | LA | SLA | ||
Studied | Street | 0.82 | 0.54 | 0.56 | 0.53 |
Urban Park | 0.56 | 0.40 | 0.46 | 0.50 | |
Global dataset z | 0.92 | 0.85 | 0.93 | 0.80 |
Species | Site | Stomatal Trait | ||
---|---|---|---|---|
SD | SA | log (SL) | ||
Norway Maple | Street | 77.2 ± 9.9 a z | 272 ± 25 a | 3.05 ± 0.05 a |
Urban Park | 66.8 ± 4.7 b | 260 ± 19 a | 3.03 ± 0.03 a | |
Little-leaved Linden | Street | 77.7 ± 7.9 a | 371 ± 31 b | 3.29 ± 0.05 b |
Urban Park | 54.3 ± 6.4 b | 393 ± 28 b | 3.31 ± 0.04 b | |
ANOVA p-values | ||||
Site | <0.001 | <0.001 | <0.001 | |
Species | <0.001 | 0.428 | 0.926 | |
Site × Species | 0.013 | 0.051 | 0.187 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziedzic, N.; Gonzalez-Meler, M.A.; Cho, A. Street Planted Trees Alter Leaf Functional Traits to Maintain Their Photosynthetic Activity. Environments 2025, 12, 361. https://doi.org/10.3390/environments12100361
Dziedzic N, Gonzalez-Meler MA, Cho A. Street Planted Trees Alter Leaf Functional Traits to Maintain Their Photosynthetic Activity. Environments. 2025; 12(10):361. https://doi.org/10.3390/environments12100361
Chicago/Turabian StyleDziedzic, Nicole, Miquel A. Gonzalez-Meler, and Ahram Cho. 2025. "Street Planted Trees Alter Leaf Functional Traits to Maintain Their Photosynthetic Activity" Environments 12, no. 10: 361. https://doi.org/10.3390/environments12100361
APA StyleDziedzic, N., Gonzalez-Meler, M. A., & Cho, A. (2025). Street Planted Trees Alter Leaf Functional Traits to Maintain Their Photosynthetic Activity. Environments, 12(10), 361. https://doi.org/10.3390/environments12100361